
*Corresponding author.

CORRECTION OF FAULTY LINES IN MUSCLE MODEL, TO BE USED IN 3D
BUILDING NETWORK CONSTRUCTION

Ismail Rakip Karas1, *, Umit Atila2, Alias Abdul-Rahman3

1 Department of Computer Engineering, Karabuk University, 78050, Karabuk, Turkey - ismail.karas@karabuk.edu.tr

2 Directorate of Computer Center, Gazi University, Ankara, Turkey - umitatila@gmail.com
3 Department of Geoinformatics, Universiti Teknologi Malaysia, Johor, Malaysia – alias@utm.my

Commission II, WG II/5

KEY WORDS: Raster to vector conversion, line extraction, 3D GIS, CityGML, Network Analyses, Topology

ABSTRACT:

This paper describes the usage of MUSCLE (Multidirectional Scanning for Line Extraction) Model for automatic generation of 3D
networks in CityGML format (from raster floor plans). MUSCLE (Multidirectional Scanning for Line Extraction) Model is a
conversion method which was developed to vectorize the straight lines through the raster images including floor plans, maps for
GIS, architectural drawings, and machine plans. The model allows user to define specific criteria which are crucial for acquiring
the vectorization process. Unlike traditional vectorization process, this model generates straight lines based on a line thinning
algorithm, without performing line following-chain coding and vector reduction stages. In this method the nearly vertical lines
were obtained by scanning the images horizontally, while the nearly horizontal lines were obtained by scanning the images
vertically. In a case where two or more consecutive lines are nearly horizontal or nearly vertical, raster data become unmanageable
and the process generates wrongly vectorized lines. In this situation, to obtain the precise lines, the image with the wrongly
vectorized lines is diagonally scanned. By using MUSCLE model, the network models are topologically structured in CityGML
format. After the generation process, it is possible to perform 3D network analysis based on these models. Then, by using the
software that was designed based on the generated models, a geodatabase of the models could be established. This paper presents
the correction application in MUSCLE and explains 3D network construction in detail.

1. INTRODUCTION

This paper describes the usage of MUSCLE (Multidirectional
Scanning for Line Extraction) Model with correction process
for automatic generation of 3D networks in CityGML format
(from raster floor plans). Once the network generation process
completed, the data is converted into CityGML format in
LOD0 (Level of Detail). The whole data generation process is
described in a flow chart showed in Figure 1. The details of
every stages are explained in the following sections.

Figure 1. Data Generation Process

2. MUSCLE MODEL

MUSCLE (Multidirectional Scanning for Line Extraction)
Model is a conversion method which was developed to
vectorize the straight lines through the raster images including
township plans, maps, architectural drawings, and machine
plans. Line is one of the most fundamental elements in
graphical information systems. In previous studies, there are a
large number of algorithms developed for detecting lines from
raster images. The vectorization methods implemented in these
algorithms can be categorized into following six classes; (1)
Hough Transform (HT) based methods, (2) thinning based
methods, (3) contour based methods, (4) run-graph based

methods, (5) mesh pattern based methods, and (6) sparse pixel
based methods. After the scanning, thresholding, and filtering
stages, a traditional vectorization process consists of three
stages (except HT based methods); (1) line thinning, (2) line
following and chain coding, and (3) vector reduction (i.e. line
segment approximation). Unlike traditional vectorization
process, this model generates straight lines based on a line
thinning algorithm, without performing line following-chain
coding and vector reduction stages. In some cases, raster data
become unmanageable and the process generates wrongly
vectorized lines. In the following sections, the process and
correction application explains in detail.

2.1 Threshold Processing

In grayscale images, the objects may contain many different
levels of gray tones. In this study, the objects are separated by
using the threshold processing technique, with the assumption
that the gray values are distributed over the image nearly
homogeneous (Wang and Bai, 1999; Belkasim et al, 2003; Liao
et al, 2001). In the threshold process, a predetermined gray
level (threshold value) is to be determined and every pixel
darker than this level is assigned black, while every lighter
pixel is assigned white. Therefore, the grayscale image was
converted into a binary image (Sun and Wu, 2007, Hasson et
al, 2006).

2.2 Horizontal and Vertical Scanning of the Binary Image

In this stage, the horizontal and vertical lines were extracted
from the binary image. The nearly vertical lines were obtained
by scanning the images horizontally, while the nearly
horizontal lines were obtained by scanning the images
vertically. The forms of nearly vertical and nearly horizontal

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

105

lines are shown in Figure 2. In Figure 2a, the lines which pass
through the region 1 and 2 are defined as the nearly vertical
lines and the nearly horizontal lines, respectively. Figure 2b
and Figure 2c indicates the sample drawings for nearly vertical
and nearly horizontal lines, respectively. In other words, if the
slope (tangent) of the line is between -1 and +1, it is defined as
“nearly horizontal line”. If the slope (tangent) of the line is less
than -1 or greater than +1, it is defined as “nearly vertical
line”. At the first step, each row on the binary image was
scanned horizontally to determine the thickness of the lines and
the position of the pixels, which were located in the mid-point
of the lines. During this process, the value (black or white) of
each pixel was checked by moving from left to right.

Figure 2. Samples of nearly vertical and nearly horizontal lines

Once the first black pixel was met, its column number was
stored into the algorithm. While continuing to scan pixels, the
column number of the first white pixel was also stored into the
algorithm. Thus, the position of the middle pixel in the mid-
point of the line could be determined by using the following
equation, based on the image coordinate system:

Position of mid pixel = m + Absolute Value ((n - m) / 2) (1)

m: 1st black pixel’s column #, n: 1st white pixel’s column #

For example, assuming that 8th pixel is the first black pixel and
13th pixel is the first white pixel in Figure 3a. Using Equation
1, position of the middle pixel can be calculated as 10th pixel,
which is then colored with red. After performing the same
process for each row on the image, distribution of the red
pixels for nearly vertical and nearly horizontal lines are
indicated in Figure 3a and Figure 3b, respectively. In these
figures, the distribution of the red pixels indicates that the red
pixels have continuity for nearly vertical lines; however they
have discontinuity for nearly horizontal lines.

Figure 3. Determining red pixels by using horizontal and
vertical scanning process.

After the horizontal scanning processes were completed, only
the red pixels were selected. Then, a neighborhood analysis
was carried out based on the nearly vertical lines by taking the
advantages of discontinuity on the nearly horizontal lines. In
this method, a red pixel, which is adjacent to another red one,
was searched along the lines. This process continued until no
red pixels were found adjacent to each other, indicating that
the end of the line has been reached. The beginning and ending
points of all the nearly vertical lines were determined by using
the same procedure.

At the second step, the binary image was scanned vertically,
and then, the same process described above was carried out for
all columns. Unlike horizontal scanning, the red pixels have
continuity for nearly horizontal lines (Figure 3c); however they
have discontinuity for nearly vertical lines (Figure 3d).
Therefore, the neighborhood analysis was carried out based on
the nearly horizontal lines and the beginning and the ending
points of all the plenary horizontal lines were determined.
After completing the horizontal and vertical scanning of the
binary image, the final vectorized data was generated by
vectorizing the nearly vertical and the horizontal lines.

3. CORRECTION OF FAULTY LINES

3.1 Detecting Faulty Vectorized Lines

In a case where two or more consecutive lines are nearly
horizontal or nearly vertical, raster data becomes
unmanageable and the process described in the previous stages
generates wrongly vectorized lines. For example, initially,
three consecutive nearly horizontal lines (AB, BC, and CD)
were horizontally scanned as displayed in Figure 4a. Due to
discontinuity of the red pixels between intersection points A,
B, C, and D, the neighborhood analysis can not be performed
and vectorized data can not be generated. When the raster
image was vertically scanned during the second step, the
neighborhood analysis yielded wrong vectorization results
because of continuity of the red pixels. The algorithm
recognizes point A as the beginning point of the line, skips
point B and point C, and ends the line at point D. Therefore,
the process generates a wrongly vectorized line between point
A and D as indicated in Figure 4b.

The detection of wrongly vectorized data is performed by
comparing the middle axis of the lines (red pixels) with the
vectorized lines. The middle axis and the vectorized line have
to be based on the same linear equation. For example, if a
sample vectorized line (AB line) is a line with the beginning
point of A(Xa,Ya) and the ending point of B(Xb,Yb), then, the
linear equation for this vectorized line can be formed as
follows:

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

106

Figure 4. Detecting wrong vectorization after vertical and

horizontal scanning.

(Y- Ya) / (Ya - Yb) = (X- Xa) / (Xa - Xb) (2)

Y = ((Ya - Yb) / (Xa - Xb)) X + ((Yb Xa - Xb Ya) / (Xa - Xb)) (3)

When X coordinate of a red pixel is inserted into the linear
Equation 3, and if the difference between the Y value derived

from this equation and the Y coordinate of this pixel is greater
than a user defined maximum deviation, the model defines this
line as a wrongly vectorized line. After this process, the red
pixels within the acceptable deviation range were eliminated
from the image by converting them into the white pixel values.
The wrongly vectorized lines with red pixels were remained
unchanged within the image.

3.2 Correction of Faulty Vectorized Lines by Using
Diagonal Scanning

The image having the wrongly vectorized lines (Figure 5a) was
diagonally (under 45o angle) scanned; first, from left to right,
and then, from right to left (Figure 5b). In diagonal scanning
process, if there were two consecutive red pixels along the
direction of scanning, the second red pixel is eliminated. Thus,
vectorized line took a discontinuous form as shown in Figure
5c. After applying the neighborhood analysis, the lines failed to
have the acceptable number of pixels were not vectorized. The
continuous pixels, determined by implementing diagonal
scanning from both directions, were vectorized as indicated in
Figure 5d. Then, corrected vector data was generated by
combining both of the vectorized lines together (Figure 5e).

Figure 5. Correction of wrong extracted lines by using diagonal scanning procedure.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

107

*Corresponding author.

4. 3D BUILDING NETWORK CONSTRUCTION

4.1 Generating 3D Network Model

By using the MUSCLE Model described in previous section,
the 3D topological Network Model of a building can be
constracted automatically from raster floor plans. The user
interface of 3D Model Constraction Software is shown in
Figure 6.

In Network Model, corridor is the main backbone in the floor
plan since it connects the rooms with all the other entities in
the building. Therefore, determining and modeling the corridor
is very important. Once corridor was provided by the user,
algorithm leaves only the corridor in the image, and then,
determines the middle lines based on the MUSCLE Model.
After number of processes on selected middle lines, topological
model and coordinates of the corridor are found as seen in
Figure 7.

Figure 6. 3D Network Model Construction User Interface

In determining the rooms, corridor is excluded from the image
and only the rooms are left. Then, by applying the method,
middle point of the rooms are determined and defined as the
nodes which represent the rooms Figure 7. After locating the
nodes that indicates corridor and rooms, user interactively
points out which room nodes connect with which corridor
nodes, and geometric network for 2D floor plan is generated.

After stairs (or elevator) nodes are indicated by a user, the
network is automatically designed by assigning different
elevation values for each floor based on various data such as
floor number and floor height, and then, 3D NM is generated
as seen in Figure 7.

4.2 Converting Network Model into CityGML Format

CityGML is an open data model and XML-based format for the
storage and exchange of virtual 3D city models. It is an
application schema for the Geography Markup Language
version 3.1.1 (GML3), the extendible interna-tional standard
for spatial data exchange issued by the Open Geospatial
Consortium (OGC) and the ISO TC211 (Gröger et al. 2008).

The aim of the development of CityGML is to reach a common
definition of the basic entities, attributes, and relations of a 3D
city model. This is especially important with respect to the
cost-effective sustainable mainte-nance of 3D city models,
allowing the reuse of the same data in different application
fields. CityGML not only represents the graphical appearance
of city models but specifically addresses the representa-tion of

the semantic and thematic properties, taxonomies and
aggregations (Gröger et al. 2008).

Figure 7. 3D Network Generation Process by using MUSCLE

Model (MM).

CityGML includes a geometry model and a thematic model.
The geometry model allows for the consistent and
homogeneous definition of geometrical and topological
properties of spatial objects within 3D city models. The base
class of all objects is CityObject which is a subclass of the
GML class Feature. All objects inherit the properties from
CityObject.

CityGML supports different Levels of Detail (LOD). LODs are
required to reflect independent data collection processes with
differing application requirements (Figure 8). The coarsest
level LOD0 is essentially a two and a half dimensional Digital
Terrain Model, over which an aerial image or a map may be
draped. LOD1 is the well-known blocks model comprising
prismatic buildings with flat roofs. In contrast, a building in
LOD2 has differentiated roof structures and thematically
differentiated surfaces. Vegetation objects may also be
represented. LOD3 denotes architectural models with detailed
wall and roof structures, balconies, bays and projections. High-
resolution textures can be mapped onto these structures. In
addition, detailed vegetation and transportation objects are
components of a LOD3 model. LOD4 completes a LOD3
model by adding interior structures for 3D objects. For
example, buildings are composed of rooms, interior doors,
stairs, and furniture (Gröger et al. 2008).

3D Network Model is represented using Transportation
Module of CityGML. The transportation model of CityGML is
a multi-functional, multi-scale model focusing on thematic and
func-tional as well as on geometrical/topological aspects.
Transportation features are represented as a linear network in
LOD0. Starting from LOD1, all transportation features are
geometrically described by 3D surfaces. The main class is
transportationComplex, which represents, for example, a road,
a track, a railway, or a square. Representation of a
TransportationComplex for LOD0 is illustrated in Figure 9
(Gröger et al. 2008).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

108

Figure 8. The five levels of detail (LOD) defined by CityGML
(Gröger et al. 2008, source: IGG Uni Bonn).

Figure 9. TransportationComplex in LOD0 (Example shows

part of a Motorway) (Gröger et al. 2008)

Once the network generation process completed, the data is
converted to and created a CityGML format in LOD0 through
program code for writing in a text file by using topological
network model details; e.g. nodes, edges and coordinates
(Figure 10).

Print #2, "<gml:curveMember><gml:LineString
srsDimension=" & Chr(34) & "3" & Chr(34) & ">

<gml:posList id=" & Chr(34) & "1" & Chr(34) & ">" &
Fix(xim(fn(th))); Fix(yim(fn(th))); Fix(Val(Text5) +

(Val(Text4) * dk)); Fix(xim(tn(th))); Fix(yim(tn(th)));
Fix(Val(Text5) + (Val(Text4) * dk)) &

"</gml:posList></gml:LineString> </gml:curveMember>"

Figure 10. An example line of program code for writing to
CityGML file.

3D Network Model is represented as a linear network using
Transportation Module of CityGML. Network model in
CityGML format is shown in Figure 11.

For visualizing the network model in CityGML, a java based
application was developed. The application uses CityGML4j
Java class library and API for facilitating work with the
CityGML. Application uses JOGL Java bindings for OPENGL
to carry out visualization (Figure 12). Apart from these, the
constracted Network Model can be used for 3D Network
Analyses as shown in Figure 13.

Figure 11. Network model represented in LOD-0 linear network in CityGML file.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

109

*Corresponding author.

Figure 12: Visualization of Network Model from CityGML

Figure 13: 3D Network Analyses on the Network Model in CityGML file.

5. CONCLUSIONS

In this study, MUSCLE (Multidirectional Scanning for Line
Extraction), was developed by implementing an appropriate
computer programming to automatically vectorize the raster
data with straight lines. The algorithm of the model generates
the line thinning and the simple neighborhood techniques for
vectorization processes. When the model works, in some cases
raster data become unmanageable and the process generates
wrongly vectorized lines. In this situation, to obtain the precise
lines, the image with the wrongly vectorized lines is diagonally
scanned.

By using this method, the 3D Network models can be
constracted topologically in CityGML format from raster floor
plans. After the generation process, it is possible to visualize
and perform 3D Network Analyses based on these models.

In this paper, it was indicated that the MUSCLE Model may
successfully be used to generate 3D Topological Network
Models of the buildings and convert them into CityGML data
format.

6. REFERENCES

Belkasim, S.; Ghazal, A.; Basir, O.A. Phase-based optimal
image thresholding. Digit. Signal Process. 2003, 13, 636–655.

Gröger, G., Kolbe, T.H., Czerwinski, A., Nagel, C., 2008.
OpenGIS City Geography Markup Language (CityGML)
Encoding Standard, Version 1.0.0, International OGC
Standard. Open Geospatial Consortium.

Hasson, N.N.; Aljunid, S.A.; Badlishah, A. R., 2006,
Simplification of Raster Images to Extract Visual Information.
International Journal of Computer Science and Network
Security , 6(11), p.49.

Liao, P.S.; Chen, T.S., 2001, Chung, P.C. A Fast Algorithm
for Multilevel Thresholding. J. Inf. Sci. Eng. , 17, 713-727.

Sun, J. and Wu, X., 2007, Shape Retrieval Based on the
Relativity of Chain. Lect. Notes Comput. Sc. 2007, V. 4577, P.
76-84

Wang, L.; Bai, J. Threshold selection by clustering gray levels
of boundary. Pattern Recogn. Lett. 2003, 24(12), 1983–1999

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

110

