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ABSTRACT: 
 
This paper describes the usage of MUSCLE (Multidirectional Scanning for Line Extraction) Model for automatic generation of 3D 
networks in CityGML format (from raster floor plans). MUSCLE (Multidirectional Scanning for Line Extraction) Model is a 
conversion method which was developed to vectorize the straight lines through the raster images including floor plans, maps for 
GIS, architectural drawings, and machine plans. The model allows user to define specific criteria which are crucial for acquiring 
the vectorization process. Unlike traditional vectorization process, this model generates straight lines based on a line thinning 
algorithm, without performing line following-chain coding and vector reduction stages. In this method the nearly vertical lines 
were obtained by scanning the images horizontally, while the nearly horizontal lines were obtained by scanning the images 
vertically. In a case where two or more consecutive lines are nearly horizontal or nearly vertical, raster data become unmanageable 
and the process generates wrongly vectorized lines. In this situation, to obtain the precise lines, the image with the wrongly 
vectorized lines is diagonally scanned. By using MUSCLE model, the network models are topologically structured in CityGML 
format. After the generation process, it is possible to perform 3D network analysis based on these models. Then, by using the 
software that was designed based on the generated models, a geodatabase of the models could be established. This paper presents 
the correction application in MUSCLE and explains 3D network construction in detail. 
 

1. INTRODUCTION 

This paper describes the usage of MUSCLE (Multidirectional 
Scanning for Line Extraction) Model with correction process 
for automatic generation of 3D networks in CityGML format 
(from raster floor plans). Once the network generation process 
completed, the data is converted into CityGML format in 
LOD0 (Level of Detail). The whole data generation process is 
described in a flow chart showed in Figure 1. The details of 
every stages are explained in the following sections.  
 

 
Figure 1. Data Generation Process 

 
2. MUSCLE MODEL 

MUSCLE (Multidirectional Scanning for Line Extraction) 
Model is a conversion method which was developed to 
vectorize the straight lines through the raster images including 
township plans, maps, architectural drawings, and machine 
plans. Line is one of the most fundamental elements in 
graphical information systems. In previous studies, there are a 
large number of algorithms developed for detecting lines from 
raster images. The vectorization methods implemented in these 
algorithms can be categorized into following six classes; (1) 
Hough Transform (HT) based methods, (2) thinning based 
methods, (3) contour based methods, (4) run-graph based 

methods, (5) mesh pattern based methods, and (6) sparse pixel 
based methods. After the scanning, thresholding, and filtering 
stages, a traditional vectorization process consists of three 
stages (except HT based methods); (1) line thinning, (2) line 
following and chain coding, and (3) vector reduction (i.e. line 
segment approximation). Unlike traditional vectorization 
process, this model generates straight lines based on a line 
thinning algorithm, without performing line following-chain 
coding and vector reduction stages. In some cases, raster data 
become unmanageable and the process generates wrongly 
vectorized lines. In the following sections, the process and 
correction application explains in detail. 
 
2.1 Threshold Processing 

In grayscale images, the objects may contain many different 
levels of gray tones. In this study, the objects are separated by 
using the threshold processing technique, with the assumption 
that the gray values are distributed over the image nearly 
homogeneous (Wang and Bai, 1999; Belkasim et al, 2003; Liao 
et al, 2001). In the threshold process, a predetermined gray 
level (threshold value) is to be determined and every pixel 
darker than this level is assigned black, while every lighter 
pixel is assigned white. Therefore, the grayscale image was 
converted into a binary image (Sun and Wu, 2007, Hasson et 
al, 2006). 
 
2.2 Horizontal and Vertical Scanning of the Binary Image 

In this stage, the horizontal and vertical lines were extracted 
from the binary image. The nearly vertical lines were obtained 
by scanning the images horizontally, while the nearly 
horizontal lines were obtained by scanning the images 
vertically. The forms of nearly vertical and nearly horizontal 
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lines are shown in Figure 2. In Figure 2a, the lines which pass 
through the region 1 and 2 are defined as the nearly vertical 
lines and the nearly horizontal lines, respectively. Figure 2b 
and Figure 2c indicates the sample drawings for nearly vertical 
and nearly horizontal lines, respectively. In other words, if the 
slope (tangent) of the line is between -1 and +1, it is defined as 
“nearly horizontal line”. If the slope (tangent) of the line is less 
than -1 or greater than +1, it is defined as “nearly vertical 
line”. At the first step, each row on the binary image was 
scanned horizontally to determine the thickness of the lines and 
the position of the pixels, which were located in the mid-point 
of the lines. During this process, the value (black or white) of 
each pixel was checked by moving from left to right. 
 

Figure 2. Samples of nearly vertical and nearly horizontal lines 
 

Once the first black pixel was met, its column number was 
stored into the algorithm. While continuing to scan pixels, the 
column number of the first white pixel was also stored into the 
algorithm. Thus, the position of the middle pixel in the mid-
point of the line could be determined by using the following 
equation, based on the image coordinate system: 
 
Position of mid pixel = m + Absolute Value ((n - m) / 2)     (1) 
 
m: 1st black pixel’s column #, n: 1st white pixel’s column # 

For example, assuming that 8th pixel is the first black pixel and 
13th pixel is the first white pixel in Figure 3a. Using Equation 
1, position of the middle pixel can be calculated as 10th pixel, 
which is then colored with red. After performing the same 
process for each row on the image, distribution of the red 
pixels for nearly vertical and nearly horizontal lines are 
indicated in Figure 3a and Figure 3b, respectively. In these 
figures, the distribution of the red pixels indicates that the red 
pixels have continuity for nearly vertical lines; however they 
have discontinuity for nearly horizontal lines. 

Figure 3. Determining red pixels by using horizontal and 
vertical scanning process. 

 
After the horizontal scanning processes were completed, only 
the red pixels were selected. Then, a neighborhood analysis 
was carried out based on the nearly vertical lines by taking the 
advantages of discontinuity on the nearly horizontal lines. In 
this method, a red pixel, which is adjacent to another red one, 
was searched along the lines. This process continued until no 
red pixels were found adjacent to each other, indicating that 
the end of the line has been reached. The beginning and ending 
points of all the nearly vertical lines were determined by using 
the same procedure. 

At the second step, the binary image was scanned vertically, 
and then, the same process described above was carried out for 
all columns. Unlike horizontal scanning, the red pixels have 
continuity for nearly horizontal lines (Figure 3c); however they 
have discontinuity for nearly vertical lines (Figure 3d). 
Therefore, the neighborhood analysis was carried out based on 
the nearly horizontal lines and the beginning and the ending 
points of all the plenary horizontal lines were determined. 
After completing the horizontal and vertical scanning of the 
binary image, the final vectorized data was generated by 
vectorizing the nearly vertical and the horizontal lines. 

3. CORRECTION OF FAULTY LINES 

3.1 Detecting Faulty Vectorized Lines 

In a case where two or more consecutive lines are nearly 
horizontal or nearly vertical, raster data becomes 
unmanageable and the process described in the previous stages 
generates wrongly vectorized lines. For example, initially, 
three consecutive nearly horizontal lines (AB, BC, and CD) 
were  horizontally scanned as displayed in Figure 4a. Due to 
discontinuity of the red pixels between intersection points A, 
B, C, and D, the neighborhood analysis can not be performed 
and vectorized data can not be generated. When the raster 
image was vertically scanned during the second step, the 
neighborhood analysis yielded wrong vectorization results 
because of continuity of the red pixels. The algorithm 
recognizes point A as the beginning point of the line, skips 
point B and point C, and ends the line at point D. Therefore, 
the process generates a wrongly vectorized line between point 
A and D as indicated in Figure  4b. 

 
The detection of wrongly vectorized data is performed by 
comparing the middle axis of the lines (red pixels) with the 
vectorized lines. The middle axis and the vectorized line have 
to be based on the same linear equation. For example, if a 
sample vectorized line (AB line) is a line with the beginning 
point of A(Xa,Ya) and the ending point of B(Xb,Yb), then, the 
linear equation for this vectorized line can be formed as 
follows: 
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Figure 4. Detecting wrong vectorization after vertical and 

horizontal scanning. 

 
(Y- Ya) / (Ya - Yb) = (X- Xa) / (Xa - Xb)                     (2) 

 
Y = ((Ya - Yb) / (Xa - Xb)) X + ((Yb Xa - Xb Ya) / ( Xa - Xb))      (3) 
 
When X coordinate of a red pixel is inserted into the linear 
Equation 3, and if the difference between the Y value derived 

from this equation and the Y coordinate of this pixel is greater 
than a user defined maximum deviation, the model defines this 
line as a wrongly vectorized line. After this process, the red 
pixels within the acceptable deviation range were eliminated 
from the image by converting them into the white pixel values. 
The wrongly vectorized lines with red pixels were remained 
unchanged within the image. 
 

3.2 Correction of Faulty Vectorized Lines by Using 
Diagonal Scanning 

The image having the wrongly vectorized lines (Figure 5a) was 
diagonally (under 45o angle) scanned; first, from left to right, 
and then, from right to left (Figure 5b). In diagonal scanning 
process, if there were two consecutive red pixels along the 
direction of scanning, the second red pixel is eliminated. Thus, 
vectorized line took a discontinuous form as shown in Figure 
5c. After applying the neighborhood analysis, the lines failed to 
have the acceptable number of pixels were not vectorized. The 
continuous pixels, determined by implementing diagonal 
scanning from both directions, were vectorized as indicated in 
Figure 5d. Then, corrected vector data was generated by 
combining both of the vectorized lines together (Figure 5e). 

  
Figure 5. Correction of wrong extracted lines by using diagonal scanning procedure. 
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4. 3D BUILDING NETWORK CONSTRUCTION 

4.1 Generating 3D Network Model 

By using the MUSCLE Model described in previous section, 
the 3D topological Network Model of a building can be 
constracted automatically from raster floor plans. The user 
interface of 3D Model Constraction Software is shown in 
Figure 6.  

In Network Model, corridor is the main backbone in the floor 
plan since it connects the rooms with all the other entities in 
the building. Therefore, determining and modeling the corridor 
is very important. Once corridor was provided by the user, 
algorithm leaves only the corridor in the image, and then, 
determines the middle lines based on the MUSCLE Model. 
After number of processes on selected middle lines, topological 
model and coordinates of the corridor are found as seen in 
Figure 7.  

 
Figure 6. 3D Network Model Construction User Interface 

 
In determining the rooms, corridor is excluded from the image 
and only the rooms are left. Then, by applying the method, 
middle point of the rooms are determined and defined as the 
nodes which represent the rooms Figure 7. After locating the 
nodes that indicates corridor and rooms, user interactively 
points out which room nodes connect with which corridor 
nodes, and geometric network for 2D floor plan is generated. 

After stairs (or elevator) nodes are indicated by a user, the 
network is automatically designed by assigning different 
elevation values for each floor based on various data such as 
floor number and floor height, and then, 3D NM is generated 
as seen in Figure 7. 

4.2 Converting Network Model into CityGML Format 

CityGML is an open data model and XML-based format for the 
storage and exchange of virtual 3D city models. It is an 
application schema for the Geography Markup Language 
version 3.1.1 (GML3), the extendible interna-tional standard 
for spatial data exchange issued by the Open Geospatial 
Consortium (OGC) and the ISO TC211 (Gröger et al. 2008). 
 
The aim of the development of CityGML is to reach a common 
definition of the basic entities, attributes, and relations of a 3D 
city model. This is especially important with respect to the 
cost-effective sustainable mainte-nance of 3D city models, 
allowing the reuse of the same data in different application 
fields. CityGML not only represents the graphical appearance 
of city models but specifically addresses the representa-tion of 

the semantic and thematic properties, taxonomies and 
aggregations (Gröger et al. 2008). 
 

 
Figure 7. 3D Network Generation Process by using MUSCLE 

Model (MM). 
 
CityGML includes a geometry model and a thematic model. 
The geometry model allows for the consistent and 
homogeneous definition of geometrical and topological 
properties of spatial objects within 3D city models. The base 
class of all objects is CityObject which is a subclass of the 
GML class Feature. All objects inherit the properties from 
CityObject. 
 
CityGML supports different Levels of Detail (LOD). LODs are 
required to reflect independent data collection processes with 
differing application requirements (Figure 8). The coarsest 
level LOD0 is essentially a two and a half dimensional Digital 
Terrain Model, over which an aerial image or a map may be 
draped. LOD1 is the well-known blocks model comprising 
prismatic buildings with flat roofs. In contrast, a building in 
LOD2 has differentiated roof structures and thematically 
differentiated surfaces. Vegetation objects may also be 
represented. LOD3 denotes architectural models with detailed 
wall and roof structures, balconies, bays and projections. High-
resolution textures can be mapped onto these structures. In 
addition, detailed vegetation and transportation objects are 
components of a LOD3 model. LOD4 completes a LOD3 
model by adding interior structures for 3D objects. For 
example, buildings are composed of rooms, interior doors, 
stairs, and furniture (Gröger et al. 2008). 
 
3D Network Model is represented using Transportation 
Module of CityGML. The transportation model of CityGML is 
a multi-functional, multi-scale model focusing on thematic and 
func-tional as well as on geometrical/topological aspects. 
Transportation features are represented as a linear network in 
LOD0. Starting from LOD1, all transportation features are 
geometrically described by 3D surfaces. The main class is 
transportationComplex, which represents, for example, a road, 
a track, a railway, or a square.  Representation of a 
TransportationComplex for LOD0 is illustrated in Figure 9 
(Gröger et al. 2008). 
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Figure 8. The five levels of detail (LOD) defined by CityGML 
(Gröger et al. 2008, source: IGG Uni Bonn). 

 

 
Figure 9. TransportationComplex in LOD0 (Example shows 

part of a Motorway) (Gröger et al. 2008) 

Once the network generation process completed, the data is 
converted to and created a CityGML format in LOD0 through  
program code for writing in a text file by using topological 
network model details; e.g.  nodes, edges and coordinates 
(Figure 10).  
 

 
Print #2, "<gml:curveMember><gml:LineString 
srsDimension=" & Chr(34) & "3" & Chr(34) & "> 

<gml:posList id=" & Chr(34) & "1" & Chr(34) & ">" & 
Fix(xim(fn(th))); Fix(yim(fn(th))); Fix(Val(Text5) + 

(Val(Text4) * dk)); Fix(xim(tn(th))); Fix(yim(tn(th))); 
Fix(Val(Text5) + (Val(Text4) * dk)) & 

"</gml:posList></gml:LineString> </gml:curveMember>" 
 
 

Figure 10. An example line of program code for writing to 
CityGML file. 

 
3D Network Model is represented as a linear network using 
Transportation Module of CityGML. Network model in 
CityGML format is shown in Figure 11.  
 
For visualizing the network model in CityGML, a java based 
application was developed. The application uses CityGML4j 
Java class library and API for facilitating work with the 
CityGML. Application uses JOGL Java bindings for OPENGL 
to carry out visualization (Figure 12). Apart from these, the 
constracted Network Model can be used for 3D Network 
Analyses as shown in Figure 13. 

 

 
Figure 11. Network model represented in LOD-0 linear network in CityGML file. 
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Figure 12: Visualization of Network Model from CityGML 

 
Figure 13: 3D Network Analyses on the Network Model in CityGML file.  

 
 

5. CONCLUSIONS 

In this study, MUSCLE (Multidirectional Scanning for Line 
Extraction), was developed by implementing an appropriate 
computer programming to automatically vectorize the raster 
data with straight lines. The algorithm of the model generates 
the line thinning and the simple neighborhood techniques for 
vectorization processes. When the model works, in some cases 
raster data become unmanageable and the process generates 
wrongly vectorized lines. In this situation, to obtain the precise 
lines, the image with the wrongly vectorized lines is diagonally 
scanned.  

By using this method, the 3D Network models can be 
constracted topologically in CityGML format from raster floor 
plans. After the generation process, it is possible to visualize 
and perform 3D Network Analyses based on these models.  

In this paper, it was indicated that the MUSCLE Model may 
successfully be used to generate 3D Topological Network 
Models of the buildings and convert them into  CityGML data 
format.  
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