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ABSTRACT:

LiDAR (Light Detection and Ranging) has attained the status of an industry standard method of data collection for gathering three
dimensional topographic information. Datasets captured through LiDAR are dense, redundant and are perceivable from multiple
directions, which is unlike other geospatial datasets collected through conventional methods. This three dimensional information
has triggered an interest in the scientific community to develop methods for visualizing LiDAR datasets and value added products.
Elementary schemes of visualization use point clouds with intensity or colour, triangulation and tetrahedralization based terrain models
draped with texture. Newer methods use feature extraction either through the process of classification or segmentation. In this paper,
the authors have conducted a visualization experience survey where 60 participants respond to a questionnaire. The questionnaire poses
six different questions on the qualities of feature perception and depth for 12 visualization schemes. The answers to these questions
are obtained on a scale of 1 to 10. Results are thus presented using the non-parametric Friedman’s test, using post-hoc analysis for
hypothetically ranking the visualization schemes based on the rating received and finally confirming the rankings through the Page’s
trend test. Results show that a heuristic based visualization scheme, which has been developed by Ghosh and Lohani (2011) performs
the best in terms of feature and depth perception.

1 INTRODUCTION plices has been reported in (Ghosh and Lohani, 2007a,b). They
have also developed a heuristic to process LiDAR data to extract
and generalize features (Ghosh and Lohani, 2011). This paper
develops a methodology to statistically rank the various visual-
ization schemes for LiIDAR data in terms of the visualization ex-
perience through specifically designed experiments, and select
the best scheme. The various schemes of visualization that have
been studied by the authors are presented in section 2. Section 5
presents the design and methodology for conducting the experi-
ment and also the statistical background for analyzing the results.
The results are presented and discussed in section 6.

Light Detection and Ranging (LiDAR) has become a standard
technology for procuring dense, accurate and precise three di-
mensional topographic information in terms of data points in
short time. Digital Elevation Models (DEM) and Digital Ter-
rain Models (DTMs) generated through such information can be
used for applications which need precise geographic information.
In scenarios like disaster management and mitigation, situations
might arise when data are procured in short time and required to
be visualized for further assessment. It is to be noted here that
even for very small areas, the size of a LiDAR data set is consid-

erably large. 2 SCHEMES OF VISUALIZATION

MacEachren and Kraak (2001) pointed out four different research
challenges in the field of geovisualization in the ICA research
agenda. Out of these, the second agenda item concerns the devel-
opment of new methods and tools as well as a fundamental effort
in theory building for representation and management of geo-
graphic knowledge gathered from large data sets (Dykes et al.,
2005). Three dimensional models for visualization of geospatial
data have been brought forward by Zlatanova (2000), Zlatanova . e
and Verbree (2000)’ Lattuada (2006), Lin and Zhu (2006) and (2010) de.V?IOpCd al"l out-(?f-core real t'lme VlSllZ?hZathl’l method
van Oosterom et al. (2006). Several approaches for processing for visualizing massive p01.r1t clouds using a spatial data structure
and visualizing LiDAR data have been found in the literature, fora QPU based system with 4 GB main memory and a 5400rpm
which indicate the following approaches for preparing 3D maps: hard disk.

(a) direct visualization of LiDAR point cloud (b) through manual Ghosh and Lohani (2007a) attempted to develop a methodol-
process of classification which is time consuming, or (c) through ogy for stereoscopic visualization of the terrain using Delaunay
the process of segmentation. In the cases of segmentation and Triangulation and the Openlnventor visualization engine. The
classification, the extracted features are first generalized and then ~ Triangulated Irregular Network (TIN) obtained from the LiDAR
visualized. Out-of-core computation algorithms have also been data is draped with the geocoded texture data and the two are di-
reported which handle and visualize large point cloud datasets. rected into the visualization engine via an Inventor file. The TIN
generated through the Delaunay Triangulation was found to have
triangles with small area but very large edges. Such triangles
are removed using a certain threshold 7. The remaining triangles
along with the point data and geocoded texture are sent to the
visualization engine (Ghosh and Lohani, 2007b).

Kreylos et al. (2008) visualized large point data sets using a head
tracked and stereoscopic visualization mode through the devel-
opment of a multiresolution rendering scheme that supports ren-
dering billions of 3D points at 48—60 stereoscopic frames per
second. This method has been reported to give better results
over other analysis methods, especially when used in a CAVE
based immersive visualization environment. Richter and Dollner

The authors have observed from the literature that the process of
classification of LiDAR datasets require many thresholds, sub-
stantial a priori knowledge, and is also time consuming. There-
fore, the authors have worked in the direction of development
of methods and schemes for visualization which bypass this pro-
cess of classification. Visualization of LiDAR data using sim- Ghosh and Lohani (2007b) also used Delaunay tetrahedralization
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for processing LiDAR data for visualization. The tetrahedrals
generated by the process were broken down to their respective
facets. The triangular facets containing long edges were removed
using a threshold 7. The remaining triangles, the geocoded tex-
ture, and the points are sent to the visualization engine.

In case of the Delaunay triangulation and subsequent trimming, it
is noted that certain dome shaped terrain features e.g very sparse
trees get deleted, whereas planar features were well represented.
In the case of Delaunay tetrahedralization, the sparse trees were
better represented. Owing to the complexity of the tetrahedral-
ization process, the planar features are over represented and the
rendering is comparatively slow. Thus, Ghosh and Lohani (2011)
expressed the need of a hybrid mode of processing and developed
a heuristic after clustering the data using data mining algorithms.
The results from all the processing methods described in this sec-
tion may be visualized either in 2.5D or 3D. The notations and
the schemes are shown in Table [1].

ID | Notation Description Mode
1 | PL-PTS Point Display 2.5D
2 | PL-DTRI Triangulation display 2.5D
3 | PL-TDTRI Trimmed triangulation dis- | 2.5D

play

4 | PL-TDTET | Trimmed delaunay tetrahe- | 2.5D

dralization

5 | PL-PMDL Heuristical model with | 2.5D

dome shaped clusters
displayed in point mode

6 | PL-MDL Heuristical model with | 2.5D

completely generalized
clusters
7 | AN-PTS Point Display 3D
8 | AN-DTRI Triangulation display 3D
9 | AN-TDTRI | Trimmed triangulation dis- | 3D
play

10 | AN-TDTET | Trimmed delaunay tetrahe- | 3D

dralization

11 | AN-PMDL | Heuristical model with | 3D

dome shaped clusters
displayed in point mode

12 | AN-MDL Heuristical model with | 3D

completely generalized
clusters

Table 1: Processing methods and their notations

3 OBJECTIVE

The aim of this paper is to rank the various processes listed in
Table [1] in the order of their effectiveness in terms of feature
recognition and depth perception. In this light, the paper ad-
dresses the following research objectives: (a) design an experi-
ment to evaluate the various schemes listed in Table [1], and (b)
find the statistically best method for processing and visualizing
LiDAR data.

4 DATA AND TOOLS USED

In 2004, Optech Inc, Canada conducted a LiDAR flight over the
environs of Niagara Falls. The flight was conducted at an aver-
age height of 1200m above ground level. Five different subsets
of 100mx100m each were cut out from the datasets. The number
of data points in each of these datasets is given in Table [2]. Each
of these subsets contains buildings, trees, roads and vehicles. For
algorithms using Delaunay triangulation and tetrahedralization
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Number | With redundant pts | Unique list of pts
1 49666 26967
2 48637 26739
3 48254 25024
4 43822 22844
5 47644 26286

Table 2: Description of subsets. Points are called redundant if
they have same coordinates

we use the Quickhull tool (Barber et al., 1996). The OpenScene-
Graph Engine with its C++ based API is used for the visual-
ization of the LiDAR data sets and derived products (see Table
[1]). The OpenSceneGraph engine is able to render in 2.5D and
3D, where 3D perception was made possible through anaglyph
glasses. The programming is done on an Ubuntu Linux 11.04, 64
bit platform.

5 METHODOLOGY

This section presents the experiment designed in order to obtain
the ratings from the participants for the 12 visualization schemes
presented in Table [1].

5.1 Design of Experiment

The experiment was designed to examine the user perception of
various features like buildings, trees, roads and vehicles in addi-
tion to the capability of 3D perception. It was necessary that the
participants were brought to the same level before participating in
the experiment. Therefore, the conduction of the experiment was
divided into three phases: (a) orientation, (b) acquaintance with
perception of the third dimension, and; (c) perception of features
from the various schemes presented to the participants for rating
the schemes.

5.1.1 The rating scale Researchers have opined differently
on selecting the scales of ratings to be adopted for surveys and ex-
periments. While Worcester and Burns (1975) argued that scales
without mid points pushed the respondents to the positive end
of the scale, Garland (1991) found the opposite. Dawes (2008)
found that scores based on 5 point or 7 point scales might pro-
duce slightly higher mean scores relative to the highest possible
attainable score, compared to a 10 point scale. Dawes (2008)
also showed that this difference was statistically significant. In
this study, therefore, a 10 point scale was selected.

5.1.2 Phases of the experiment The orientation phase intro-
duced the participant to the experiment through a presentation
designed on LibreOffice Impress. The scheme of rating and the
meaning of 3D perception was explained to the user in this phase.
It was emphasised that the rating of the scenes presented were to
be done absolutely on a scale of 1 to 10, where 1 means “very
bad” and 10 means “very good”.

The second phase of the experiment was designed to acquaint the
participant with 3D perception through anaglyph glasses. Three
different anaglyph photos were presented before the participant
in an increasing order of complexity in terms of the depth cue.
The participants were asked objective questions which involved
either counting the number of objects in a scene, ordering the
objects in terms of distance from the participant or identifying the
type of the objects. The orientation phase and the acquaintance
phase were designed to bring the participants of the experiment
to the same level.

The third phase involved the rating of the features perceived from
the different visualization schemes presented to the participant in
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the experiment. Since the focus is on the perception of the var-
ious features on the terrain (buildings, trees, roads and vehicles)
and depth cue, the following questions were formulated for ob-
taining the ratings:

How well do you perceive depth in the presented scene?

How well is your overall perception of features in the pre-
sented scene? Features mean buildings, trees, roads and ve-
hicles.

How well do you perceive buildings in the presented scene?
How well do you perceive trees in the presented scene?
How well do you perceive roads in the presented scene?

How well do you perceive vehicles in the presented scene?

[TT T

DTRI
Figure 1: Layout of nodes and edges for creating Hamiltonian
Paths

3D

2.5D

PTS TDTRI TDTET PMDL

Since there are 12 visualization schemes which are to be eval-
uated by the users, there could be 12! ways of presenting the
outputs from the schemes to the participants. The process of con-
founding is used to limit the number of possible ways in which
visualization schemes are presented to the participant (Finney,
1980). Vajta et al. (2007) have proposed a method of determin-
ing the order of presentation of the visualization schemes using
Hamiltonian paths. A Hamiltonian path will ensure that all the
visualization schemes are presented before a participant. It is ob-
served from Table [1] that the presentation methods are either
in 2.5D on 3D (stereoscopic) and the pre-processing schemes
are namely point based, triangulation based, tetrahedralization
based, and heuristic based. The pre-processing schemes are laid
out in the x-axis and the presentation schemes are laid out in the
y-axis. The confounding is done by ensuring that any movement
is made one step either in the x-direction or the y-direction. Thus,
the valid paths from one point to the other are shown in Figure
[1]. The Hamiltonian paths are then computed through the Math-
ematica package.

5.2 Design of the user interface

A user interface using Qt/C++ and OpenSceneGraph was de-
signed which would read a file corresponding to the processed
or unprocessed dataset and the texture and also present the par-
ticipant with visualization schemes and the rating questionnaires
alternatively. Each participant was to be presented with results
from a different dataset and a different order of schemes. Rota-
tion, zooming in and zooming out were possible for each of the
visualization schemes. The ratings obtained from a participant
were to be stored in a binary format in the hard disk. Screen-
shots of the various schemes presented to a participant are shown
in Figure [2] for one of the data sets. The user interface was de-
signed such that the interaction with the keyboard and mouse was
minimum.
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(b) AN-PTS

(d) AN-DTRI

(k) PL-MDL

() AN-MDL

Figure 2: Various visualization schemes presented to the partici-
pant. Screenshots are presented for a single data subset here.
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5.3 Conducting the experiment

Sixty third year undergraduate students of the Department of
Civil Engineering, Indian Institute of Technology Kanpur agreed
to participate in the experiment through appointment slots of 45
minutes each. During each of the experiments, it was ensured
that the lighting and cooling were kept constant, and the noise
level was kept to the minimum possible.

5.4 Statistical analysis of the scores

Based on the previous discussion, there are 12 schemes to be
compared (see Table [1]) and there are 60 participants in the ex-
periment. This subsection describes the statistical methodology
to compare the 12 methods using the scores obtained from the 60
participants.

To simplify the explanation of the analytical process, the number
of processes are denoted by k and the number of participants are
denoted by n. Each of the n participants gives a score on each of
the processes. The score given by the ith participant for the jth
process is denoted by s;; (see Table [3]).

A

w2

Q

Q

. =
Participants A« 1 2 k
1 S11 S12 S1k
2 521 522 S2k
n Snl Sn2 Snk

Table 3: Scores given by n participants

5.4.1 Pre-analysis For each of the participants, the scores in
arow are ranked in an increasing or decreasing order. Tied ranks
are replaced by averaged ranks. In Table [4], r;; denotes the rank

of s;; amongst sj1, Si2, . . . » Sik-

[2]

w

Q

Q

. <
Participants A 1 2 k
1 T r2 Tk
2 21 L2 Ik
n T'nl T'n2 Tk
Sums R4l R'z R'k
Means 7. T Tk

Table 4: Ranks for each of the n participants

5.4.2 Null hypothesis and the Friedman’s test As a first
step, the null hypothesis is framed as Hy : —the processes are all
similar. The alternate hypothesis is to prove otherwise. In order
to check for the validity of the null hypothesis, the Friedman Test
(Friedman, 1937, 1939) is conducted. The following notations
ar& thelr)efore introduced: R := X, ryj, 7 i= 4 XL, Z’j‘-zl rij =
n(k + 2 n N2
> S = Z’;‘:l [R.j—r] , S = X le‘-=1 (rl-j—r) and
R =37, Zﬁ:l(rij)2~
The formula for Q-statistic for the Friedman’s test is given by
(Gibbons and Chakraborti, 2010)

_(k—=1DS
=5

0: M

Q denotes the test statistic for the Friedman’s test. For large val-
ues of n and k, the probability distribution of Q is approximated
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by the x* distribution. If the p-value, given by P(x; | > Q), is
smaller than the level of significance @ then the null hypothesis
is rejected.

5.4.3 Post-hoc analysis and hypothetical ranking In case
the Friedman’s test indicates that the null hypothesis cannot be
accepted i.e. results from the k processes are not similar, a post-
hoc analysis has to be conducted. The processes i and j are
termed as different for a significance level « if (Kvam and Vi-
dakovic, 2007)

nR* = 35 (R))?

(n-Dk-1) ° @

[R; = Rj| > tiu-nyk=1),1-0/2 \/2 .

Since R.j,j = 1,---,k are real numbers, jj, jo, --, jx can be
found such that, R;, < Rj, <--- <R}, . Thus all the processes can
be given hypothetical ranks from 1 to k. In case two processes
are found similar (see equation [2]), they are allotted the same
rank as per the standard competition ranking scheme.

5.4.4 Page’s test for ordered alternatives Page (1963) de-
veloped an L-statistic to help rank the processes. Since the col-
umn sums are real numbers, the R.;’s can be arranged in a de-
creasing / increasing order. If Y; denotes the hypothetical rank
of the jth column, obtained through some process, then the L-
statistic is given by

k
L= ) YR, 3)
=
The value y? is defined as
2
[12L = 3nk(k + 1)?
XL = “4)

nk2(k2 — Dk +1) °

If P[/\/f > )(i] < a, where « is the level of significance, then we
reject the null hypothesis and accept the hypothetical ranking of
the processes.

6 RESULTS AND DISCUSSION

The experiment intends to present all the visualization schemes
from different subsets. In order to avoid biases in the experiment,
all the scenes are not presented sequentially but randomly. How-
ever, confounding is done in order to avoid the large number of
experiments. With the nodes and edges as defined in Figure [1],
64 Hamiltonian paths are calculated using Mathematica. How-
ever only 60 participants agreed to take part in the experiment.

6.1 Data preparation

The user interface designed for the experiment stored the scores
received from each of the participants in the experiment in sepa-
rate files. Each of these files were read into a corresponding Li-
breOffice Calc sheet. A LibreOffice BASIC code was then used
to collate the results for each of the questions into a single sheet.
Since there were six questions, six different sheets were created
through the BASIC code. Each of the sheets thus contained a
60 x 12 matrix.

6.2 Data analysis

It was verified through Pearson’s y? goodness of fit tests and his-
tograms that the distributions for the scores received for each of
the visualization schemes were not normally distributed. It was
therefore clear that parametric methods like ANOVA or MANOVA
cannot be applied for these ratings. The Friedman’s test (Fried-
man, 1937, 1939) and the subsequent post-hoc analysis (Kvam
and Vidakovic, 2007) are therefore selected to determine per-
formance differences in terms of depth and feature perception
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through the different visualization schemes. With respect to the
formulas and tables described earlier, we have k = 12 different
processes and n = 60 participants. The results of the Friedman
Test for each of the questions are given in Table [5]. If the level
of significance « is taken as 0.05, it is clearly seen that the null
hypothesis of Friedman’s test cannot be accepted for all the ques-
tions.

Q. No. | Q Statistic P-value
1 462.3639 | 3.3604E-092
2 384.9278 | 9.6587E-076
3 355.3281 1.8068E-069
4 205.6392 | 5.0203E-038
5 399.5652 | 7.5683E-079
6 275.7351 1.1166E-052

Table 5: Q-statistic and P-value for all the questions

The methodology adopted for hypothetically ranking the schemes
has been explained earlier in this paper. The column-wise rank
sums are added up and the post-hoc analysis was conducted for
each of the LibreOffice Calc Sheets corresponding to each of the
questions. The column wise rank sums R.j, j = 1,--- , 12 are laid
out in the increasing order for each of these sheets and ranks are
given from 1 to 12, according to the standard competition ranking
scheme. The ties in this scenario are determined using equation
(2). The values of the y? statistic and the corresponding P val-
ues are presented in Table [6]. The ranks obtained are presented
in Table [7]. Here, equal ranks have been replaced by average
ranks.

Q. No. [ x7 Statistic P-value
1 196.8464 3.3537E-036
2 169.1995 1.7240E-030
3 159.4702 1.7177E-028
4 91.7196 7.6684E-015
5 160.0758 1.2905E-028
6 120.3923 1.5117E-020

Table 6: y2-statistic and P-value for all the questions

The Friedman test was performed again on the ranking’s ob-
tained from the earlier post-hoc analysis (see Table [7]). The
Q-statistic is found out to be 116.3224 and the corresponding p-
value is found out to be 9.9362E-020. Thus at a significance level
of @ = 0.05, the hypothesis that all the visualization schemes
are equally effective cannot be accepted. A post-hoc analysis is
thus conducted and a hypothetical ranking is performed. Page’s
test for alternative hypothesis confirms this ranking as the val-
ues of y2 is seen to be 57.0204 and the corresponding P-value is
4.3131E-014. It is therefore seen that the heuristic-based model
viewed in the anaglyph mode (AN-MDL) gets the highest rank. It
is therefore seen that AN-MDL (described in Ghosh and Lohani
(2011)) has performed the best.

6.3 Findings from the research work

The experiment was conducted with 60 participants who were
third year undergraduate students of Civil Engineering. The par-
ticipants were not exposed to visualizing LiDAR data prior to the
experiment.

It can be seen from Table [7] that anaglyph based visualization
schemes have generally received better rankings. Almost every
participant expressed appreciation for the realistic representation
of the data in the anaglyph mode of visualization. Table [7] also
reveals that the point based visualization in the anaglyph mode
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has received lesser rankings. Since laymen are not used to see
the features of the terrain in the point format, low ratings have
been received by the point based visualization schemes namely
PL-PTS and AN-PTS. It was also observed during the experi-
ment that the participants usually zoomed out while visualizing
the point based schemes. The Delaunay triangulation only con-
siders one of the points which have the same values of x and y
coordinates and different z coordinates. As a result, there is a loss
of 3D information when a triangulation is generated from the raw
datasets. The structures of the trees are therefore not well repre-
sented, especially for the sparse trees. The buildings have rough
and sloping walls and non-smooth edges. Further, when narrow
triangles are trimmed using a threshold, sparse trees are lost in
the process. Buildings turn to roofs hanging in the space when
the triangles are trimmed. As a result, buildings have poor scores
in AN-TDTRI and PL-TDTRI. However, the terrain and the vehi-
cles are both well perceived in the triangulation and the trimmed
triangulation schemes. The tetrahedralization based processing
schemes (PL-DTET and AN-DTET) were developed for preserv-
ing the tree structures. However, the thresholding process creates
“holes” in the representation of the terrain objects. Therefore
good ratings are obtained for the trees but poor ratings for the
buildings. The heuristic based visualization schemes (PL-MDL,
PL-PMDL, AN-MDL and AN-PMDL) were designed to take
the best of triangulation and tetrahedralization based schemes.
Further, the buildings in these algorithms are represented with
smoother walls compared to their triangulation based counter-
parts. In the PL-PMDL and AN-PMDL algorithms, the trees are
represented by points and therefore they have received a poorer
rating in the experiments compared to the other schemes. On the
contrary, both trees and buildings received high ratings in AN-
MDL. PL-MDL receives high ratings amongst the 2.5 modes of
visualization. Roads and vehicle features are represented well in
the AN-MDL and they have received “best” ratings for Questions
5 and 6. AN-MDL received the best overall ranking in terms of
depth and feature perception followed by AN-DTET and AN-
DTRI on the second and third places respectively. This ranking
has also been verified statistically using the Page’s trend test.

E] 2
Scheme Ql [ Q2 | Q3 | Q4 | Q5 | Q6 3| &
PL-PTS 12 | 12 | 12 | 11 12 | 12 71 | 12
PL-DTRI 7 175 8 85 | 7 6 44 7
PL-TDTRI 11 10 | 11 12 | 95| 10 || 63.5 | 11
PL-DTET 95| 9 10 | 85|95 9 555 | 10
PL-PMDL 95| 6 5 10 8 7 45.5 8
PL-MDL 8 | 75| 6 7 6 8 42.5 6
AN-PTS 6 11 9 5 11 | 11 53 9
AN-DTRI 3 4 3 3 2 3 18 3
AN-TDTRI | 5 5 7 4 5 5 31 5
AN-DTET 2 1 4 1 4 2 14 2
AN-PMDL 4 3 1 6 3 4 21 4
AN-MDL 1 2 2 2 1 1 9 1

Table 7: Question-wise rankings for all the visualization

schemes. Lower values of ranks are better.

6.4 Remarks on the statistical method

The Friedman’s test and post-hoc analysis were used repeatedly
to determine the hypothetical ranking of the various visualization
schemes presented in this paper. The Page’s trend test confirms
the hypothetical ranking. It is therefore possible to select the
“best” visualization scheme in terms of depth and feature per-
ception. Since the experiment requires a participant to evaluate a
visualization scheme on more than one factor, the data is actually
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multivariate. Therefore, a more robust method of ranking based
on permutation MANOVA or non-parametric MANOVA should
be used. Further research in this direction would be presented
elsewhere.

7 CONCLUSION

The aim of developing a visualization scheme for LiDAR data
is to enable a user to perceive the various features on the terrain
i.e. buildings, roads, trees and vehicles. Researchers have been
working in this area of extracting features from LiDAR data us-
ing the methods of classification. The authors of this paper have
been working towards the development of methods which can
enable the user to distinguish between the various features avail-
able on the terrain without using the method of classification.
Literature suggests that several methods of visualizing LiDAR
data and derived products have been proposed by the scientific
community. This paper has presented a method for designing
an experiment and data analysis to select the best visualization
scheme from the various available schemes. The experiment de-
sign and subsequent data analysis have proven that the method-
ology developed by Ghosh and Lohani (2011) performs the best
in terms of depth and feature perception. Since the data obtained
from the experiment is multivariate, studies using multivariate
non-parametric methods for ranking and selection of visualiza-
tion schemes would be presented in the future.
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