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ABSTRACT: 

 
Most archaeological predictive models lack significance because fuzziness of data and uncertainty in knowledge about human 
behaviour and natural processes are hardly ever considered. One possibility to cope with such uncertainties is utilization of 
probability based approaches like Bayes Theorem or Dempster-Shafer-Theory. We analyzed an area of 50 km² in Rhineland 
Palatinate (Germany) near a Celtic oppidum by use of Dempster-Shafer’s theory of evidence for predicting spatial probability 
distribution of archaeological sites. This technique incorporates uncertainty by assigning various weights of evidence to defined 
variables, in that way estimating the probability for supporting a specific hypothesis (in our case the hypothesis presence or absence 
of a site). Selection of variables for our model relied both on assumptions about settlement patterns and on statistically tested 
relationships between known archaeological sites and environmental factors. The modelling process was conducted in a Geographic 
Information System (GIS) by generating raster-based likelihood surfaces. The corresponding likelihood surfaces were aggregated to 
a final weight of evidence surface, which resulted in a likelihood value for every single cell of being a site or a non-site. Finally the 
result was tested against a database of known archaeological sites for evaluating the gain of the model. For the purpose of enhancing 
the gain of our model and sharpening our criteria we used a two-step approach to improve the modelling of former settlement 
strategies in our study area. Applying the developed model finally yielded a 100 percent success rate of known archaeological sites 
located in predicted high potential areas. 
 
KURZFASSUNG:  

 

Den meisten archäologischen Vorhersagemodellen wohnt inne, dass sie Unsicherheiten über das Wissen menschlicher 
Verhaltensweisen und natürlicher Prozesse nur unzureichend berücksichtigen. Wahrscheinlichkeitsbasierte Ansätze wie das Bayes 
Theorem oder die Theorie von Dempster-Shafer bieten die Möglichkeit mit diesen Unsicherheiten umzugehen. In einem gewählten 
Untersuchungsraum von 50 km² nahe eines in Rheinland-Pfalz (Deutschland) gelegenen keltischen Oppidums wurde unter 
Anwendung der Dempster-Shafer-Theorie eine Modellierung der räumlichen Verteilung potentieller archäologischer 
Siedlungsfundstellen durchgeführt. Die Wahl dieser Methode zeichnet sich dadurch aus, dass sie den Grad des Vertrauens in 
definierte Variablen für die Unterstützung bestimmter Hypothesen (in unserem Fall die Hypothesen: Fundstellenanwesenheit und 
Fundstellenabwesenheit) berücksichtigen lässt. Die Eingangsgrößen unseres Modells beruhen sowohl auf Annahmen über 
Besiedlungsstrategien, als auch auf statistisch erhobenen Beziehungen zwischen bekannten archäologischen Fundstellen und 
definierten Umweltfaktoren. Die Modellierung wurde in einem Geographischen Informationssystem (GIS) durchgeführt, mit dessen 
Hilfe rasterbasierte Wahrscheinlichkeitskarten für die einzelnen Einflussfaktoren generiert wurden. Final wurden im GIS die 
einzelnen Karten zu einer Gesamtkarte aggregiert, deren Zellwerte ein Wahrscheinlichkeitsmaß für das Besiedlungspotential 
wiedergeben. Zur Modellvalidierung wurde das Ergebnis schließlich mit einer Datenbank bekannter Fundstellen in Beziehung 
gesetzt und in der Folge weiter verbessert. Die Anwendung des Modells lieferte eine Übereinstimmung von 100 Prozent der 
bekannten Fundstellen im Untersuchungsgebiet mit der Vorhersage hohen archäologischen Potentials.  
 
 

                                                                 
* Corresponding author 

1. INTRODUCTION 

Landscape archaeology deals with the reconstruction of past 
human behaviour by considering the way in which people 
constructed and used the environment around them. In 
particular for protohistoric times, for which no written sources 
exist, our knowledge on landscape and environmental changes 
mainly relies on an analysis of archaeological records and 
findings. Besides different prospection techniques like field 
surveys, geophysical methods or remote sensing techniques 
Geographic Information Systems (GIS) can play an important 

role in analysing known sites and also in identifying evidence 
for previously unknown sites. 
It is often possible to multiply the number of known sites by 
focused archaeological prospection. GIS-based modelling of 
site occurrence probabilities, commonly known as predictive 
modelling, can be an important means to improve the 
archaeological record by focusing surveys on areas with a high 
probability of meeting with traces of human settlement. In this 
context two fundamental approaches for assignment of site 
probabilities can be differentiated, one of which bases on 
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deductive reasoning, the other one on inductive reasoning. No 
matter which approach is being selected, archaeological 
predictive models usually lack consideration of data fuzziness 
and uncertainty of comprehensive knowledge about human 
behaviour and natural processes (Canning, 2005). One way to 
cope with such uncertainties is utilization of probability theory 
based methods like Bayes Theorem or Dempster-Shafer-Theory 
(Dempster, 1968, Shafer, 1976). These techniques incorporate 
uncertainty by combining various weights of evidence for 
defined variables, and in that way enable us to estimate the 
probability for supporting specific hypotheses (in our case the 
hypotheses presence or absence of a site). In the field of 
Cultural Heritage Management (CHM) these approaches 
considering vagueness of data are very well suited, because it 
becomes evident that the models are based on several untested 
hypotheses and it will hardly be possible to identify all factors 
influencing human choice of settlement sites. 
 
 

2. PREDICTIVE MODELLING 

2.1 Methodology 

Archaeological Predictive Modelling is a methodology, which 
was developed in the late 1970ies in the USA in context with 
governmental land management projects (Clarke, 1977). This 
technique bases upon the assumption, that the choice of 
settlement formation and burial grounds of former societies is 
closely associated with natural factors and the influence of 
socio-cultural aspects. The objective of Predictive Modelling 
bases on this hypothesis by considering the influence of such 
factors and enables in that way assigning areas a specified 
probability for locating archaeological remains. Predictive 
Modelling can be conducted by use of certain methods, in a 
wide range of complexity from simple additive methods up to 
multivariate regression analysis (Deeben et. al., 2002). Presently 
methods of Fuzzy Logic (Bailey et. al., 2009) or probabilistic 
approaches (Canning, 2005, Ducke et. al., 2009) are 
increasingly used in the field of archaeological predictive 
modelling. They allow for incorporating uncertainty or fuzzy 
knowledge about human behaviour in the model. For modelling 
historic settlement processes considered in this study the 
algorithm of Dempster-Shafer is used.  
 
2.2 Dempster-Shafer’s Theory of Uncertainty 

The Dempster–Shafer theory (Dempster, 1968, Shafer, 1976) is 
a mathematical theory, which uses evidences instead of 
probabilities for modelling uncertainty. The quintessence of 
Dempster-Shafer’s theory can be summarized in a way, that 
each domain of knowledge implies uncertainty and that the 
complement of a hypothesis must not automatically be assigned 
to its negation, but has to be allocated to the factor uncertainty. 
An aggregation rule is used to include numerous pieces of 
information (evidence) with varying weight into a decision 
making process thus supporting or excluding defined 
hypothesis. A model based on Dempster-Shafer’s theory can be 
expressed mathematically in the following way: 
 
• The model is composed of a set of hypothesis H = h1…n, 

which comprises all possible and mutual excluding 
outcomes and all of their combinations. This set is called 
Frame of Discernment (Ω). 
 

• The theory of evidence assigns a belief mass m(A) (also 
called Basic Probability Assignment -> BPA) to each 

element of a set of interest A, which is a given member of 
the Frame of Discernment, and expresses the proportion of 
all relevant and available evidence that supports the 
claimthat the actual state belongs to A but to no particular 
subset of A. The BPA fulfils the following two conditions: 
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Belief Bel(A) for a set of interest A is defined as the sum of all 
the masses of subsets m(B) of the set of interest A:  
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Another important quantity is plausibility Pl(A), which is the 
sum of all the masses of the sets B that intersect the set of 
interest A. Consequently this quantity describes any belief in 
spaces, which are consistent with a specific hypothesis: 
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The difference between belief and plausibility is another 
important quantity of the Dempster-Shafer formalism and is 
referred to as belief interval. It represents in this way the range 
of maximum uncertainty. 
 
By use of Dempster’s Rule of aggregation the single belief sets 
X and Y can be combined pairwise and in that way it is possible 
to aggregate them to a total belief m: 
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3. THE STUDY AREA 

Since the end of 2006 the area of the Celtic oppidum 
“Hunnenring”, which is situated in the Southwest of Germany 
(Figure 1) in the low mountain range “Hunsrueck”, is examined 
regarding its outstanding prominence in Celtic times. Besides 
the monumental construction of the oppidum, which is 
nowadays still reflected in its northern wall, preserved up to a 
height of 10 m, various sources indicate that the region used to 
be a centre of supra-regional importance in Celtic times 
(Wiegert, 2002). Several campaigns of archaeological and 
geophysical prospection in the region helped to extend our 
knowledge on archaeological sites in the region. Due to a wide 
range of important monuments and sites from both Celtic and 
Roman times, the area around the Hunnenring has long played a 
prominent part in outlining models of social and economic 
development. 
 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

190



 

 
 

Figure 1. Location of the study area  
(Source : www.osm-wms.de) 

 
For our study an area of about 50 km² size (Figure 2), situated 4 
km northwest of the Hunnenring, serves as test area for 
applying the model. The area is characterized by a relatively 
high number of predominantly Roman settlement finds and a 
multiplicity of graves dating to Roman and Celtic times.  
 

 
 

Figure 2. Distribution of finds in the study area 

4. DEVELOPMENT OF THE MODEL 

4.1 Modelling Assumptions and Input Parameters 

Modelling settlement strategies of Roman and Celtic people 
concentrates on typical forms of open settlements like small 
farms or villages (Hornung, 2008). Fortified settlements cannot 
be considered because we are still lacking knowledge on their 
precise function. For the same reasons their existence cannot be 
predicted with certainty. Due to the natural characteristics of the 
low mountain range position of our study area it can be 
assumed, that motivation for a choice of site hardly differed 
between Celtic and Roman times.  For this reason and due to 

the limited number of known Celtic sites a diachrone approach 
seemed reasonable. Easily recognisable stone-built Roman 
settlements also offer a possibility to test the results of our 
predictive modelling for the Celtic period. Data processing and 
modelling using the concept of Dempster-Shafer was conducted 
in a GIS. For building the model the data basis was composed 
of a historic map (used for reconstruction of the historical road 
network), a Geological Map and a Digital Elevation Model 
(DEM) with a resolution of 50 cm, both latter ones available for 
the whole State, provided by state agencies. These data sources 
served for derivation of a significant part of the model 
parameters. Official documents on archaeological finds from the 
region and several publications helped assemble a database, 
comprising all known finds. The elements of the database were 
consulted for parameterisation of the degrees of belief according 
to equation (3) and served as input parameters for the final 
evaluation of the model. 
 
4.2 Modelling 

In compliance with the theory of Dempster-Shafer the Frame of 
Discernment of the predictive model has to test the hypothesis 
{Presence of site} and {Absence of site} as well as the 
hypothesis {Presence of site, Absence of site}, which expresses 
uncertainty about presence or absence of a site. Figure 3 shows 
the Frame of Discernment comprising these hypothesis and all 
variables, which were used in the model and which support one 
of the hypothesis.  
 

 
 

Figure 3.  Frame of Discernment with the single hypothesis and 
their supporting variables  

 
Quantification of the single variables was carried out on the 
basis of a statistical analysis of known sites in the study area but 
also incorporated estimations by archaeological experts and 
their knowledge on settlement strategies in Celtic and Roman 
times. In the following section the single variables, which serve 
as input parameters for equation (5) and their influence on the 
model are described. 
 
4.2.1 Variables, which support the hypothesis {Presence 

 of site} 

 
• Slope 
 

Soils in our study area are characterized by nutrient 
poorness and stagnant moisture. Thus it can be assumed 
that slightly sloped areas should have been  preferred for 
settlement activities, whereas flat locations and also 
distinct slopes would have been avoided by settlements. 
Statistical analysis of the known sites confirms this 
estimation, because 80 % of the sites are located in a slope 
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range between 2 – 4°, 15 % in a range of 4 – 6° and only 5 
% on flat or steep slopes.  
 

• Landform 
 

Slope as single criterion for characterization of the 
landscape does not reveal much about the actual 
topography. In this context a classification of the landscape 
in characteristic landforms appears reasonable. For this 
purpose a raster based algorithm for identifying slope 
positions and characterization of the landscape was used 
(Weiss, 2001). The algorithm enables us to classify 10 
different types of landform, from which 5 classes can be 
found in our study area. Analysis of the find distribution in 
comparison with these classes shows that nearly all 
settlement finds are located in the two landform classes 
‘wide open valleys’ and ‘elevated plains’.  
 

• Distance to rivers 
 

To model this influence for each raster cell the distance 
(unit: minutes of walking time to the next river) was 
calculated by use of an Anisotropic Cost-Distance analysis, 
which incorporates Tobler’s hiking function (Tobler, 1993) 
for modelling a slope dependant hiking velocity. Belief in 
the hypothesis {Presence of site} decreases with increasing 
distance to the river network and is modelled by use of a 
sigmoidal monotonically decreasing Fuzzy membership 
function. This function helps to express the degree of 
membership of elements of a given set (also called Fuzzy 
set) without using sharp boundaries and is characterized by 
a fuzzy membership grade that ranges from 0.0 to 1.0, 
indicating a continuous increase from non-membership to 
complete membership. The most commonly used 
membership function is the Sigmoidal ("s-shaped") 
Membership function, which is produced using a cosine 
function. 

4.2.2 Variables, which support the hypothesis {Absence of 

 site} 

 
• Geology 
 

In conjunction with evaluation of natural resources for 
agricultural use geologic substrate plays an important role 
as basic material for pedogenesis. Some substrates indicate 
poor resources, which are reflected in nutrient poorness or 
loamy material and which also appear in today’s utilization 
as predominately forested area. Moreover holocene 
floodplains should have been avoided as settlement places 
due to temporary flooding. For these reasons some areas 
can be identified as unfavourable areas for the formation of 
settlements thus supporting the hypothesis {Absence of 
site}. 
 

• Distance to road system 
 

In Celtic as well as in Roman times the formation of 
settlements and their associated burial grounds is reflected 
in rule based distances concerning their relative position to 
the road system. Settlements were usually established at a 
minimum distance of 100 m to a main road whereas burial 
grounds are located in the immediate vicinity of the main 
roads. Due to our restricted knowledge on the exact course 
of pre- and protohistoric roads a Least Cost Path analysis, 
which is a common GIS analysis technique, was used for 

calculating an ideal road network for our area of study. 
Connections between known burial grounds were 
calculated by taking into account that the course of Roman 
and Celtic roads principally followed the mountain ridges. 
For reconstruction of the former road network the result 
was associated with a historical map and a map of the 
known Roman road network (Haffner, 1976). For 
calculating the BPA for this variable a buffer of 100 m 
around the roads was built and assigned a low probability 
for finding a settlement. Furthermore a sigmoidal 
monotonically increasing Fuzzy membership function in a 
range of 100 m – 800 m represents the increasing 
probability for finding a settlement with cumulative 
distance to roads. For distances greater than 800 m to the 
road network again a low probability was assigned.  
 

• Distance to graves 
 

The spatial relation between burial grounds and their 
surrounding settlements shows consistency for both epochs 
and is reflected in a minimum distance of 150 m between 
burial grounds and the nearest settlement. In context with 
modelling based on Dempster-Shafer’s theory the 
hypothesis {Absence of site} is supported for a distance < 
150 m between burial ground and related settlement. 
Quantification in terms of belief is expressed with an 
assignment of a BPA of  0.9 for all raster cells with a 
distance < 150 m and a BPA of 0.1 for those raster cells 
which are located farther. 
 

5. RESULTS AND DISCUSSION OF MODELLING 

Dempster’s Rule of aggregation (5) was used to combine the 
single BPA’s obtained for the variables ‘slope’, ‘landform’, 
‘distance to rivers’, ‘geology’, ‘distance to road system’, 
‘distance to graves’ (see Figure 3) to a final result which 
represents a likelihood value for every single cell of being a site 
or a non-site. Figure 4 shows the total belief for the hypothesis 
{Presence of site} in conjunction with all known settlement 
finds in the study area.  
 

 
 

Figure 4. Total Belief of the hypothesis „Presence of site 
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The result was grouped into three equidistant classes, which in 
their entirety represent the suitability of a certain location for 
settlement activity by attaching a gradient value between 0 and 
1 to it. The Figure clearly shows line shaped corridors of low 
belief along the river network and the predicted road course 
network. Circular shaped areas of low belief can be observed at 
the existing burial mounds. It can be pointed out, that 14.3 % of 
the finds are located in areas of low suitability for settlement, 
7,1 % are situated in the medium area and 78.6 %, respectively, 
can be found in areas of high potential for settlement.  
 
A common quantity for assessing the performance of 
archaeological predictive modelling is Kvamme’s gain statistic 
(Kvamme, 1988), defined as  
 

gain = 1 – (area (%) / known sites (%))          (6) 
 
Hence a good predictive model should place a maximum 
amount of sites in a minimum area of high potential (Whitley, 
2005) and should be as close to 1 as possible. Likewise sites 
located in “low” belief areas represent failures of the predictive 
model and are therefore a direct measurement of the model’s 
practical reliability (Ducke et al., 2009). The medium area range 
is an expression of model inconsistencies and for this reason its 
proportion should be as small as possible. From an 
archaeological point of view field work in the medium areas 
should get a particular focus, because an analysis of the 
landscape in these areas could help to find previously 
unconsidered model parameters and in that way contribute to 
improve the model’s performance by adding new evidences.   
Table 1 shows the performance results for the model. For our 
site data set site statistics are shown that relate the dataset to the 
predicted areas of “low”, “medium” and “high” respectively. 
The column “sites (%)” shows the percentage of sites located in 
each belief range, whereas the column “area (%)” represents 
which proportion of the total study area is covered by each of 
the belief ranges. In the last column gain factors calculated 
according to equation (6) are given.        
 

Belief Class sites (%) area (%) gain 
Low belief (‘site’) 14.3 45.2 --- 
Medium belief (‘site’) 7.1 19.7 --- 
High belief (‘site’) 78.6 35.1 0.55 

 
Table 1. Performance of the predictive model  

 
The gain factor of 0.55 for sites allocated to areas of high belief 
may be considered satisfying, but provides potential for 
improvement of the model. A similar situation can be stated for 
the degree of model selectivity. The major parts of the total area 
are allocated to areas of low belief (45.2 %) and to areas of high 
belief (35.1 %). Still, a reduction of the area proportion in the 
medium range areas (19.7 %) would be desirable.  
 
5.1 Model improvement 

For the purpose of improving our model’s gain we decided to 
consider ‘wind direction’ as an additional influencing factor on 
former settlement choices. Posluschny (2002) was able to show 
for a study area located about 150 km to the east of our study 
area, that celtic settlements were preferably located in the wind 
shadow zones of the west, southwest and northwest winds 
prevailing in the Western and Central European region. In a 
GIS this factor can be modelled by calculating the slope aspect 

of a DEM. Hence for calculating the BPA for the factor ‘wind 
direction’ we assigned slope exposures of eastern, south-eastern 
and north-eastern orientation, which means an orientation 
opposite to the prevailing wind directions, a BPA of 0.8 for the 
hypothesis {Presence of site} and the remaining slope 
orientations a BPA of 0.2.  
Table 2 shows the performance of our model after incorporation 
of the factor ‘wind direction’ realized by considering slope 
aspects in our model. Figure 5 shows the corresponding visual 
representation of the modelling result.  
 

Belief Class sites (%) area (%) gain 
Low belief (‘site’) 0 51.5 --- 
Medium belief (‘site’) 0 17.1 --- 
High belief (‘site’) 100 31.4 0.69 

 
Table 2. Performance of the predictive model after 

incorporation of the parameter ’wind direction’ 
 
As compared with the results obtained from the original model 
(see Table 1) the results show a significant improvement.  
Introducing the factor ‘wind direction’ leads to a reduction of 
the proportion of areas with high potential while simultaneously 
increasing the proportion of finds in this area to 100 %. 
Consequently the gain factor increases to an amount of 0.69. 
This result, for instance, meets well the project goals of 
Mn/Model, a large long-term project for the State of Minnesota, 
USA, which in its final stage aims to develop models with a 
minimum gain statistic of 0.61 (Gibbon, 1998, Minnesota 
Department of Transport, 2000). As a further positive impact it 
can be stated, that the proportion of the medium potential area 
was slightly reduced from 19.7 % to 17.1 %, which provides a 
positive contribution to the model assessment. 
 

 

Figure 5. Total Belief of the hypothesis „Presence of site“ after 
incorporation of the factor ‘wind direction’  
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6. OUTLOOK 

In this study we confirmed the applicability of Dempster-Shafer 
theory in the context of archaeological prospection planning. 
We identified a number of significant variables by which 
presence or absence of archaeological sites in the investigated 
study area can be predicted in a reasonably reliable way. Model 
development took place in several steps. Starting with a number 
of variables which were obtained from archaeological 
knowledge the model was improved by incorporating wind 
direction as an additional factor. In that way the Dempster 
Shafer approach proved to be successful as a base for the 
development of flexible tools in the context of archaeological 
site prediction. One possible application of the model based 
upon the identified variables is to provide planning and 
management agencies with valuable information on areas of 
archaeological sensitivity, for instance.  
 
Further work should concentrate on field work to confirm the 
results of modelling and, vice versa, should contribute to the 
refinement of the modelling process by improving the model’s 
parameterization. Additional support for planning both general 
or targeted prospection campaigns and improvement of their 
success rate should be achieved by consideration of the results 
in context with erosion processes. Further potential for the 
clarification of our results lies in a more precise reconstruction 
of the ancient road network and in considering archaeological 
visibility. From an archaeological point of view erosion causes 
unearthing of finds and effects in that way the destruction of 
archaeological remains by weather influences, whereas 
deposition of soil material contributes to conservation of 
archaeological remains by covering the remains. Mitas and 
Mitasova (1998) developed an algorithm, which allows for 
calculating the spatial distribution of erosion and deposition 
rates of a specific area. The application of this algorithm could 
help to exclude specific areas with high erosion- or deposition 
rates and in that way allow a more differentiated evaluation of 
the results of the predictive model with regard to targeted 
archaeological and other prospection.  
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