
A VOMR-TREE BASED PARALLEL RANGE QUERY METHOD ON

DISTRIBUTED SPATIAL DATABASE

FU. Zhongliang a b, *, LIU. Siyuan a

a
 School of Remote and Sensing , Wuhan University, Wuhan, China - liusydr@126.com

b
 State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University,

China - fuzhl@263.net

Commission II, WG II/3

KEY WORDS: Range Query, Parallel Computing, Distributed Spatial Database, Spatial Index, VoMR-tree

ABSTRACT:

Spatial index impacts upon the efficiency of spatial query seriously in distributed spatial database. In this paper, we introduce a

parallel spatial range query algorithm, based on VoMR-tree index, which incorporates Voronoi diagrams into MR-tree, benefiting

from the nearest neighbors. We first augments MR-tree to store the nearest neighbors and constructs the VoMR-tree index by

Voronoi diagram. We then propose a novel range query algorithm based on VoMR-tree index. In processing a range query, we discuss

the data partition method so that we can improve the efficiency by parallelization in distributed database. Just then a verification

strategy is promoted. We show the superiority of the proposed method by extensive experiments using data sets of various sizes.

The experimental results reveal that the proposed method improves the performance of range query processing up to three times in

comparison with the widely-used R-tree variants.

* Corresponding author. This is useful to know for communication with the appropriate person in cases with more than one author.

1. INTRODUCTION

Distributed spatial database technology with the advantages of

powerful data management capability , expansibility and low

location constraints, dominate an important part of geodatabase

applications. It improves data process efficiency by separate

data into pieces (Yang C, 2009a). However, the following

problem in the spatial query of distributed geodatabase is

generally occurring. (i) Spatial query relies on spatial

relationship of the entities. A part of topological relation

information will be lost owing to the distributed storage. (ii) It

takes too much hardware resources and time when the mass data

is processed by centralization calculation after a complex

transmission. (iii) The spatial index of distributed geodatabse

cause a large number of data redundancy so that processing

efficiency will be reduced. Consequently, a high-efficiency

method of range query is studied in this paper.

A range query is a common database operation that retrieves all

records where some value is between an upper and lower

boundary. As the basic operation of spatial query, range query

can be regard as the first step of distributed spatial analysis. R-

tree and its variants (the modified R-tree) are widely used in

spatial queries. R-tree (Guttman, 1984b, Huang, 2001a), R*-tree

(Beckmann, 1990b), R+-tree (Sellis, 1987b), MB-tree (Li, 2006b)

and MR-tree (Yang Y, 2009a) are typical examples. The most

suitable index for a range query is MR-tree which augments the

standard R-tree by computing hash the concatenation of the

binary representation of all the entries in a tree node.

The MR-tree combines concepts from MB-tree and R*-trees.

Figure 1 illustrates the tree structure. Leaf nodes are identical to

those of the R*-tree: each entry Pi corresponds to a data object.

A digest is computed on the concatenation of the binary

representation of all objects in the node. Internal nodes contain

entries of the form (pi, MBRi, Hi), signifying the pointer,

minimum bounding rectangle, and digest of the child,

respectively. The digest summarizes child nodes’ MBRs

(MBR1-MBRf), in addition to their values (H1−Hf). When

performing a range query Q (shows in Figure 2), the procedure

runs a deep-first traversal from root node. If MBR of Ni does

not overlap Q, all the children of Ni need not be traverse. This

effectively reduces redundant processing.

P10P10 P11P11 P12P12P7P7 P8P8 P9P9P4 P5 P6P1P1 P2P2 P3P3

N5 N6N3 N4

N1 N2

H=hash(P1|P2|P3……PN)H=hash(P1|P2|P3……PN)

H=hash(MBR1|H1|MBR2|H2……MBRN|HN)H=hash(MBR1|H1|MBR2|H2……MBRN|HN)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

37

app:ds:dominate
app:ds:efficiency

Figure 1. Depth travel and structure of MR-tree

Q
N3

N4

N5

N6

N1
N2

P1

P2
P9

P3

P4

P5

P7

P8

P10

P6

P11

P12

Figure 2. Range query on MR-tree

There are still shortcomings in the MR-tree as a result of hash

concatenation. The higher the randomness, the more impossible

the area size of each Ni is to minimize. It increases the likelihood

of overlap between Q and Ni, so that more nodes would be

accessed and the efficiency is reduced.

This paper introduces a parallel spatial range query algorithm,

based on VoMR-tree index, which incorporates Voronoi

diagrams into MR-tree, benefiting from the nearest neighbors.

The organization of the paper is as follows. Section 2 briefly

introduces the VoMR-tree index and its constructing method.

Section 3 proposes an algorithm for range query processing

using VoMR-tree in distributed spatial database, and discusses a

strategy for verification of result set. Section 4 presents the

experimental results estimating the performance of the proposed

algorithms. Finally, Section 5 summarizes and concludes the

paper.

2. VOMR-TREE INDEX

2.1 Subset Partition

The efficiency of depth-first traversal is impacted seriously by

the ratio of overlap. When the query Q overlaps the MBR of

nodes frequently, the query process will be costly as a result of

a much deeper traversal. To reduce the probability of overlap

between Q and MBR, A better idea is to minimize the area of

each MBR. The major drawback of MR-tree is summarized as

the subset partition depending on a hash sorting. So that the area

size of each MBR cannot be restricted as minimal as possible.

And it also has not a better way to sort dataset by axes in multi-

dimensional space.

An optimal partition method in the range query shows in Figure

3. Compared with the case in Figure 2, the MBRs in Figure 3 are

smaller. When MBR of N2 does not overlap Q, the process will

not traverse to N3, N5, P1, P2, P4, P7, P8, and P9. In another

words, half of the nodes in MR-tree do not need to be traversed.

In this method, the nearest neighbors are partitioned into a

subset, for instance P1, P2, and P4 into N3.

Q

N3

N4

N5

N6N1

N2

P1

P2
P9

P3

P4

P5

P7

P8

P10

P6

P11

P12

Figure 3. An optimal partition of a dataset

A high-efficiency partition method is based on nearest

relationship. The most common pattern of finding the nearest

neighbor is calculating Euclidean distance as follow:

2

1

(,) ()
n

i i

i

d x y x y


  (1)

where d(x, y) = Euclidean distance between 2 geometries

 xi, yi, = coordinates of geometries

To process a nearest neighbor (NN) search, it is not necessary

to calculate the Euclidean distance of each pair of objects. A

Delaunay triangulation should be available. Assume that each

subset contains three objects, the steps of data partition are as

follows: Choose a start point P1, process a 2NN for P1, record

the three objects in a subset N1. To reduplicate the first step. A

better way to process kNN search is based on the dual graph of

Delaunay triangulation, Voronoi diagram (Sharifzadeh, 2010b).

P1

P2
P9

P3

P4

P5

P7

P8

P10

P6

P11

P12

Figure 4. Delaunay triangulation

2.2 Voronoi Diagram

Given a set of distinct objects P={p1, p2,…, pn} in space R, the

Voronoi diagram of P, denoted as VD(P), partitions the space

of R into n disjoint regions, such that each object pi in P belongs

to only one region and every point in that region is closer to pi

than to any other object of P in the Euclidean space. The region

around pi is called the Voronoi cell of pi, denoted as VC(pi), and

pi is the generator of the Voronoi cell. Therefore, the Voronoi

diagram of P is the union of all Voronoi cells VD(P) = {VC(p1),

VC(p2), …, VC(pn)}. If two generators share a common edge,

they are Voronoi neighbors. If we connect all the Voronoi

neighbors, we get the Delaunay triangulation DT(P), which is

the dual graph of VD(P) (Hu, 2010b).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

38

app:ds:efficiency
app:ds:major
app:ds:drawback

Property 1. Given a set of distinct points P={p1, p2,…, pn} in R,

the Voronoi diagram VD(P) and the corresponding Delaunay

triangulation DT(P) of P are unique.

Property 2. The average number of Voronoi edges per Voronoi

polygon does not exceed six. That is, the average number of

Voronoi neighbors per generator does not exceed six.

Property 3. Given the Voronoi diagram of P, the nearest

neighbor of a query point q is p, if and only if q∈VC(p).

Property 4. Let p1, p2,…, pk be the k (k > 1) nearest neighbors

in P to a query point q. Then, pk is a Voronoi neighbor of at

least one point pi∈{ p1, p2,…, pk-1 }

Figure 5 shows a Voronoi diagram constructed on a spatial

dataset. Voronoi diagram is extremely efficient in searching a

nearest neighbour region. It divides the two-dimensional space

into several parts, and each pair of neighbour parts share a

unique edge. The nearest relationship is recorded with this edge.

It is an effective method to reduce the cost of Euclidean distance

calculation. We use a term “VoMR-tree” to present the

structure Voronoi diagram on MR-tree.

P1

P2
P9

P3

P4

P5

P7

P8

P10

P6

P11

P12

Figure 5. Voronoi diagram

2.3 Distance Judgement

Constructing a Voronoi diagram promotes the queries of nearest

neighbours. In a dataset partition process, it is possible that all

the nearest neighbours of a spatial point has already partitioned

into an exist subset. For example, show in Figure 7, assume each

subset contains four leaves, objects P1 has two nearest

neighbours P2 and P4, how about the fourth point in this subset.

In this case, we should choose a nearest point Px in neighbours

of P2 and P4 as the fourth point. To minimize the MBR of this

subset, Px must be close to either P2 and P4 or P1. The problem

comes down to a geometric centroid.

Consider identifying the nearest point qi (i=1, 2, … , n) of

spatial objects p, the geometric centroid of the region Q of qi can

computing as follow:

1

1
.

n

i

i

x q x
n 

 

1

1
.

n

i

i

y q y
n 

  (2)

where x, y = coordinates of geometric centroid

 qi.x, qi.y = coordinates of the nearest point

The direction vector of geometric centroid can be the auxiliary

judgment in nearest point search. The partial derivative of

distance between p and the geometric centroid Q of qi is

computed. According to formula 2, the direction vector is

computed as following:

2 2
1

2 2
1

(,) ()

() ()

(,) ()

() ()

n
i

i i i

n
i

i i i

adist q Q x x
x

x x x y y

adist q Q y y
y

x x x y y





 
  

   

 
  

   





 (3)

where ,x y  = the direction vector of geometric centroid

 adist(q,Q) = the Euclidean distance between

object q

 and region Q

xi, yi = coordinates of the qi

x, y = coordinates of p

Computing according formula 3 at point p1, to get a direction

vector d1. Drawing a ray r1 originating from p1 in direction d1

enters the Voronoi cell of p2 intersecting its boundary at point x1.

The direction d2 at x1 is computed and the same process is

repeated using a ray r2 originating from x1 in direction d2 which

enters VC (p) at x2. Now, as we are inside VC (p) that includes

centroid q, all other rays consecutively circulate inside VC (p).

Detecting this situation, we return p as the closest point to q.

2.4 Initial Index

Given a spatial dataset P, the first step to initialize VoMR-tree

index is constructing a Voronoi diagram. Next, we sort all the

objects in dataset by x coordinate, and choose the minimum

object as the start point P1. Assume objects’ count in each

subset is k, a k-1 nearest neighbors search result for P1

constructs a subset N1. If the count of this subset less than k,

we process a distance judgment which mentioned in 3.3. Then

remove the objects in N1 from source dataset P and repeat the

steps above. When all the objects are removed from source

dataset P, re-initialization of P is promoted as follow: P={N1,

N2, …, Nn}. To repeat the steps above till P contain only one

object. Finally, a VoMR-tree construct to store all the values by

leaf node recording the MBR and Voronoi diagram of entity Pi

while the parent node recording the MBR of corresponding

subset Ni.

VN(P8)={ P5、P6、P7、P9、P11、P12、P13 }VN(P8)={ P5、P6、P7、P9、P11、P12、P13 }

V(P8) = {P8}V(P8) = {P8}

P10P10 P11P11 P12P12P3 P5 P6P7P7 P8P8 P9P9P1P1 P2P2 P4P4

N4 N6N3N3 N5N5

N2 N1

Figure 6. Range Query on VoMR-tree

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

39

Figure 6 illustrates the structure of VoMR-tree which is based

on MR-tree and augments the storage content to record Voronoi

diagram. For a same range query, compared with MR-tree

(Figure 1), the deep-first traversal goes through much less nodes

(highlight in shadow) in the tree structure.

2.5 Update

As the storage content augmenting, it is necessary to discuss

about the update of VoMR-tree because the Voronoi diagram

was stored synchronously in database when the index initialized.

Insertion Deletion

Figure 7. Data update on VoMR-tree

While inserting a new object in the database, the procedure

employs the incremental boundary growing method to compute

the updated Voronoi diagram. In Figure 7, for instance, to insert

a new object p4, it first identify (i) the Voronoi cell VC(p1)

containing p4 and (ii) all the Voronoi neighbors of p1. Then, a

bisector between p1 and p4 intersects VC(p1) at w1 and w2.

Segment w1 w2 becomes the first edge of the new Voronoi cell.

The next step is to iterate over all the neighboring objects that

share Voronoi edges with p1 in a counter-clockwise fashion (e.g.,

starting with p2). Then, it draws the bisector between p2 and p4

and retrieves the next intersection at w3. To repeat this process

until all the edges of the new Voronoi cell (of p4) are computed.

The above process can also be performed in a clockwise manner.

Finally, the new object is augmented with authentication and

neighborhood information, and server simply inserts it in the

corresponding spatial index.

Deleting an object (e.g., p1) follows a similar approach, as shown

in Figure 7. A procedure firstly locates p1 and its neighbors, and

divide VC(p1) with the bisectors between the neighboring pairs

of p1. Next, it updates the Voronoi neighbors of p1 with new

neighboring information, and transmits all affected objects (with

their new signatures) to server. Additionally, the server removes

p1 from the corresponding spatial index.

3. PARALLEL RANGE QUERY

3.1 Range Query Algorithm

For a range query Q, algorithm includes the following steps.

Firstly, the process traverses a deep-first path in the tree from

the root node. For each node which traversed, if its MBR is

contained by Q, traversing all the children of this node are

stopped. And if its MBR has not intersected with Q, it is also

stopped to travelling the children of this node. When the MBR

overlaps Q, access the node’s children and repeat the steps

above.

Algorithm 1. RangeQuery(Q, Nodes)

Input: Query Q, VoMR_nodes Nodes

Output: Set of Candidate Objects CS

1. CS={φ};

2. For i=0; i< Nodes.deeplevels; i++

3. NodeCursor=Nodes(i);

4. For each entry N in NodeCursor

5. If N is leaf

6. If Q contains N.MBR

7. Append N to CS;

8. Else

9. Remove N from Nodes;

10. Else

11. If N.MBR overlaps Q

12. Call RangeQuery(Q, N.p);

13. ElseIf N.MBR contained by Q

14. Append all leafs in N to CS;

15. Else

16. Remove N from Nodes;

17. Return CS;

Figure 8. Range query algorithm on VoMR-tree

Figure 8 describes the range query algorithm on VoMR-tree. The

deep-first travel will stop while N does not overlap Q. hereafter,

all the iteration process won’t access the children of Node N.

Consequently, redundant process in range query is reduced and

efficiency of process is improved.

3.2 Data Partition

A single procedure to process range queries of mass data is

seemed unreasonable. Distributed computing should be available.

In distributed computing environment, the chief issue is to

distributed data to each computing node.

Given a set of data points sorted by x coordinate, each

procedure reads an input split in the format of <data_point,

d_value> (i.e., <key, value> pair) (Akdogan, 2010b). Note that

the d_value does not have any purpose, i.e., it is used to follow

the input format of distributed computing. Subsequently, each

procedure generates a data unit for the data points in its split,

marks the boundary polygons to be later used in the merge

phase and emits the generated data unit in the form of <key,

value> pair where key denotes the split number. The constant

key is common to all data units, so that all units can be grouped

together and merged in the next subsequent step. When the

query process completes in computing node, a unique procedure

collects all the splits, and merges them into a whole. Figure 9

shows the data partition of a VoMR-tree.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

40

Split1 Split2

P1

q1

P2

P3

P4

P5

P6
P7

P30

P31

q3

q2

 Figure 9. Data partition

3.3 Paralleling Process of Query

To process mass data in highly efficiency, distributed

computing could be took into consider. The dataset is

partitioned into several parts and sends to each computing node

for processing. There was a new problem that how to balance

the data distributed. The simplest way is that partitioning the

dataset by a single level in VoMR-tree. However, if the count of

this level’s nodes is more than the count of computing nodes,

there will be idle equipment. On the contrary, Equipment is not

enough for distribution.

A solution of this problem is attempting a tentative deep-first

travel from root node. When it is impossible to balance data

distributed in this level of nodes, access the next level of nodes

and process a deeper travel. Because several nodes would be

stop to visit in each level, data distribution should be balanced in

the end. When it balanced, cease the travel process immediately,

and then send each unit data to distributed computing node for a

parallel process. Figure 10 shows the algorithm of the parallel

process.

Algorithm 2. ParallelProcess(Q, Nodes, C)

Input: Query Q, VoMR_nodes Nodes,

 Computing Node Count C;

Output: Set of Candidate Objects CS

1. CS={φ};

2. For i=0; i< Nodes.deeplevels; i++

3. if NodeCursor=Nodes(i);

4. For each entry N in NodeCursor

5. If N is not leaf

6. If N.MBR overlaps Q

7. If N.chidrencount<=C

8. For j=0; j<C; j++

9. Send N.chidren(j) to ComputingNode(j)

10. Call RangeQuery(Q, N.chidren(j))

11. Else

12. Call ParallelProcess(Q, N, C)

13. Else

14. Call RangeQuery(Q, N.p);

15. Merged Subresults;

16. CS=RemoveRepeatObject(CS);

17. Return CS;

Figure 10. The algorithm of the parallel process

3.4 Verification

In VoMR-tree and all the R-tree variants, objects are typically

approximated using minimum bounding rectangles, which require

less storage space than the full object, resulting in faster

processing and less expensive I/O operations(Jacox, 2007a). As

the approximation of spatial object, we should discuss the

verification strategies when process a range query in VoMR-tree.

VoMR-tree augments the storage content for Voronoi diagram.

It is considerable that using a Voronoi diagram to remove the

incorrect result from the candidate result set. According to

property 3 and property 4 of Voronoi diagram, the nearest

neighbor Voronoi cells of each object less than six. Therefore, if

all nearest neighbor Voronoi cells are contained by query Q, the

object must be the correct result. This lemma helps us to reduce

the processing cost because a Voronoi cell constructed at most

six points which less expensive I/O operations as MBR. When

it is unable to verify the result set, the process finally reads all

the points of the object for a topological operator. Figure 11

illustrates the algorithm of verifying a range query result set.

Algorithm 3. VerifyRangeQuery(Q, VNs, CS)

Input: Query Q, Voronoi Diagram VNs,

 Set of Candidate Objects CS

Output: Set of Result RS

1. RS={φ};

2. For each entry e in CS

3. If e.VD is contained by Q

4. veryfyweight=0;

5. For each VN in e.Neighbors

6. If VN overlaps Q

7. veryfyweight++;

8. If veryfyweight=e.NeighborCount

9. Append e to RS;

10. Else

11. For each point in e.points

12. If all points contained by Q

13. Append e to RS;

14. Else

15. Remove e from CS;

16. Return RS;

Figure 11. The algorithm of verifying a range query

4. EXPERIMENT AND ANALYSIS

We deploy a simulation of the distributed service system and

extract terrain and traffic data in total 739,744 elements with

535 Mbytes for the experiments.

4.1 Cost Models

The important performance metrics for spatial index structures

are (i) index construction time, (ii) index size, (iii) query

processing cost, (iv) size of the VO, and (v) verification time.

Table 1 shows the costs calculated by the above-mentioned

equations using the typical values of Table 1. The R-tree incurs

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

41

about 2 time the overhead of the MR-tree for computing the

query process information (in the entire tree), and is 9 times

larger. The VoMR-tree is also significantly better in terms of

result set and verification cost. The latter is particularly

important because the clients are distributed devices with

limited computing power. The only aspect where the two

structures are similar is in size of index. In the following section

we present a test of parallel efficiency

Symbols Description R-tree
VoMR-

tree

Ci Cost of index construction 0.3 h 2 h

Si Size of index
535

MBytes

535

MBytes

Cq Cost of query process 40 s 22 s

Srs Size of result set
1790

KBytes

398

KBytes

Cv Cost of verification 240ms 91ms

Table 1. Symbols and values in analysis

4.2 Parallel Efficiency

The efficiency of the algorithm is evaluated in four symbols as

following:

Object repeat rate:

1

n

i

i
o

C C

r
C








 (4)

where ro = object repeat rate

 Ci = the count of objects in a subset

 C= the count of objects in a spatial dataset

Results repeat rate：

1

n

i

i
r

M M

r
M








 (5)

where rr = result repeat rate

 Ci = the count of result of each computing node

 C= the count of objects in a result set

Task of fluctuation：

(,)Max M u u m
f

u

 


 (6)

where f = task of fluctuation

 M = maximum count in process of each node

 M= minimum count in process of each node

u= average count in process of each node

Transfer ratio：

1

n

i

i
t

r s

Q

r
Q Q






 (7)

where ri = transfer ratio

Qr = the size of source dataset

 Qs= the size of result set

 Qi= the size of result set in computing node

We extract the data in equal size to evaluate the object repeat

rate, and process a unique range query to check result repeat rate

of R-tree and VoMR-tree.

Figure 12. Object repeat rate

Figure 13. Result repeat rate

The experimental result is showed in Figure 12 and Figure 13.

As it show in line graph, the VoMR-tree keep a more stable

result repeat rate in value of 0.2 while R-tree and VoMR-tree are

close to each other in object repeat rate.

R *-tree has the effect of parallel processing. So we consider to

contrast R *-tree with VoMR-tree for redundancy of processing.

Figure 14 illustrates the sampling result of the task from 0 to

10000. It is obvious that R*-tree keeps a more stable task of

fluctuation. However, fluctuation of VoMR-tree is reduced

when the task more than 2000. Thus, VoMR-tree shows a lower

redundancy in process of mass data.

Figure 14. Task of fluctuation

Figure 15 shows the result of testing transfer ratio for VoMR-

tree and MR-tree. In the line graph, both VoMR-tree and MR-

tree have similar transfer ratio in the value between 1 and 2.

When the throughput increased, the transfer ratio of MR-tree

begins to float while that of VoMR-tree seems more stable.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

42

Figure 15. T ransfer ratio

5. CONCLUTION

VoMR-tree augments the MR-tree, by computing hash values

on the concatenation of the nearest neighbors and MBRs of all

the entries in a tree node. The leaf node is sorted by nearest

neighbor relationship while the construction of spatial index. In

the process of query, a depth-first traverse is executing. While

the MBRs overlapping, the procedure replaces the recursive

query of the nearest neighbor search in order to dominate the

space-cost. VoMR-tree is more advantages in the aspects of

processing cost and average size of result set and is high efficient

both in time and space parallelization. As future works, we plan

our solutions to the problem of other types of spatial queries.

We will improve a universal spatial index for a space database.

REFERENCES

Akdogan A, Demiryurek U, Banaei-Kashani F, et al. 2010b.

Voronoi-based Geospatial Query Processing with MapReduce,

2010 IEEE Second International Conference on Cloud

Computing Technology and Science, pp. 9-16.

Beckmann N, Kriegel H P, Schneider R, et al, 1990b. The R*-

tree: an efficient and robust access method for points and

rectangles. Proceedings of the 1990 ACM SIGMOD international

conference on Management of data.

Guttman A, 1984b. R-trees: A dynamic index structure for

spatial searching. Proceedings ACM SIGMOD international

conference on Management of Data.

Hu L, Ku W S, Bakiras S, et al. 2010b. Verifying spatial queries

using Voronoi neighbors, Proceedings of the 18th SIGSPATIAL

International Conference on Advances in Geographic

Information Systems, pp. 350-359.

Huang P, Lin P, Lin H, 2001a. Optimizing storage utilization in

R-tree dynamic index structure for spatial databases. Journal of

Systems and Software, pp. 55: 291-299.

Jacox E H, Samet H, 2007a. Spatial join techniques. ACM

Transactions on Database Systems (TODS) , pp. 32-37.

Li F, Hadjieleftheriou M, Kollios G, et al, 2006b. Dynamic

authenticated index structures for outsourced databases,

Proceedings of the 2006 ACM SIGMOD international

conference on Management of data, pp. 121-132.

Sellis T, Roussopoulos N, Faloutsos C, 1987b. The R+-tree: A

dynamic index for multi-dimensional objects. Proceedings of

13th International Conference on Very Large Data Bases.

Sharifzadeh M, Shahabi C, 2010b. Vor-tree: R-trees with

voronoi diagrams for efficient processing of spatial nearest

neighbor queries. Proceedings of the VLDB Endowment, pp.

1231-1242.

Yang C, Raskin R, 2009a. Introduction to distributed geographic

information processing research. International Journal of

Geographical Information Science, pp. 23: 553-560.

Yang Y, Papadopoulos S, Papadias D, et al. 2009a.

Authenticated indexing for outsourced spatial databases. The

International Journal on Very Large Data Bases, pp. 631-648.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

43

app:ds:execute

