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ABSTRACT: 

 

Spatial index impacts upon the efficiency of spatial query seriously in distributed spatial database. In this paper, we introduce a 

parallel spatial range query algorithm, based on VoMR-tree index, which incorporates Voronoi diagrams into MR-tree, benefiting 

from the nearest neighbors. We first augments MR-tree to store the nearest neighbors and constructs the VoMR-tree index by 

Voronoi diagram. We then propose a novel range query algorithm based on VoMR-tree index. In processing a range query, we discuss 

the data partition method so that we can improve the efficiency by parallelization in distributed database. Just then a verification 

strategy is promoted. We show the superiority of the proposed method by extensive experiments using data sets of various sizes.  

The experimental results reveal that the proposed method improves the performance of range query processing up to three times in 

comparison with the widely-used R-tree variants. 
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1. INTRODUCTION 

Distributed spatial database technology  with the advantages of 

powerful data management capability , expansibility and low 

location constraints, dominate an important part of geodatabase 

applications. It improves data process efficiency by separate 

data into pieces (Yang C, 2009a). However, the following 

problem in the spatial query of distributed geodatabase is 

generally occurring.  (i) Spatial query relies on spatial 

relationship of the entities. A part of topological relation 

information will be lost owing to the distributed storage. (ii) It 

takes too much hardware resources and time when the mass data 

is processed by centralization calculation after a complex 

transmission.  (iii) The spatial index of distributed geodatabse 

cause a large number of data redundancy  so that processing 

efficiency will be reduced. Consequently, a high-efficiency 

method of range query is studied in this paper. 

 

A range query is a common database operation that retrieves all 

records where some value is between an upper and lower 

boundary. As the basic operation of spatial query, range query 

can be regard as the first step of distributed spatial analysis. R-

tree and its variants (the modified R-tree) are widely used in 

spatial queries. R-tree (Guttman, 1984b, Huang, 2001a), R*-tree 

(Beckmann, 1990b), R+-tree (Sellis, 1987b), MB-tree (Li, 2006b) 

and MR-tree (Yang Y, 2009a) are typical examples. The most 

suitable index for a range query is MR-tree which augments the 

standard R-tree by computing hash the concatenation of the 

binary representation of all the entries in a tree node. 

 

The MR-tree combines concepts from MB-tree and R*-trees. 

Figure 1 illustrates the tree structure. Leaf nodes are identical to 

those of the R*-tree: each entry Pi corresponds to a data object. 

A digest is computed on the concatenation of the binary 

representation of all objects in the node. Internal nodes contain 

entries of the form (pi, MBRi, Hi), signifying the pointer, 

minimum bounding rectangle, and digest of the child, 

respectively. The digest summarizes child nodes’ MBRs 

(MBR1-MBRf), in addition to their values (H1−Hf).  When 

performing a range query Q (shows in Figure 2), the procedure 

runs a deep-first traversal from root node. If MBR of Ni does 

not overlap Q, all the children of Ni need not be traverse. This 

effectively reduces redundant processing. 

 

P10P10 P11P11 P12P12P7P7 P8P8 P9P9P4 P5 P6P1P1 P2P2 P3P3

N5 N6N3 N4

N1 N2

H=hash(P1|P2|P3……PN)H=hash(P1|P2|P3……PN)

H=hash(MBR1|H1|MBR2|H2……MBRN|HN)H=hash(MBR1|H1|MBR2|H2……MBRN|HN)
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Figure 1.  Depth travel and structure of MR-tree 
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Figure 2.  Range query on MR-tree 

There are still shortcomings in the MR-tree as a result of hash 

concatenation. The higher the randomness, the more impossible 

the area size of each Ni is to minimize. It increases the likelihood 

of overlap between Q and Ni, so that more nodes would be 

accessed and the efficiency is reduced. 

 

This paper introduces a parallel spatial range query algorithm, 

based on VoMR-tree index, which incorporates Voronoi 

diagrams into MR-tree, benefiting from the nearest neighbors. 

The organization of the paper is as follows. Section 2 briefly 

introduces the VoMR-tree index and its constructing method. 

Section 3 proposes an algorithm for range query processing 

using VoMR-tree in distributed spatial database, and discusses a 

strategy for verification of result set. Section 4 presents the 

experimental results estimating the performance of the proposed 

algorithms. Finally, Section 5 summarizes and concludes the 

paper. 

 

2. VOMR-TREE INDEX 

2.1 Subset Partition 

The efficiency of depth-first traversal is impacted seriously by 

the ratio of overlap. When the query Q overlaps the MBR of 

nodes frequently, the query process will be costly as a result of 

a much deeper traversal. To reduce the probability of overlap 

between Q and MBR, A better idea is to minimize the area of 

each MBR. The major drawback of MR-tree is summarized as 

the subset partition depending on a hash sorting. So that the area 

size of each MBR cannot be restricted as minimal as possible. 

And it also has not a better way to sort dataset by axes in multi-

dimensional space. 

 

An optimal partition method in the range query shows in Figure 

3. Compared with the case in Figure 2, the MBRs in Figure 3 are 

smaller. When MBR of N2 does not overlap Q, the process will 

not traverse to N3, N5, P1, P2, P4, P7, P8, and P9. In another 

words, half of the nodes in MR-tree do not need to be traversed. 

In this method, the nearest neighbors are partitioned into a 

subset, for instance P1, P2, and P4 into N3. 
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Figure 3.  An optimal partition of a dataset 

 

A high-efficiency partition method is based on nearest 

relationship.  The most common pattern of finding the nearest 

neighbor is calculating Euclidean distance as follow: 
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where  d(x, y) = Euclidean distance between 2 geometries 

 xi, yi, = coordinates of geometries 

  

To process a nearest neighbor (NN) search, it is not necessary 

to calculate the Euclidean distance of each pair of objects. A 

Delaunay triangulation should be available. Assume that each 

subset contains three objects, the steps of data partition are as 

follows: Choose a start point P1, process a 2NN for P1, record 

the three objects in a subset N1. To reduplicate the first step. A 

better way to process kNN search is based on the dual graph of 

Delaunay triangulation, Voronoi diagram (Sharifzadeh, 2010b). 

 

P1

P2
P9

P3

P4

P5

P7

P8

P10

P6

P11

P12

 

Figure 4.  Delaunay triangulation 

 

2.2 Voronoi Diagram 

Given a set of distinct objects P={p1, p2,…, pn} in space R, the 

Voronoi diagram of P, denoted as VD(P), partitions the space 

of R into n disjoint regions, such that each object pi in P belongs 

to only one region and every  point in that region is closer to pi 

than to any other object of P in the Euclidean space. The region 

around pi is called the Voronoi cell of pi, denoted as VC(pi), and 

pi is the generator of the Voronoi cell. Therefore, the Voronoi 

diagram of P is the union of all Voronoi cells VD(P) = {VC(p1), 

VC(p2), …, VC(pn)}. If two generators share a common edge, 

they are Voronoi neighbors. If we connect all the Voronoi 

neighbors, we get the Delaunay triangulation DT(P), which is 

the dual graph of VD(P) (Hu, 2010b).  
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Property 1. Given a set of distinct points P={p1, p2,…, pn} in R, 

the Voronoi diagram VD(P) and the corresponding Delaunay 

triangulation DT(P) of P are unique.  

 

Property 2. The average number of Voronoi edges per Voronoi 

polygon does not exceed six. That is, the average number of 

Voronoi neighbors per generator does not exceed six.  

 

Property 3. Given the Voronoi diagram of P, the nearest 

neighbor of a query point q is p, if and only if q∈VC(p). 

 

Property 4. Let p1, p2,…, pk be the k (k > 1) nearest neighbors 

in P to a query point q. Then, pk is a Voronoi neighbor of at 

least one point pi∈{ p1, p2,…, pk-1 } 

 

Figure 5 shows a Voronoi diagram constructed on a spatial 

dataset. Voronoi diagram is extremely efficient in searching a 

nearest neighbour region. It divides the two-dimensional space 

into several parts, and each pair of neighbour parts share a 

unique edge. The nearest relationship is recorded with this edge. 

It is an effective method to reduce the cost of Euclidean distance 

calculation. We use a term “VoMR-tree” to present the 

structure Voronoi diagram on MR-tree.  
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Figure 5.  Voronoi diagram 

 

2.3 Distance Judgement 

Constructing a Voronoi diagram promotes the queries of nearest 

neighbours. In a dataset partition process, it is possible that all 

the nearest neighbours of a spatial point has already partitioned 

into an exist subset. For example, show in Figure 7, assume each 

subset contains four leaves, objects P1 has two nearest 

neighbours P2 and P4, how about the fourth point in this subset. 

In this case, we should choose a nearest point Px in neighbours 

of P2 and P4 as the fourth point. To minimize the MBR of this 

subset, Px must be close to either P2 and P4 or P1. The problem 

comes down to a geometric centroid.  

 

Consider identifying the nearest point qi (i=1, 2, … , n) of 

spatial objects p, the geometric centroid of the region Q of qi can 

computing as follow: 
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where  x, y = coordinates of geometric centroid 

 qi.x, qi.y = coordinates of the nearest point 

 

The direction vector of geometric centroid can be the auxiliary 

judgment in nearest point search. The partial derivative of 

distance between p and the geometric centroid Q of qi is 

computed. According to formula 2, the direction vector is 

computed as following: 
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where  ,x y    = the direction vector of geometric centroid 

 adist(q,Q) = the Euclidean distance between 

object q 

 and region Q 

xi, yi = coordinates of the qi 

x, y = coordinates of p 

 

Computing according formula 3 at point p1, to get a direction 

vector d1. Drawing a ray r1 originating from p1 in direction d1 

enters the Voronoi cell of p2 intersecting its boundary at point x1. 

The direction d2 at x1 is computed and the same process is 

repeated using a ray r2 originating from x1 in direction d2 which 

enters VC (p) at x2. Now, as we are inside VC (p) that includes 

centroid q, all other rays consecutively circulate inside VC (p). 

Detecting this situation, we return p as the closest point to q. 

 

2.4 Initial Index 

Given a spatial dataset P, the first step to initialize VoMR-tree 

index is constructing a Voronoi diagram. Next, we sort all the 

objects in dataset by x coordinate, and choose the minimum 

object as the start point P1. Assume objects’ count in each 

subset is k, a k-1 nearest neighbors search result for P1 

constructs a subset N1.  If the count of this subset less than k, 

we process a distance judgment which mentioned in 3.3.  Then 

remove the objects in N1 from source dataset P and repeat the 

steps above. When all the objects are removed from source 

dataset P, re-initialization of P is promoted as follow: P={N1, 

N2, …, Nn}.  To repeat the steps above till P contain only one 

object. Finally,  a VoMR-tree construct to store all the values by 

leaf node recording the MBR and Voronoi diagram of entity  Pi  

while the parent node recording the MBR of corresponding 

subset Ni. 

VN(P8)={ P5、P6、P7、P9、P11、P12、P13 }VN(P8)={ P5、P6、P7、P9、P11、P12、P13 }

V(P8)  = {P8}V(P8)  = {P8}

P10P10 P11P11 P12P12P3 P5 P6P7P7 P8P8 P9P9P1P1 P2P2 P4P4

N4 N6N3N3 N5N5

N2 N1

 

Figure 6.  Range Query on VoMR-tree 
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Figure 6 illustrates the structure of VoMR-tree which is based 

on MR-tree and augments the storage content to record Voronoi 

diagram. For a same range query, compared with MR-tree 

(Figure 1), the deep-first traversal goes through much less nodes 

(highlight in shadow) in the tree structure.  

 

2.5 Update 

As the storage content augmenting, it is necessary to discuss 

about the update of VoMR-tree because the Voronoi diagram 

was stored synchronously in database when the index initialized. 

 
Insertion                                            Deletion 

Figure 7.  Data update on VoMR-tree 

 

While inserting a new object in the database, the procedure 

employs the incremental boundary growing method to compute 

the updated Voronoi diagram. In Figure 7, for instance, to insert 

a new object p4, it first identify (i) the Voronoi cell VC(p1) 

containing p4 and (ii) all the Voronoi neighbors of p1. Then, a 

bisector between p1 and p4 intersects VC(p1) at w1 and w2. 

Segment w1 w2 becomes the first edge of the new Voronoi cell. 

The next step is to iterate over all the neighboring objects that 

share Voronoi edges with p1 in a counter-clockwise fashion (e.g., 

starting with p2). Then, it draws the bisector between p2 and p4 

and retrieves the next intersection at w3. To repeat this process 

until all the edges of the new Voronoi cell (of p4) are computed. 

The above process can also be performed in a clockwise manner. 

Finally, the new object is augmented with authentication and 

neighborhood information, and server simply inserts it in the 

corresponding spatial index. 

 

Deleting an object (e.g., p1) follows a similar approach, as shown 

in Figure 7. A procedure firstly locates p1 and its neighbors, and 

divide VC(p1) with the bisectors between the neighboring pairs 

of p1. Next, it updates the Voronoi neighbors of p1 with new 

neighboring information, and transmits all affected objects (with 

their new signatures) to server. Additionally, the server removes 

p1 from the corresponding spatial index.   

 

3. PARALLEL RANGE QUERY 

3.1 Range Query Algorithm 

For a range query Q, algorithm includes the following steps. 

Firstly, the process traverses a deep-first path in the tree from 

the root node. For each node which traversed, if its MBR is 

contained by Q, traversing all the children of this node are  

stopped. And if its MBR has not intersected with Q, it is also 

stopped to travelling the children of this node. When the MBR 

overlaps Q, access the node’s children and repeat the steps 

above. 

Algorithm 1.  RangeQuery(Q, Nodes) 

Input:      Query Q,   VoMR_nodes  Nodes 

Output:   Set of Candidate Objects  CS 

1. CS={φ}; 

2. For i=0;  i< Nodes.deeplevels; i++ 

3.       NodeCursor=Nodes(i); 

4.       For each entry N in NodeCursor 

5.             If  N  is  leaf 

6.                   If  Q contains N.MBR 

7.                         Append N to CS; 

8.                   Else 

9.                         Remove N from Nodes; 

10.              Else 

11.                   If  N.MBR overlaps Q 

12.                         Call RangeQuery(Q, N.p); 

13.                   ElseIf  N.MBR contained by Q 

14.                         Append all leafs in N to CS; 

15.                   Else  

16.                         Remove N from Nodes; 

17. Return CS; 

 

Figure 8.  Range query algorithm on VoMR-tree 

 

Figure 8 describes the range query algorithm on VoMR-tree. The 

deep-first travel will stop while N does not overlap Q. hereafter, 

all the iteration process won’t access the children of Node N. 

Consequently, redundant process in range query is reduced and 

efficiency of process is improved.  

 

3.2 Data Partition 

A single procedure to process range queries of mass data is 

seemed unreasonable. Distributed computing should be available. 

In distributed computing environment, the chief issue is to 

distributed data to each computing node. 

 

Given a set of data points sorted by x coordinate, each 

procedure reads an input split in the format of <data_point, 

d_value> (i.e., <key, value> pair) (Akdogan, 2010b). Note that 

the d_value does not have any purpose, i.e., it is used to follow 

the input format of distributed computing. Subsequently, each 

procedure generates a data unit for the data points in its split, 

marks the boundary  polygons to be later used in the merge 

phase and emits the  generated  data unit in the form of <key, 

value> pair where key denotes the split number. The constant  

key is common to all data units, so that all units can be grouped 

together and merged in the next subsequent step.  When the 

query process completes in computing node, a unique procedure 

collects all the splits, and merges them into a whole. Figure 9 

shows the data partition of a VoMR-tree.  
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 Figure 9.  Data partition 

3.3 Paralleling Process of Query 

To process mass data in highly efficiency, distributed 

computing could be took into consider. The dataset is 

partitioned into several parts and sends to each computing node 

for processing. There was a new problem that how to balance 

the data distributed. The simplest way is that partitioning the 

dataset by a single level in VoMR-tree. However, if the count of 

this level’s nodes is more than the count of computing nodes, 

there will be idle equipment. On the contrary, Equipment is not 

enough for distribution. 

 

A solution of this problem is attempting a tentative deep-first 

travel from root node.  When it is impossible to balance data 

distributed in this level of nodes, access the next level of nodes 

and process a deeper travel. Because several nodes would be 

stop to visit in each level, data distribution should be balanced in 

the end. When it balanced, cease the travel process immediately, 

and then send each unit data to distributed computing node for a 

parallel process. Figure 10 shows the algorithm of the parallel 

process. 

 

Algorithm 2.  ParallelProcess(Q, Nodes, C) 

Input:      Query Q,   VoMR_nodes  Nodes,   

                 Computing Node Count C; 

Output:   Set of Candidate Objects  CS 

1. CS={φ}; 

2. For i=0;  i< Nodes.deeplevels; i++ 

3.       if  NodeCursor=Nodes(i); 

4.       For each entry N in NodeCursor 

5.          If  N  is not leaf 

6.             If  N.MBR overlaps Q 

7.                 If  N.chidrencount<=C 

8.                     For j=0; j<C; j++ 

9.                        Send N.chidren(j) to ComputingNode(j) 

10.                        Call RangeQuery(Q,  N.chidren(j))  

11.                 Else 

12.                     Call ParallelProcess(Q, N, C) 

13.          Else 

14.             Call RangeQuery(Q, N.p); 

15. Merged Subresults; 

16. CS=RemoveRepeatObject(CS); 

17. Return CS; 

 

Figure 10.  The algorithm of the parallel process 

 

3.4 Verification 

In VoMR-tree and all the R-tree variants, objects are typically 

approximated using minimum bounding rectangles, which require 

less storage space than the full object, resulting in faster 

processing and less expensive I/O operations(Jacox, 2007a). As 

the approximation of spatial object, we should discuss the 

verification strategies when process a range query in VoMR-tree. 

 

VoMR-tree augments the storage content for Voronoi diagram. 

It is considerable that using a Voronoi diagram to remove the 

incorrect result from the candidate result set. According to 

property 3 and property 4 of Voronoi diagram, the nearest 

neighbor Voronoi cells of each object less than six. Therefore, if 

all nearest neighbor Voronoi cells are contained by query Q, the 

object must be the correct result. This lemma helps us to reduce 

the processing cost because a Voronoi cell constructed at most 

six points which less expensive I/O operations as MBR. When 

it is unable to verify the result set, the process finally reads all 

the points of the object for a topological operator. Figure 11 

illustrates the algorithm of verifying a range query result set. 

 

Algorithm 3.  VerifyRangeQuery(Q, VNs, CS) 

Input:      Query Q,  Voronoi Diagram VNs, 

                 Set of Candidate Objects  CS 

Output:   Set of Result RS 

1. RS={φ}; 

2. For each entry e in CS 

3.       If e.VD is contained by Q 

4.             veryfyweight=0; 

5.             For each VN in e.Neighbors 

6.                   If  VN overlaps Q   

7.                        veryfyweight++; 

8.             If  veryfyweight=e.NeighborCount 

9.                   Append e to RS; 

10.             Else 

11.                   For each point in e.points 

12.                         If all points contained by Q 

13.                             Append e to RS; 

14.                         Else 

15.                             Remove e from CS; 

16. Return RS; 

Figure 11.  The algorithm of verifying a range query 

 

4. EXPERIMENT AND ANALYSIS 

We deploy a simulation of the distributed service system and 

extract terrain and traffic data in total 739,744 elements with 

535 Mbytes for the experiments. 

 

4.1 Cost Models 

The important performance metrics for spatial index structures 

are (i) index construction time, (ii) index size, (iii) query  

processing cost, (iv) size of the VO, and (v) verification time. 

Table 1 shows the costs calculated by the above-mentioned 

equations using the typical values of Table 1. The R-tree incurs 
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about 2 time the overhead of the MR-tree for computing the 

query process information (in the entire tree), and is 9 times 

larger. The VoMR-tree is also significantly better in terms of 

result set and verification cost. The latter is particularly 

important because the clients are distributed devices with 

limited computing power. The only aspect where the two 

structures are similar is in size of index.  In the following section 

we present a test of parallel efficiency 

 

Symbols Description R-tree 
VoMR-

tree 

Ci Cost of index construction 0.3 h 2 h 

Si Size of index 
535 

MBytes 

535 

MBytes 

Cq Cost of query process 40 s 22 s 

Srs Size of result set 
1790 

KBytes 

398 

KBytes 

Cv Cost of verification 240ms 91ms 

 

Table 1.  Symbols and values in analysis 

 

4.2 Parallel Efficiency 

The efficiency of the algorithm is evaluated in four symbols as 

following: 

 

Object repeat rate:  
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where  ro = object repeat rate 

 Ci = the count of objects in a subset 

 C= the count of objects in a spatial dataset  

 

Results repeat rate： 
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where  rr = result repeat rate 

 Ci = the count of result of each computing node 

 C= the count of objects in a result set 

  

Task of fluctuation：  
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f

u
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    (6) 

where  f = task of fluctuation 

 M = maximum count in process of each node 

 M= minimum count in process of each node 

u= average count in process of each node 

 

Transfer ratio：  
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                            (7) 

where  ri = transfer ratio 

Qr = the size of source dataset 

 Qs= the size of result set 

 Qi= the size of result set in computing node 

We extract the data in equal size to evaluate the object repeat 

rate, and process a unique range query to check result repeat rate 

of R-tree and VoMR-tree. 

 

Figure 12.  Object repeat rate 

 

Figure 13.  Result repeat rate 

The experimental result is showed in Figure 12 and Figure 13. 

As it show in line graph, the VoMR-tree keep a more stable 

result repeat rate in value of 0.2 while R-tree and VoMR-tree are 

close to each other in object repeat rate. 

 

R *-tree has the effect of parallel processing. So we consider to 

contrast R *-tree with VoMR-tree for redundancy of processing. 

Figure 14 illustrates the sampling result of the task from 0 to 

10000. It is obvious that R*-tree keeps a more stable task of 

fluctuation. However, fluctuation of VoMR-tree is reduced 

when the task more than 2000. Thus, VoMR-tree shows a lower 

redundancy in process of mass data. 

 

Figure 14.  Task of fluctuation 

Figure 15 shows the result of testing transfer ratio for VoMR-

tree and MR-tree. In the line graph, both VoMR-tree and MR-

tree have similar transfer ratio in the value between 1 and 2. 

When the throughput increased, the transfer ratio of MR-tree 

begins to float while that of VoMR-tree seems more stable. 
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Figure 15.  T ransfer ratio 

5. CONCLUTION 

VoMR-tree augments the MR-tree, by computing hash values 

on the concatenation of the nearest neighbors and MBRs of all 

the entries in a tree node. The leaf node is sorted by nearest 

neighbor relationship while the construction of spatial index. In 

the process of query, a depth-first traverse is executing. While 

the MBRs overlapping, the procedure replaces the recursive 

query of the nearest neighbor search in order to dominate the 

space-cost. VoMR-tree is more advantages in the aspects of 

processing cost and average size of result set and is high efficient 

both in time and space parallelization. As future works, we plan 

our solutions to the problem of other types of spatial queries. 

We will improve a universal spatial index for a space database. 
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