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ABSTRACT:

The fields of photogrammetry and computer vision routinely use line-surface intersections to determine the point wherea line intersects
with a surface. The object coordinates of the intersection point can be found using standard geometric and numeric algorithms, however
expressing the spatial uncertainty at the intersection point may be challenging, especially when the surface morphology is complex.
This paper describes an empirical method to characterize the unknown spatial uncertainty at the intersection point by propagating
random errors in the stochastic model using repeated randomsampling methods. These methods accommodate complex surface
morphology and nonlinearities in the functional model, however the penalty is the resulting probability density function associated
with the intersection point may be non-Gaussian in nature. Aformal hypothesis test is presented to show that straightforward statistical
inference tools are available whether the data is Gaussian or not. The hypothesis test determines whether the computed intersection
point is consistent with an externally-derived known truthpoint. A numerical example demonstrates the approach in a photogrammetric
setting with a single frame image and a gridded terrain elevation model. The results show that uncertainties produced bythe proposed
empirical method are intuitive and can be assessed with conventional methods found in textbook hypothesis testing.

1 INTRODUCTION

Line-surface intersections are used in many fields to determine
the 3D object coordinates of a point defined by the geometric in-
tersection of a line with a surface. The technique is often used to
determine the object coordinates of a point which appears ina sin-
gle image. In the one hypothetical case where the line and surface
are purposefully and intentionally defined to have no spatial error,
then by logical extension, the intersection point also has no spa-
tial error and no spatial uncertainty. However, in the othercases
where the line and surface contain spatial uncertainty, then the in-
tersection point must also contain spatial uncertainty. Character-
izing this uncertainty is relatively straightforward whensurface
morphology is benign (e.g., planar), however uncertainty charac-
terization becomes increasingly difficult in real-world scenarios
where surface morphology turns complex and contains nonlin-
earities and discontinuities seen in high resolution urbanmodels,
for instance.

Line-surface intersections are also known as ray tracing incom-
puter graphics and as single-ray backprojection by the photo-
grammetry community (Mikhail and Ackerman, 1976). Some
also refer to line-surface intersections as collision detection, es-
pecially when a line intersects with a 3D point cloud (Klein and
Zachmann, 2004).

The term uncertainty is used in this paper to allow for a broadde-
scription of the stochastic behavior of random variables, in par-
ticular random variables that are not necessarily normallydis-
tributed. In photogrammetry, covariance matrices are often used
to convey the precision of random variables such as observations
and parameters which are typically assumed to follow uni- or
multi-normal distributions. Spatial uncertainty is conveniently
conveyed in terms of the normal distribution, however recent pub-
lications show departures from this norm (Beekhuizen et al., 2011,
Cuartero et al., 2010, Pollard et al., 2010).

The main contributions of this paper are to describe an empiri-
cal process to estimate the spatial uncertainty associatedwith an
intersection point and to describe a hypothesis test to determine
if the intersection point is consistent with an externally-defined
known point. The first section describes the classical method
of computing uncertainty using standard error propagationtech-
niques and it touches on some of limitations of the classicaltech-
nique. The second section describes an alternate method of un-
certainty estimation using a Repeated Random Sampling (RRS)
method. The Monte Carlo method (Press et al., 1988) is a com-
monly used RRS method which is used in this paper. The second
section also describes a formal statistical hypothesis test and pro-
vides an extensive numerical example of the RRS method.

2 CLASSICAL METHOD OF UNCERTAINTY
ESTIMATION

Classical error propagation is often used to describe the uncer-
tainty at the intersection point by propagating random errors as-
sociated with the observables through a functional model tothe
line-surface intersection point. More generally, this method prop-
agates the random stochastic properties of independent variables
to dependent variables through a linear (or linearized) functional
model (Mikhail and Ackerman, 1976) It is commonly assumed
in the classical method that the random errors are normally dis-
tributed (i.e., Gaussian) and that systematic biases do notexist.

In photogrammetry the collinearity equations are often used as
the functional model to relate a point on an image to its corre-
sponding point in the object. In this case the collinearity equa-
tions define the spatial location of a line or ray in space, and
Zs denotes the altitude of the object surface plane. Let the ob-
ject point where the line intersects the plane be denoted byxI =
[XI YI ZI ]

T . Three equations express the linearized functional
model that relates the dependent variables with the independent
variables. The first two equations are the inverse collinearity
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equations and the third equation is the altitude of the planein
object space. The three equations are expressed as

XI = fX(x, y, IO,EO,Zs)
YI = fY (x, y, IO,EO, Zs)
ZI = Zs

(1)

where the inverse collinearity equations are denoted byfX and
fY , x andy denote the image coordinates,IO denotes a vec-
tor of sensor interior orientation parameters, andEO denotes a
vector of sensor exterior orientation parameters (Mikhailet al.,
2001) LetΣ denote the covariance matrix associated with the
observables and letJ denote the Jacobian matrix containing par-
tial derivatives that relates dependent variables with independent
variables in equation (1), orJ = ∂(XI ,YI ,ZI)

∂(x,y,IO,EO,Zs)
. Then the

3 by 3 covariance matrix associated with the intersection point,
ΣII is

ΣII = JΣJ
T (2)

ΣII contains elements to generate a standard error ellipsoid.

2.1 Limitations of Classical Method

While the classical method of computing uncertainties is widely
used, it has limitations, especially in complex terrain. Inthe
context of line-surface intersections, the limitations are a conse-
quence of the linearization of the functional model and the disper-
sion of random errors that must lie within this linearized space.
Indeed, two relevant assumptions are (Mikhail and Ackerman,
1976):

1. If the functional model is nonlinear, then error propagation
is valid for a region around the point that encompasses the
dispersion of the random variables.

2. If y = g(x) denotes a continuous and differentiable func-
tion, then the inverse functionx = h(y) must also exist and
be continuous and differentiable as well.

In practice these assumptions are often satisfied by assuming the
object space is planar.

2.2 Hypothesis Test

The classical hypothesis test to determine whether the observed
intersection pointxI is consistent with a known truth point,xµ

consists of null and alternative hypotheses stated as

Ho : xI − xµ = 0

Ha : xI − xµ 6= 0
(3)

where0 is a 3 by 1 vector of zeros. The test statistic,T , is defined
as

T = (xI − xµ)
T
Σ

−1 (xI − xµ) ∼ χ
2
r (4)

whereχ2
r denotes the chi-square distribution withr = 3 degrees

of freedom and

Σ =

[

ΣII ΣIµ

ΣµI Σµµ

]

(5)

The critical value isχ2
r,1−α with a significance levelα. Assuming

a one-sided test, we reject the null hypothesis ifT > χ2
r,1−α

and conclude the intersection point is inconsistent with the known
point.

3 UNCERTAINTY ESTIMATION BY REPEATED
RANDOM SAMPLING

This section proposes repeated random sampling as a flexibleap-
proach to accurately characterize the spatial uncertaintyat a line-
surface intersection point. Used for years in scientific andmath-
ematical problems, repeated random sampling methods are ap-
plied here to yield the nature of intersection uncertainty in cases
where the object surface may not be planar and where the a priori
stochastic model associated with the observables is known.RRS
methods expose the nature of intersection uncertainties through
a computationally intensive process that produces an empirical
cloud of points in the vicinity of the nominal intersection point by
repeatedly perturbing input observables by pseudo-randomnum-
bers and executing the line-surface intersection. In practice the
RRS method described here requires an expression or computa-
tional method that returns theX,Y, Z coordinates of the inter-
section point given the imaging variables, the surface variables,
and a functional model that relates the two. A very simple exam-
ple of this required expression appears in equation (1), however
sophisticated computational ray tracing methods are oftenused
in practice. Conceptually let the generic computational method
be thought of as a callable software function called
get intersection coordinates. This function would be cal-
led as

[XI , YI , ZI ] =
get intersection coordinates(x, y, IO,EO, surface)

(6)
Notice that the input elements to this function on the right hand
side are observables (or perhaps perturbed observables), and the
intersection coordinates are returned by the function on the left
hand side.

RRS methods are flexible and can accommodate a wide range
of input types. For instance, RRS methods support various user-
defined a priori stochastic models and are not limited to multi-
normal distributions. Further, RRS methods accommodate object
space surfaces defined in a variety of forms (e.g. planar, gridded
2-1/2D elevation model, 3D point cloud, etc.) and they accommo-
date many interpolation methods (e.g. bilinear, bicubic, nearest
neighbor, etc.).

The actual construction of the 3D point cloud is accomplished by
computing one 3D point at a time until a total ofN points are
defined.N is a large positive integer that denotes the number of
RRS trials. At each trial the original unperturbed observables are
perturbed according to the a priori stochastic model and a line-
surface intersection algorithm (Eq. 6) returns the 3D object space
coordinates of the intersection point. Figure 1 summarizesthe
process of generating the 3D point cloud.

The fidelity and spatial accuracy of RRS output point cloud isin-
fluenced by several factors to include the fidelity of the a priori
input stochastic error model (e.g., Gaussian, exponential, etc.),
the quality of the pseudorandom number generator, and the num-
ber of RRS trials executed. In practice, the quality of pseudo-
random number generators is generally high, so the predominant
factor influencing the accuracy of RRS output is the number of
RRS trials executed.

The RRS method does not provide direct access to probabilities
associated with the intersection point via a closed-form math-
ematical expression. The classical method, by contrast, offers
complete access to probabilities associated with the intersection
point via the multinormal distribution. Because the RRS method
only delivers a 3D point cloud and does not deliver direct access
to these probabilities, one is left to create an empirical density
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function using the 3D point cloud itself. One way to build this
empirical density function is to generate a voxel space surround-
ing the point cloud and count the number of points that fall ineach
voxel. This realization of the empirical density function provides
a framework where hypothesis testing can occur and is discussed
later.

3.1 Size and Shape of Point Cloud

Several factors influence the size and shape of the the 3D point
cloud generated by the RRS method. The factors fall into two
separate categories: geometric factors and stochastic factors. The
geometric factors include image collection geometry and terrain
morphology, whereas the stochastic factors include a priori sto-
chastic models and the nature of computational algorithms (deter-
ministic or non-deterministic). Finally, terrain interpolation falls
in both categories. The contribution from each factor is described
next.

Geometry plays a large role in the resulting 3D point cloud. Con-
ceptually, one can imagine a cone of uncertainty emanating from
the sensor and projecting onto a surface with complex morphol-
ogy. As image collection geometry changes from nadir perspec-
tives to highly oblique perspectives, the effect of object space
occlusions can lead to discontinuities in the projected uncertain-
ties (Figure 2). Depending on the circumstance — ranging from
benign, smooth and continuous surfaces to urban surfaces with
sharp corners — these discontinuities may lead to bi-modal or
even multi-modal point clouds.

Stochastic factors also affect the resulting point cloud. For in-
stance, if the a priori error covariance of the observationsmapped
to image space follows a multinormal distribution, then the“cone”
of uncertainties will be conically shaped for uncorrelatedimage
coordinates or elliptically shaped for correlated image coordi-
nates. By contrast, if the a priori distribution is uniformly dis-
tributed (i.e., a boxcar distribution), then the cone of uncertainty
becomes more rectangular in shape. Separately, the nature of
the computational algorithms that return the coordinates of the
line-surface intersection may also affect the shape of the point
cloud, especially if the algorithms are non-deterministic. Non-
deterministic algorithms deliver a range of ouputs given a single
input. The output from non-deterministic algorithms may contain
random errors, systematic errors, or both.

Finally, surface interpolation methods fall into both the geomet-
ric and stochastic categories. In a geometric sense, the interpo-
lation method can introduce extreme discontinuities in theresult-
ing 3D point cloud when nearest neighbor interpolation methods
are used, for instance. By contrast, a higher order interpolation
method generally produces a smooth surface that may minimize
the discontinuities in the resulting point cloud. From a stochas-
tic perspective, surface interpolation may introduce bothrandom
and non-random errors into the resulting point cloud. The magni-
tude of interpolation errors is a function of terrain point spacing,
terrain morphology, and terrain interpolation method (Hu et al.,
2009)

3.2 Special Case

The classical and RRS methods produce nearly identical esti-
mates of uncertainty in at least one special case. This special
case occurs when the a priori stochastic model is multinormal
and when the object space is planar. The uncertainty estimate is
realized in the form of a 3 by 3 covariance matrix that followsthe
multinormal distribution.

object

sensor

Figure 2: A cone of uncertainty originates at the sensor and
projects onto the object.

The reason the methods are only nearly identical and not exactly
identical is because the classical method operates on a closed-
form expression of the a priori stochastic model that completely
describes the theoretical probability density function (PDF) as-
sociated with the intersection point, whereas the RRS method
attempts to closely approximate the theoretical PDF using afi-
nite number of empirical samples. The difference between the
two methods tends to decrease as the number of RRS samples
increases.

3.3 Hypothesis Test

The null hypothesis under evaluation is whether the coordinates
of an intersection point,xI = [XI YI ZI ]

T , are consistent
with the coordinates of a truth point,xµ = [Xµ Yµ Zµ]

T . As
in equation (3), the null and alternate hypotheses are stated as

Ho : xI − xµ = 0

Ha : xI − xµ 6= 0
(7)

The objective of this test is no different than that of the classical
method — to identify a density function and test statistic that
are consistent with the null hypothesis. The primary challenge
here is that the density function is unknown and must be created
from empirical data points. Adding to the complexity, the density
function is frequently non-Gaussian, potentially multi-modal in
shape, and may contain random and non-random elements.

To meet these challenges and to accommodate the possibilityof
known a priori uncertainties in the truth point,xµ, an empirical
density function is constructed on the simple difference metric
d = xI − xµ. While other metrics could have been selected
and may be viable,d is selected here because it is rooted in the
null hypothesis statement and because it preserves the potentially
complex shape and structure of the density function that origi-
nates from the line-surface intersection. Like the classical case,
when the a priori stochastic model is Gaussian and the object
space is benign (i.e., planar), the expected value ofd is zero.
However, in scenarios where the object space is complex, theden-
sity function ofd can become irregular, causing expected values
to differ from zero.

The actual construction of the density function is an exercise in
density estimation from empirically observed data points.While
other approaches to density estimation exist (Parzen, 1962, Mo-
hamed et al., 2005), the appoach taken here is a relatively simple
voxel method. The density function is constructed by placing the
N observed data points into the voxel space. Let the voxel space
containM elements in each of theX,Y andZ directions. Let the
integer indices at an arbitrary voxel be(i, j, k). Then the density
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Procedure: 3D Point Cloud Using Repeated Random Sampling

Input
Load interior orientation and uncertainties
Load exterior orientation and uncertainties
Load image observations and uncertainties
Load object space and uncertainties











Collectively
termed

“original”
observations

Begin Loop
for i = 1, N

Perturb original observations
Execute line-surface intersection (Eq. 6)
Save intersection coordinates

End Loop
Output
3D point cloud comprised ofN intersection points

Figure 1: Procedure to obtain empirical 3D point cloud usingRRS method

ρd at an arbitrary voxel is computed as

ρd(i, j, k) =

Number of points
in voxel

N

{

1 ≤ i ≤ M
1 ≤ j ≤ M
1 ≤ k ≤ M

(8)

The outcome of this exercise is an expression – much like the
analytical function in the classical case – whose total massis 1 or

M
∑

i=1

M
∑

j=1

M
∑

k=1

ρd(i, j, k) = 1 . (9)

Given access to the individual voxel densities, the proposed ap-
proach is to use standard elements of classical hypothesis testing
as a guide with adaptations to accommodate the empirical na-
ture of the problem and to accommodate the potentially complex
shape and structure of the density function.

Thep-value is a classical element that is reused here; it serves as a
computed quantity to determine if the null hypothesis is rejected
or not. To obtain thep-value let the integers(ip, jp, kp) denote
the indices of the voxel containing the point

d = [XI −Xµ YI − Yµ ZI − Zµ]
T
. (10)

Then thep-value ,p, is computed as

p =
∑

(i,j,k)∈A

ρd(i, j, k) 0 ≤ p ≤ 1 (11)

whereA is the set of all indices(i, j, k) where the voxel density
is less than or equal to the voxel density containing pointd or

A = {(i, j, k) | ρd(i, j, k) ≤ ρd(ip, jp, kp)} (12)

Thep-value is small whend is inconsistent with the null hypoth-
esis and large whend is consistent with the null hypothesis. Let
α denote the user-defined significance level of the test. The deci-
sion rule is to reject the null hypothesis whenp < α.

The actual construction of the density function associatedwith d

is obtained by augmenting the steps used to obtain the RRS point
cloud described in Figure 1 with additional steps to accommodate
truth point uncertainty and to place the observed data points into
a voxel space. When it exists, the truth point uncertainty inflates
the geometric size ofρd. Let the origin of the density function lie
at a point xI nominal defined by the original, unperturbed ob-
servations. Also, in the context of theN RRS trials, let perturbed

Parameter value and standard deviation

focal length = 100mm ± 0.01mm

x image coord. = 0mm ± 0.01mm

y image coord. = 0mm ± 0.01mm

XL = −500m ± 1m
YL = 40m ± 1m
ZL = 500m ± 1m
ω = 0◦ ± 0.2◦

φ = −47.15◦ ± 0.2◦

κ = 0◦ ± 0.2◦

Table 1: Frame image parameters used in example

values be denoted with an elevated tilde (e.g.,x̃I denotes the per-
turbed intersection point). Then the empirical data pointsthat
make up the density function are defined by three steps which
are repeated at each trial: 1) perform the ray intersection using
perturbed observations to obtainx̃I , 2) add a perturbation toxµ

according to the truth covariance matrixΣµµ to obtainx̃µ, and
3) obtain a single datapoint̃d = x̃I − x̃µ. TheN data points
obtained in this manner are then placed in the voxel space and
the density function aboutd is computed. Figure 3 summarizes
these steps.

3.3.1 Example The theory above is applied to a real-world
single-image example in this section. The data consist of a syn-
thetic gridded elevation model and a synthetic image (Figures 4
and 5) to test whether the coordinates of an intersection point are
consistent with the coordinates of an externally-defined ground
truth point. Linear units are in meters and angular units arein
decimal degrees. For simplicity it is assumed that all observables
are normally distributed and uncorrelated. To simplify theexam-
ple, the gridded elevation data is assumed to have no absolute or
relative horizontal error (i.e.,σ = 0). By contrast the absolute
elevation uncertainty at each node of the grid isσ = ±1 meter
with no correlation between nodes. Bilinear interpolationis used
to define terrain elevations between nodes. The elements of the
standard frame image are described in Table 1. A total ofN =
100, 000 trials are used to describe the density function surround-
ing xI nominal . The coordinates of the nominal intersection
point are computed using the nominal values appearing in Table 1
and Figure 4 to producexI nominal ≈ [32.78 30.00 5.78]T

. The known, externally-derived truth point is defined with coor-
dinatesxµ = [30.00 29.00 4.00]T with a covariance matrix
equal toI3. Consequently, the difference vector for this sample
data isd = xI − xµ ≈ [2.78 1.00 1.78]T . Voxels are 0.5
meters on a side.
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Procedure: Empirical Density Function Associated with Null Hypothesis

Input
Load interior orientation and uncertainties
Load exterior orientation and uncertainties
Load image observations and uncertainties
Load object space and uncertainties











Collectively
termed

“original”
observations

Load covariance matrixΣµµ associated with truth point
ComputexI nominal using unperturbed, original observations

Begin Loop
for i = 1, N

Perturb original observations
Execute line-surface intersection (Eq. 6) to obtainx̃I

Perturbxµ by truth uncertainty to obtaiñxµ

Save differencẽd = x̃I − x̃µ

End Loop
Output: Voxel Density
Choose a voxel space that spans alld̃

Populate voxels withN points obtained in loop above
Voxel density = number of points in voxel /N

Figure 3: Procedure to obtain the empirical density function associated with the null hypothesis
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Figure 4: Synthetic terrain data defined by a grid of raster ele-
vations. Elevation data are in meters and are provided in shaded
circles.

Figure 5 illustrates the notional geometry of the problem aswell
as the location of 100 intersection points relative to the gridded
elevation model. These intersection points are computed using
the procedure outlined in Figure 1. A bimodal distribution of the
RRS point cloud is evident in Figure 5 where one mode lies near
the highest elevation in the elevation model and the second mode
lies at the lower elevation beside it.

Given the object-space points in the RRS point cloud, the next
step is to compute the density of each voxel using the proce-
dure outlined in Figure 3. This voxel space is illustrated inFig-
ure 6 where an isosurface is rendered on the density functioncon-
structed from the entire set ofN = 100, 000 points. As expected,
Figures 5 and 6 exhibit a similar bi-modal distribution since they
are produced from the same RRS simulation.

From a qualitative point of view, we reject the null hypothesis,
Ho, because the pointd lies outside the1 − α = 0.95 confi-
dence surface; we would acceptHo if d lied inside the surface
(Figure 6). From a quantitative perspective, the null hypothesis is
rejected because thep-value ,p = 0.002, is less than the signifi-

cance levelα = 0.05. In summary,

Ho : xI − xµ = 0

Ha : xI − xµ 6= 0

α = 0.05, p = 0.002
(13)

Therefore, according to this proposed methodology, sincep < α,
the ground truth point is considered inconsistent with intersection
point and wereject Ho in this case.

4 DISCUSSION

While the proposed method appears to correctly handle challenges
associated with non-Gaussian data, it suffers from long computa-
tion times required to create an RRS point cloud containing thou-
sands or hundreds of thousands of points. In the example it took
neary 24 hours of computation time on a modern desktop com-
puter using a crude 4-threaded parallel processing scheme.

Given today’s computing power it may be difficult to generate
the RRS point cloud and compute the intersection uncertainty in
near real-time. The computational task would be difficult even
under ideal circumstances with highly-optimized multi-core and
multi-threaded computational resources. The computational bur-
den grows substantially when one imagines computing intersec-
tion uncertainties for every pixel on an image.

5 CONCLUSIONS AND FUTURE

A repeated random sampling method has been proposed to char-
acterize the spatial uncertainty at a point where a line intersects
a surface. The classical method of characterizing spatial uncer-
tainty is restricted to cases where the object surface is planar. The
RRS method, on the other hand, makes no assumptions concern-
ing surface morphology. The RRS method does not provide di-
rect access to a closed-form expression of the probability density
function; consequently an empirical density function is created
from the 3D data points produced by the RRS method. The em-
pirical density function is realized through a simple technique us-
ing voxels.
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Figure 5: Synthetic data set illustrating notional geometry be-
tween image and object. The 3D point cloud in object space is
produced using a synthetic image and terrain data describedin
the text. The symbol⊗ denotes the nominal location of the in-
tersection point in the image and raster elevation model, while
points in the RRS point cloud are denoted by “◦”. For visual
clarity, the first 100 of theN = 100, 000 points are plotted. The
shape and bi-modal structure of the point cloud closely resembles
the density function in Figure 6.

Z
I
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Z
µ

(m
)

XI −Xµ (m)

Y
I −

Y
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d

Figure 6: Isosurface rendered on density function ofd. The iso-
surface encapsulates 95% of the mass of the density function. The
symbol⊙ denotes the discrete data point associated withd used
in the example. The density function is produced from empirical
data points using the procedure outlined in Figure 3.

A formal hypothesis test is designed to determine whether an
externally-defined point and its associated uncertainty isconsis-
tent with the intersection point and its uncertainty. An empirical
density function is constructed from the RRS process and a test
statistic is used to determine if the null hypothesis is rejected or
accepted.

Future efforts will focus on techniques to improve and enhance
the fidelity of the RRS empirical density function. While the
voxel method described in this paper is intuitive, other sophisti-
cated methods of density estimation may result in greater fidelity
of the density function while at the same time requiring fewer
RRS trials. Likewise, methods such as stratified sampling seek
to exhaustively interrogate the sample space using fewer trials
(Wikipedia, 2010). Also, computation time may be improved by
using an intelligent convergence test to determine when theden-
sity function has reached a steady state and does not benefit from
additional RRS trials.
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