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ABSTRACT:

The fields of photogrammetry and computer vision routinely line-surface intersections to determine the point wadires intersects
with a surface. The object coordinates of the intersectmntgan be found using standard geometric and numericitgts, however
expressing the spatial uncertainty at the intersectiontpoay be challenging, especially when the surface morglyol® complex.
This paper describes an empirical method to characterzeitknown spatial uncertainty at the intersection point fiypagating
random errors in the stochastic model using repeated rarggonpling methods. These methods accommodate complexeurfa
morphology and nonlinearities in the functional model, bwer the penalty is the resulting probability density fiumetassociated
with the intersection point may be non-Gaussian in naturfardal hypothesis test is presented to show that straighéia statistical
inference tools are available whether the data is Gaussianto The hypothesis test determines whether the compatedsection
point is consistent with an externally-derived known tmptfint. A numerical example demonstrates the approach imeghammetric
setting with a single frame image and a gridded terrain élmvanodel. The results show that uncertainties producetthéyroposed
empirical method are intuitive and can be assessed withetional methods found in textbook hypothesis testing.

1 INTRODUCTION The main contributions of this paper are to describe an empir
cal process to estimate the spatial uncertainty assootecin
intersection point and to describe a hypothesis test tamaie

if the intersection point is consistent with an externalgfined
known point. The first section describes the classical ntetho
of computing uncertainty using standard error propagatech-
niques and it touches on some of limitations of the class$axdd-
nigue. The second section describes an alternate methaa of u
certainty estimation using a Repeated Random Sampling JRRS
method. The Monte Carlo method (Press et al., 1988) is a com-
monly used RRS method which is used in this paper. The second
section also describes a formal statistical hypothesisatespro-
vides an extensive numerical example of the RRS method.

Line-surface intersections are used in many fields to déterm
the 3D object coordinates of a point defined by the geomaetric i
tersection of a line with a surface. The technique is oftedus
determine the object coordinates of a point which appeasin-
gle image. In the one hypothetical case where the line arfidcgur
are purposefully and intentionally defined to have no spatiar,
then by logical extension, the intersection point also laspa-
tial error and no spatial uncertainty. However, in the otteges
where the line and surface contain spatial uncertainty the in-
tersection point must also contain spatial uncertaintyar@tter-
izing this uncertainty is relatively straightforward whearface
morphology is benign (e.g., planar), however uncertaihrac-
terization becomes increasingly difficult in real-worlcesarios 2 CLASSICAL METHOD OF UNCERTAINTY
where surface morphology turns complex and contains nonlin ESTIMATION

earities and discontinuities seen in high resolution urpadels,

for instance. Classical error propagation is often used to describe tizerun

) ) ) o tainty at the intersection point by propagating randomreres-
Line-surface intersections are also known as ray traci@m-  gocjated with the observables through a functional modéfhdo
puter graphics and as single-ray backprojection by thegshot |ine-surface intersection point. More generally, this Ineet prop-
grammetry community (Mikhail and Ackerman, 1976). Some agates the random stochastic properties of independeabies
also refer to line-surface intersections as collision déte, es- g dependent variables through a linear (or linearizedjtional
pecially when a line intersects with a 3D point cloud (Kleda  model (Mikhail and Ackerman, 1976) It is commonly assumed
Zachmann, 2004). in the classical method that the random errors are normisly d

tributed (i.e., Gaussian) and that systematic biases dexist
The term uncertainty is used in this paper to allow for a braed

scription of the stochastic behavior of random variablear-  In photogrammetry the collinearity equations are oftenduse
ticular random variables that are not necessarily normgdily ~ the functional model to relate a point on an image to its corre
tributed. In photogrammetry, covariance matrices arenafteed  sponding point in the object. In this case the collinearijya

to convey the precision of random variables such as obsengat tions define the spatial location of a line or ray in space, and
and parameters which are typically assumed to follow uni- orZs denotes the altitude of the object surface plane. Let the ob-
multi-normal distributions. Spatial uncertainty is conigntly  ject point where the line intersects the plane be denoted;by

conveyed in terms of the normal distribution, however repeb-  [X; Y7 Z;]". Three equations express the linearized functional
lications show departures from this norm (Beekhuizen ep@ll1, model that relates the dependent variables with the indkgren
Cuartero et al., 2010, Pollard et al., 2010). variables. The first two equations are the inverse collibear
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equations and the third equation is the altitude of the piane

object space. The three equations are expressed as

Xr = fx(z,y,I0,EO0, Z;)
YI = fy(m7yaIO7EO?ZS) (1)
Zr = Zs

where the inverse collinearity equations are denoted byand
fv, x andy denote the image coordinateB) denotes a vec-
tor of sensor interior orientation parameters, dn@ denotes a
vector of sensor exterior orientation parameters (Mikeaidl.,

2001) LetX denote the covariance matrix associated with the
observables and Idt denote the Jacobian matrix containing par-

tial derivatives that relates dependent variables witlefrashdent
variables in equation (1), af = 5 Z“SLZ0 <. Then the
3 by 3 covariance matrix associated with the intersectidntpo
rr is

S =JxJ7 2

3217 contains elements to generate a standard error ellipsoid.
2.1 Limitationsof Classical Method

While the classical method of computing uncertainties idelyj
used, it has limitations, especially in complex terrain. the
context of line-surface intersections, the limitations arconse-
guence of the linearization of the functional model and ibpet-
sion of random errors that must lie within this linearizeasp

3 UNCERTAINTY ESTIMATION BY REPEATED
RANDOM SAMPLING

This section proposes repeated random sampling as a flexible
proach to accurately characterize the spatial uncertairdyline-
surface intersection point. Used for years in scientific avadh-
ematical problems, repeated random sampling methods are ap
plied here to yield the nature of intersection uncertaintgases
where the object surface may not be planar and where thera prio
stochastic model associated with the observables is knBRS
methods expose the nature of intersection uncertaintiesigh

a computationally intensive process that produces an aapir
cloud of points in the vicinity of the nominal intersectioaipt by
repeatedly perturbing input observables by pseudo-random
bers and executing the line-surface intersection. In madhe
RRS method described here requires an expression or computa
tional method that returns th&, Y, Z coordinates of the inter-
section point given the imaging variables, the surfaceatdes,
and a functional model that relates the two. A very simplevexa
ple of this required expression appears in equation (1)ehew
sophisticated computational ray tracing methods are afsad

in practice. Conceptually let the generic computationathoe

be thought of as a callable software function called
get_intersection_coordinates. This function would be cal-
led as

[X1,Y1,Z1] =
get_intersection_coordinates(z,y, IO, FO,surface)

(6)

Indeed, two relevant assumptions are (Mikhail and Acketmanygrice that the input elements to this function on the riggdh

1976):

1. If the functional model is nonlinear, then error propagat

side are observables (or perhaps perturbed observahhesihe
intersection coordinates are returned by the function enleft
hand side.

is valid for a region around the point that encompasses th&RS methods are flexible and can accommodate a wide range

dispersion of the random variables.

2. If y = g(x) denotes a continuous and differentiable func-

tion, then the inverse function = h(y) must also exist and
be continuous and differentiable as well.

In practice these assumptions are often satisfied by asgutren
object space is planar.

2.2 Hypothesis Test

The classical hypothesis test to determine whether thenadxse
intersection point; is consistent with a known truth poing,,
consists of null and alternative hypotheses stated as

H, :xr—x,=0
Hy : x1—%x,#0 ®)
where0 is a 3 by 1 vector of zeros. The test statisficjs defined
as

4)

wherey? denotes the chi-square distribution with= 3 degrees
of freedom and
2 B |: EIH :|

Euu
The critical value is&_yl,a with a significance levek. Assuming
a one-sided test, we reject the null hypothesig’it> x7,_,,
and conclude the intersection point is inconsistent wighktiown
point.

T=(x1— Xu)T = (xr — xu) ~ xf

X

> ®)

of input types. For instance, RRS methods support varioes us
defined a priori stochastic models and are not limited to imult
normal distributions. Further, RRS methods accommodgtebb
space surfaces defined in a variety of forms (e.g. planatdgd
2-1/,D elevation model, 3D point cloud, etc.) and they accommo-
date many interpolation methods (e.g. bilinear, bicubearast
neighbor, etc.).

The actual construction of the 3D point cloud is accomplilsine
computing one 3D point at a time until a total &f points are
defined. N is a large positive integer that denotes the number of
RRS trials. At each trial the original unperturbed obseleslare
perturbed according to the a priori stochastic model andex li
surface intersection algorithm (Eg. 6) returns the 3D dlgpece
coordinates of the intersection point. Figure 1 summarihes
process of generating the 3D point cloud.

The fidelity and spatial accuracy of RRS output point cloud-s
fluenced by several factors to include the fidelity of the @npri
input stochastic error model (e.g., Gaussian, exponerdtal),

the quality of the pseudorandom number generator, and tine nu
ber of RRS trials executed. In practice, the quality of pseud
random number generators is generally high, so the predoin
factor influencing the accuracy of RRS output is the number of
RRS trials executed.

The RRS method does not provide direct access to probabiliti
associated with the intersection point via a closed-fornthma
ematical expression. The classical method, by contrafgrsof
complete access to probabilities associated with thesettion
point via the multinormal distribution. Because the RRShuodt
only delivers a 3D point cloud and does not deliver direceasc
to these probabilities, one is left to create an empiricalsig
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function using the 3D point cloud itself. One way to buildsthi

empirical density function is to generate a voxel spaceosina-
ing the point cloud and count the number of points that fallach
voxel. This realization of the empirical density functioopides

a framework where hypothesis testing can occur and is discus

later.

3.1 Sizeand Shape of Point Cloud

Several factors influence the size and shape of the the 3@ poin

Sensor

object

cloud generated by the RRS method. The factors fall into two

separate categories: geometric factors and stochasticgad he
geometric factors include image collection geometry anchie
morphology, whereas the stochastic factors include aipsior
chastic models and the nature of computational algorittuete(-
ministic or non-deterministic). Finally, terrain intetpton falls
in both categories. The contribution from each factor icdbsd
next.

Geometry plays a large role in the resulting 3D point cloudnC
ceptually, one can imagine a cone of uncertainty emanatorg f

Figure 2: A cone of uncertainty originates at the sensor and
projects onto the object.

The reason the methods are only nearly identical and notlgxac
identical is because the classical method operates on adelos
form expression of the a priori stochastic model that cotefje
describes the theoretical probability density functioDEp as-
sociated with the intersection point, whereas the RRS ndetho
attempts to closely approximate the theoretical PDF usifig a

the sensor and projecting onto a surface with complex marpho nite number of empirical samples. The difference between th
ogy. As image collection geometry changes from nadir perspe two methods tends to decrease as the number of RRS samples

tives to highly oblique perspectives, the effect of objguace
occlusions can lead to discontinuities in the projectecettain-

ties (Figure 2). Depending on the circumstance — ranging fro

increases.

benign, smooth and continuous surfaces to urban surfadas wi3-3 Hypothesis Test
sharp corners — these discontinuities may lead to bi-modal o

even multi-modal point clouds.

Stochastic factors also affect the resulting point cloudr iR-
stance, if the a priori error covariance of the observatioapped
to image space follows a multinormal distribution, then‘dene”
of uncertainties will be conically shaped for uncorrelatedge
coordinates or elliptically shaped for correlated imagerde
nates. By contrast, if the a priori distribution is unifoyndis-
tributed (i.e., a boxcar distribution), then the cone ofantainty

The null hypothesis under evaluation is whether the coatdim
of an intersection pointx; = [X; Y7 ZI]T, are consistent
with the coordinates of a truth point,, = [X,, Y, Z.]". As
in equation (3), the null and alternate hypotheses aredstate

H, :xr—x,=0
Hy:xr—x,#0 ™

The objective of this test is no different than that of thesslaal

becomes more rectangular in shape. Separately, the nature @ethod — to identify a density function and test statistiatth

the computational algorithms that return the coordinafethe®
line-surface intersection may also affect the shape of thetp
cloud, especially if the algorithms are non-deterministion-
deterministic algorithms deliver a range of ouputs giveingle
input. The output from non-deterministic algorithms maptain
random errors, systematic errors, or both.

Finally, surface interpolation methods fall into both treoget-
ric and stochastic categories. In a geometric sense, tegpot
lation method can introduce extreme discontinuities inréseilt-
ing 3D point cloud when nearest neighbor interpolation roésh
are used, for instance. By contrast, a higher order intatjool

are consistent with the null hypothesis. The primary cinajée
here is that the density function is unknown and must be edeat
from empirical data points. Adding to the complexity, thesiéy
function is frequently non-Gaussian, potentially multbaal in
shape, and may contain random and non-random elements.

To meet these challenges and to accommodate the possitfility
known a priori uncertainties in the truth poinst,, an empirical
density function is constructed on the simple differencerime

d = x; — x,. While other metrics could have been selected
and may be viabled is selected here because it is rooted in the
null hypothesis statement and because it preserves thetiadlie

method generally produces a smooth surface that may mieimizcomplex shape and structure of the density function thai-ori

the discontinuities in the resulting point cloud. From aches-
tic perspective, surface interpolation may introduce lvatidom
and non-random errors into the resulting point cloud. Thgmia
tude of interpolation errors is a function of terrain poipasing,

terrain morphology, and terrain interpolation method (Hale

2009)

3.2 Special Case

nates from the line-surface intersection. Like the cladstase,
when the a priori stochastic model is Gaussian and the object
space is benign (i.e., planar), the expected valud @ zero.
However, in scenarios where the object space is complexigie

sity function ofd can become irregular, causing expected values
to differ from zero.

The actual construction of the density function is an exeran
density estimation from empirically observed data poikitéile

The classical and RRS methods produce nearly identical estbther approaches to density estimation exist (Parzen,, 1962
mates of uncertainty in at least one special case. Thisapecihamed et al., 2005), the appoach taken here is a relativelyai
case occurs when the a priori stochastic model is multinbrmavoxel method. The density function is constructed by plg.¢he
and when the object space is planar. The uncertainty egtimat N observed data points into the voxel space. Let the voxelespac

realized in the form of a 3 by 3 covariance matrix that folldivws
multinormal distribution.

containM elements in each of th¥, Y andZ directions. Let the
integer indices at an arbitrary voxel b& j, k). Then the density
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Input

Begin L oop
fori=1,N
Perturb original observations

Save intersection coordinates
End L oop
Output

Procedure: 3D Point Cloud Using Repeated Random Sampling

Load interior orientation and uncertainties
Load exterior orientation and uncertainties
Load image observations and uncertainties
Load object space and uncertainties

Execute line-surface intersection (Eq. 6)

3D point cloud comprised aW intersection points

Collectively
termed
“original”
observations

Figure 1: Procedure to obtain empirical 3D point cloud usiRS method

pa at an arbitrary voxel is computed as

Number of points
in voxel

N

®

pa(i, j, k)

—
ININAIA
IAIAIA

1 <M
i<M
k<M

The outcome of this exercise is an expression — much like the

analytical function in the classical case —whose total iat®or

Y XD paliik)=1.

i=1 j=1 k=1

9)

Given access to the individual voxel densities, the propese
proach is to use standard elements of classical hypotlestiag
as a guide with adaptations to accommodate the empirical n
ture of the problem and to accommodate the potentially cernpl
shape and structure of the density function.

Thep-value is a classical element that is reused here; it sep@s a
computed quantity to determine if the null hypothesis isctgd

or not. To obtain the-value let the integersiy, j,, k,) denote
the indices of the voxel containing the point

d=[X;-X, Yi-Y, Z—2z]". (10)
Then thep-value ,p, is computed as
p=Y_ pali,j,k) 0<p<1 (1)

(idk)eA

whereA is the set of all indices$:, j, k) where the voxel density
is less than or equal to the voxel density containing pdiot

A= {(13]7 k) | pd(iaja k) < pd(iP7jP7kP)}

Thep-value is small whel is inconsistent with the null hypoth-
esis and large whed is consistent with the null hypothesis. Let
« denote the user-defined significance level of the test. Thie de
sion rule is to reject the null hypothesis wher: a.

(12)

The actual construction of the density function associatigd d

a_

| Parameter value and standard deviation |

focal length = 100mm £ 0.0lmm
ximage coord. = Omm + 0.0lmm
yimage coord. = O0mm + 0.0lmm

XL —500m + 1m

YL = 40m + 1m

Zr =  500m + 1Im

w = 0° + 0.2°

® = —47.15° 4+ 0.2°

K = 0° + 0.2°

Table 1. Frame image parameters used in example

values be denoted with an elevated tilde (exg.denotes the per-
turbed intersection point). Then the empirical data pothtst
make up the density function are defined by three steps which
are repeated at each trial: 1) perform the ray intersectsimgu
perturbed observations to obtain, 2) add a perturbation te,,
according to the truth covariance matii,,, to obtainx,, and

3) obtain a single datapoirt = %; — %,. The N data points
obtained in this manner are then placed in the voxel space and
the density function aboud is computed. Figure 3 summarizes
these steps.

3.3.1 Example The theory above is applied to a real-world
single-image example in this section. The data consist gha s
thetic gridded elevation model and a synthetic image (FEigur
and 5) to test whether the coordinates of an intersectiant poe
consistent with the coordinates of an externally-definesugd
truth point. Linear units are in meters and angular unitsiare
decimal degrees. For simplicity it is assumed that all olzgges
are normally distributed and uncorrelated. To simplify #xam-
ple, the gridded elevation data is assumed to have no absmiut
relative horizontal error (i.eq = 0). By contrast the absolute
elevation uncertainty at each node of the gridris= +1 meter
with no correlation between nodes. Bilinear interpolaimosed

to define terrain elevations between nodes. The elementeof t
standard frame image are described in Table 1. A totdVof
100, 000 trials are used to describe the density function surround-
iNg X7 nominat - The coordinates of the nominal intersection

is obtained by augmenting the steps used to obtain the RR$ poipoint are computed using the nominal values appearing iteTab

cloud described in Figure 1 with additional steps to accontet®
truth point uncertainty and to place the observed data paind

a voxel space. When it exists, the truth point uncertaintiates
the geometric size gi4. Let the origin of the density function lie
at a point X7 »omina: defined by the original, unperturbed ob-
servations. Also, in the context of thé RRS trials, let perturbed

and Figure 4 to produc®; nomina =~ [32.78 30.00 5.78]%

. The known, externally-derived truth point is defined witoc
dinatesx,, = [30.00 29.00 4.00]” with a covariance matrix
equal tol3. Consequently, the difference vector for this sample
data isd = xr — x, =~ [2.78 1.00 1.78]7. Voxels are 0.5
meters on a side.
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Begin L oop
fori=1,N
Perturb original observations

Save differencel = x; — %,
End L oop
Output: Voxel Density

Procedure: Empirical Density Function Associated withIMylpothesis

Input
Load interior orientation and uncertainties Collectively
Load exterior orientation and uncertainties termed
Load image observations and uncertainties “original”
Load object space and uncertainties observations

Load covariance matriX,,,, associated with truth point
Computex; nominal USING unperturbed, original observations

Execute line-surface intersection (Eqg. 6) to obtajn
Perturbx,, by truth uncertainty to obtai®,,

Choose a voxel space that spangdall
Populate voxels withiV points obtained in loop above
Voxel density = number of points in voxely

Figure 3: Procedure to obtain the empirical density fumctiesociated with the null hypothesis

50 - D @ O O @
40 G- D O € 2 1
E 3 i 1 1 8 0 1
>~ : :
20 i 12 -® @ a
10 boe-e D @ @ 1 1

X (m)
Figure 4: Synthetic terrain data defined by a grid of raster el
vations. Elevation data are in meters and are provided idezha
circles.

Figure 5 illustrates the notional geometry of the problenwva
as the location of 100 intersection points relative to thddgd
elevation model. These intersection points are computetyus
the procedure outlined in Figure 1. A bimodal distributidrtee

cance levebx = 0.05. In summary,

Hy :xp—x,=0
Hy :x1—%x,#0 (13)
a=0.05, p=0.002

Therefore, according to this proposed methodology, sincec,
the ground truth point is considered inconsistent withrggetion
point and wergject H, in this case.

4 DISCUSSION

While the proposed method appears to correctly handleaigels
associated with non-Gaussian data, it suffers from longpedea

tion times required to create an RRS point cloud contairfiogt
sands or hundreds of thousands of points. In the examplekt to
neary 24 hours of computation time on a modern desktop com-
puter using a crude 4-threaded parallel processing scheme.

Given today’s computing power it may be difficult to generate
the RRS point cloud and compute the intersection unceytaint
near real-time. The computational task would be difficuktrev
under ideal circumstances with highly-optimized multreand
multi-threaded computational resources. The computatiour-
den grows substantially when one imagines computing ieters

RRS point cloud is evident in Figure 5 where one mode lies neation uncertainties for every pixel on an image.

the highest elevation in the elevation model and the secaukem
lies at the lower elevation beside it.

5 CONCLUSIONSAND FUTURE

Given the object-space points in the RRS point cloud, the nex
step is to compute the density of each voxel using the proce-

dure outlined in Figure 3. This voxel space is illustratedFig-
ure 6 where an isosurface is rendered on the density function
structed from the entire set &f = 100, 000 points. As expected,
Figures 5 and 6 exhibit a similar bi-modal distribution sinbey
are produced from the same RRS simulation.

From a qualitative point of view, we reject the null hypotises
H,, because the poird lies outside thel — o = 0.95 confi-

dence surface; we would accefft, if d lied inside the surface
(Figure 6). From a quantitative perspective, the null higpsts is
rejected because thevalue ,p = 0.002, is less than the signifi-

A repeated random sampling method has been proposed to char-
acterize the spatial uncertainty at a point where a linasets

a surface. The classical method of characterizing spatiedm
tainty is restricted to cases where the object surface i&apld he

RRS method, on the other hand, makes no assumptions concern-
ing surface morphology. The RRS method does not provide di-
rect access to a closed-form expression of the probabitsity
function; consequently an empirical density function isated

from the 3D data points produced by the RRS method. The em-
pirical density function is realized through a simple tdgae us-

ing voxels.
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A formal hypothesis test is designed to determine whether an
externally-defined point and its associated uncertaintpissis-
image tent with the intersection point and its uncertainty. An émopl
density function is constructed from the RRS process andta te
statistic is used to determine if the null hypothesis isatejé or

accepted.
DEM Future efforts will focus on techniques to improve and ewglean
elevations the fidelity of the RRS empirical density function. While the

voxel method described in this paper is intuitive, othertssip
cated methods of density estimation may result in greatelitfyd
of the density function while at the same time requiring fewe
RRS trials. Likewise, methods such as stratified samplimdg se
to exhaustively interrogate the sample space using fevads tr
(Wikipedia, 2010). Also, computation time may be improved b
Y \ ‘ RRS points denoted by circh*gs using an intelligent convergence test to determine wheml¢me

sity function has reached a steady state and does not bepefit f

additional RRS trials.
X
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