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ABSTRACT: 
 
Buildings are often modelled as two-dimensional (2D) footprints which are extruded to simple cubes. Buildings are also represented 
as more complex objects with roofs, facades, etc. – in this case they are polyhedra, sometimes of a complex shape. These allow for 
visualisation and analysis of a wide area like a city, but micro-scale analysis of interiors is not possible. An example can be rescue 
operation simulation where information about the internal structure of a building and the external terrain is crucial to improve the 
response time. It demands a three-dimensional (3D) model where each room is represented as a separate element; there are also 
doors, windows, walls and other objects that have to be included. Even complex geometrical models can be easily constructed using 
Computer-Aided Design (CAD) systems. However, lack of semantic information and topological relations makes such models poor 
choices for GIS analysis. With the new dual half-edge (DHE) data structure and a set of Euler operators a 3D model can be built as in 
CAD systems, and represented as a cell complex. Construction of non-manifold objects is also possible. An advantage of the DHE is 
simplicity – only edges and nodes are used. Because of the 3D duality implemented in the structure volumes (cells) and faces are also 
present in the model. The geometry of a model is constructed explicitly by using Euler operators: connections between elements are 
created automatically, and semantic information is represented with attributes which can be assigned to any element of the model. 
 
 

1. INTRODUCTION 

3D city models are widely used in many disciplines and 
applications, like urban planning, disaster management, 
environmental simulation, etc. (Kolbe, 2009) For example, 
municipalities may be interested in tourist information systems 
to make their city more attractive for tourists; they may be also 
interested in pollution simulation; and urban planners may want 
to use 3D models to design new districts or change existing 
buildings. Buildings and the external terrain are essential in a 
city model. But in most of the cases only the external part of the 
building is taken into account while the interior is inaccessible. 
In the simplest case a building is stored as a 2D footprint which 
is later extruded to a 3D block. More detailed representations 
use polyhedra or a set of polyhedra. The most important 
properties are the geometry and locations within a city model. 
 
Requirements for interior modelling are higher – the internal 
structure is more complex and cannot be represented as a single 
block. However, rooms, office spaces and corridors form a cell 
complex where cells are polyhedra and adjacent cells are 
related: for example a room has adjacent rooms on the same 
floor but also adjoins rooms separated by a ceiling and floor. 
But this means 2D models are not sufficient to represent this 
situation – therefore full 3D modelling is required. Such models 
can be represented using the CityGML format (OGC, 2008). 
This standard is focused on city models. Different city objects 
can be represented using thematic modules: for example, a 
terrain model, buildings, transportation networks, vegetation, 
water bodies, etc. Particular emphasis is placed on the buildings 
which can be represented in four levels of details (LOD) – from 
the coarsest LOD1, where buildings are represented as simple 
blocks, to the most detailed LOD4, which includes building 
interiors like rooms, internal walls, furniture, etc. The geometry 
of an interior is basically introduced as a list of faces and 
vertices, with faces forming cells. 
 
Another data source is building projects made in CAD 
(Computer Aided Design) systems. They are usually available 

for existing buildings but they are too detailed to use in GIS 
simulation. Analysis becomes complex and the efficiency of 
computation is low (Sheen et al., 2010). Thus model 
generalization is required – small details (e.g. a protrusion of a 
wall) may be removed and thick walls between rooms flattened. 
However, the resulting model represents only the geometry – 
but the topology and semantic information are required for GIS 
analysis (Coors, 2003). Semantics gives meaning to geometric 
objects, for example a block can represent a meeting room or a 
storeroom. In certain simulations different actions can be 
undertaken depending on the function of the room. This 
information may be added to the model using attributes which 
can be assigned to the elements of the model. The topology, 
which describes spatial relationships between elements, is not 
easy to implement. Firstly, validation of the geometry is 
problematic, but is necessary to create a topologically consistent 
model (Ledoux and Meijers, 2010). In particular, data collected 
in the field needs further fixing to avoid invalid objects like 
overlapped polyhedra, missing polygons, invalid order of 
vertices in polygons, etc. Secondly, the topology is often 
derived from the geometry and represented by another structure 
not connected with the original one (Lee, 2007). It is not a 
problem in the case of static models which do not change over 
simulation time, but changes of the model geometry may cause 
changes in the topology – which has to be computed again, 
often for the whole model. Thus models including the geometry 
and topology which are linked together and locally modifiable 
would be valuable for dynamic simulations (Liu and Zlatanova, 
2012). 
 
 

2. THE DUAL HALF-EDGE 

The new dual half-edge (DHE) data structure and construction 
operators may be used for full 3D modelling with the geometry, 
topology and semantic information included (Boguslawski, 
2011). In a simple case, rooms represented as polyhedra (cells) 
are linked into one cell complex. Walls and doors between 
rooms may be also be present in a model and may be 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-2, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

93



 
 

 

represented as cells; however, their presence may be described 
by attributes assigned to connections between rooms. 
 
An advantage of the DHE is simplicity – the only construction 
elements are nodes and edges. Edges are used for storing the 
model topology while the nodes store the geometry. Faces and 
cells are introduced to the model using the dual structure which 
conforms to the 3D Poincaré duality (Munkres, 1984): for a 
space of dimension d and an element of dimension k<=d a dual 
element exists of dimension d-k. Thus in 3D a vertex has a dual 
cell, a face has a dual penetrating edge, etc. 
 
The DHE is based on the quad-edge (QE) (Guibas and Stolfi, 
1985) and its extension – the augmented quad-edge (AQE) 
(Ledoux and Gold, 2007) data structures. These structures allow 
representing the geometry of models and their dual at the same 
time. Dual space is used to connect cells in a cell complex and 
to navigate between them. Other data structures like the half-
edge (Mäntylä, 1988), winged-edge (Baumgart, 1975) or radial-
edge (Weiler, 1988) used widely in CAD systems do not 
provide for management of the duality. 
 
The construction process using the DHE is based on Euler 
operators which conform to CAD systems. The boundary 
representation (b-rep) (Stroud, 2006) is used. The geometry of a 
model is represented by the primal structure, a graph, which is 
created explicitly while the topology, the dual graph of 
connections between primal cells, is created automatically. All 
changes are local; modification of the primal cause automatic 
change of the dual without the need to recalculate the whole 
dual structure. Euler operators were described by Baumgart 
(1975), Braid et al. (1980) and Mantyla (1988). Tse used the QE 
to implement Euler operators for terrain modelling (Tse and 
Gold, 2004); however the result model is not fully 3D. 
 
Euler operators change a model at the level of b-rep entities: 
shell, face, loop, edge and vertex – for example there are 
operators to make an edge, to split a loop, delete a vertex, etc. 
Each of them changes the number of any entity by at most one 
and preserves the topological consistency of a model, for 
example, MEV (Make Edge and Vertex) changes the number of 
vertices and edges by one. They also have to satisfy a series of 
rules (Braid et al., 1980): a negative number of entities is 
prohibited; solids and holes through solids are prohibited if no 
other entities are present in a model; a valid object consists of at 
least one vertex and at least one face; the model is valid if the 
Euler-Poincaré formula is satisfied – v-e+f-h=2(s-g), where: v – 
the number of vertices; e – the number of edges; f – the number 
of faces or peripheral loops; h – the number of hole loops; s – 
the number of shells; g – genus (the number of handles – holes 
through a solid). 
 
A minimal set of Euler operators sufficient to build up a model 
or make any change is called a spanning set. It contains five 
operators. However a set of all possible Euler operators is 
bigger. To make the construction process easier and more 
intuitive more than five operators can be implemented in a 
framework (Stroud, 2006). It should be also noted that each 
operator is associated with an inverse operator – thus any 
change in a model can be undone, for example the inverse of 
MEV – Make an Edge and Vertex – is KEV – Kill an Edge and 
Vertex. 
 
These operators and the Euler-Poincaré formula apply only to 
single closed shells. Thus extended Euler operators were 
proposed for non-manifold modelling including cell complexes 
(Masuda, 1993; Masuda et al., 1989). The Euler-Poincaré 

formula for non-manifold models is: v-e+f-h-(V-Vh+Vc)=C-
Ch+Cc, where: v – the number of vertices; e – the number of 
edges; f – the number of faces; h – the number of holes in faces; 
V – the number of volumes (cells in a complex); Vh – the 
number of holes through volumes; Vc – the number of cavities 
in volumes; C – the number of complexes; Ch – the number of 
holes through complexes; Cc – the number of cavities in 
complexes. 
 
3D navigation in models built using the DHE is based on 
navigation described by Ledoux and Gold (2007) for the 3D 
Voronoi/Delaunay model. 
 
Because building models are represented by graphs they may be 
used for analyses such as the shortest path calculation using 
standard graph algorithms, for example the Dijkstra algorithm. 
 
The data structure and methods described here do not include 
geometry validation, nor automatic subdivision of space, e.g. 
splitting of long corridors or big open space. 
 
2.1 Data structure 

An atomic element used in the construction process is a half-
edge which is linked permanently with a dual half-edge – they 
form the DHE element. However, only a full edge consisting of 
two DHEs is a minimal topological entity that forms a valid 
model. Thus the full edge consists of four half-edges. Each half-
edge consists of five pointers (see Figure 1): V, S, NV, NF and 
D, where: V – a reference to an associated vertex; S – a second 
half-edge of the full edge; Nv – a next half-edge around a shared 
vertex (counter-clockwise (CCW) looking from outside of a 
cell); NF – a next half-edge around a face (CCW looking from 
outside of a cell); and D – a pointer to the dual half-edge. S, Nv 
and NF pointers allow for navigation in a 2-manifold cell. 
Adjacent cells in a complex are linked by dual edges. Thus 
additionally the D pointer is used to navigate between cells. 
 
 

 
 

Figure 1. Half-edges in a cell are connected with pointers: a) S 
– an edge; b) NV – a star; c) NF – a loop; the dual is not shown. 

 
The full set of navigation operators is based on these pointers, 
and also includes compound operators for navigation: around a 
shared vertex and face in a clockwise (CW) direction, around an 
edge (a radial edge) – in both directions, and also between the 
adjacent faces of two neighbouring cells. Figure 2 shows two 
cells linked by a dual edge. It should be noted that each face is 
penetrated by a dual edge which is in fact a bundle of edges – 
the number of dual edges matches the number of edges forming 
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the face. Because all edges in the bundle are connected it can be 
considered as a radial edge. 
 

 
 

Figure 2. Two adjacent cells connected by a dual edge (dashed 
line) which also represents a shared face (grey); two end points 

of the dual edge represent two primal cells. 
 

To guarantee that each face is associated with another, adjacent, 
face an external cell was introduced – it encloses the whole 
complex and its volume is infinite. It is necessary in order to 
provide consistency at the boundary of the model where the 
cells do not have neighbours on every face.  
 
2.2 Construction operators 

The data structure presented in the previous section is on the 
one hand very simple – there are only edges and vertices – but 
on the other hand there are many connections between elements 
and therefore it would be difficult to build a model without a 
simple construction method. The method proposed in this paper 
is based on Euler operators. In simple terms, edges and vertices 
are added one by one until a cell is complete. Then single cells 
can be linked into a complex, or a cell can be split into two 
connected cells. It may be sometimes necessary to “prepare” 
faces before the connection, because two cells can be linked by 
a shared face only if the faces to be connected have the same 
number of edges – thus new edges and vertices may be 
introduced to these faces. In a more restricted version, two cells 
can be linked only if adjacent faces precisely fit one to another. 
 
The set of Euler operators, including a spanning set and 
auxiliary operators which are useful in the construction process, 
is as follows: MEVVFS/KEVVFS – Make/Kill Edge, Vertex, 
Vertex, Face and Shell; MEVFFS/KEVFFS – Make/Kill Edge, 
Vertex, Face, Face and Shell; MEV/KEV – Make/Kill Edge and 
Vertex; MVE/KVE – Make/Kill Vertex and Edge; 
MZEV/KZEV – Make/Kill Zero-length Edge and Vertex; 
MEF/KEF – Make/Kill Edge and Face (see Figure 3). The first 
two operators, a) MEVVFS and b) MEVFFS, need an 
explanation. They are not typical Euler operators because they 
introduce: a) an edge, two vertices, a face and a shell (body); b) 
an edge, a vertex, two faces and a shell. These compound 
operators consist of two Euler operators: a) MVFS – Make 
Vertex, Face and Shell and MEV; b) MVFS and MEF. Because 
the minimal element allowed in a model is an edge, and vertices 
do not store any topological information, thus MVFS cannot be 
used (a face cannot be associated with a vertex). In the first 
construction step MEVVFS or MEVFFS need to be used. 
(Boguslawski, 2011) 
 
The first construction step (MEVVFS or MEVFFS) creates an 
internal edge but also associated external edge which forms the 
external cell. These two primal edges are linked by dual edges 
bounded by two dual nodes representing internal and external 
cells in the primal. Additionally, the dual edges form a) two 
cells where each cell ‘encloses’ one primal node (MEVVFS); b) 
one cell ‘enclosing’ the only primal node (MEVFFS). 
 
Join/Separate by Face and Merge/Split by Face (see Figure 3) 
are the only extended operators presented in this paper. Others 

like Join/Separate by Edge/Vertex and Merge/Split by 
Edge/Vertex are not described because they are not used in the 
proposed method of building modelling. However in a general 
case two cells can be linked not only by a shared face but also 
by a shared edge or vertex. Also holes through solids and 
cavities are not allowed: however, they can be simulated using 
‘bridge’ edges – they allow preserving the topological 
consistency and continuity of a model. 
 
For the sake of clarity the dual structure is not shown in Figure 
3 except for the two first operators, where dual edges are 
represented by dashed lines; the external cell is also included.  
However, the dual structure and the external cell are modified 
by all operators. 
 

 
 

Figure 3. Euler operators and extended Euler operators. 
 

2.3 Attributes 

A cell complex created using the DHE represents the geometry 
of a model and connections between cells. Another issue 
essential for analysis – semantic information – can be 
introduced as a list of attributes attached to any element of a 
model – a cell, face, connection between cells, or vertex. 
Technically, thanks to the implemented 3D Poincaré duality, 
attributes are assigned to edges and vertices. For example, a 
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room name or number can be assigned to a dual node 
representing the room; a distance between two rooms or a 
weight used by graph traversal algorithms can be assigned to a 
dual edge connecting two dual nodes (see Figure 4). 
 
In the example shown in Figure 4, doors are represented as flat 
cells. Their volume is zero, but still each door has an associated 
dual vertex. If, for some reason, flat cells are not allowed in the 
model, then doors can be represented as an attribute assigned to 
a connection between rooms, e.g. attribute ‘door’ may take two 
values: ‘yes’ or ‘no’. 
 

 
 

Figure 4. Semantic information represented by attributes. 
 
 

3. BUILDING EXTRUSION 

Building extrusion from 2D footprints is one of the simplest 
methods of 3D city modelling – buildings are represented as 
basic blocks. However topological consistency should be taken 
into consideration to avoid block overlapping or duplication – 
Ledoux and Meijers (2010) proposed the node column approach 
extrusion method. The algorithm takes as an input a set of 
polygons, and the result is a set of topologically consistent and 
valid blocks. Input polygons should be validated first to assure 
the topological consistency – it is easier to validate a polygon 
than a 3D object. One of the advantages of the method is that 
faces shared by adjacent blocks are not multiplied. 
 
The process of extrusion, using the DHE and the construction 
method proposed in this paper, can be represented as a sequence 
of Euler operators. This is based on the node column approach: 
however some small modifications were introduced. A simple 
example is shown in Figure 5: 
a) A footprint of two building parts of different heights to 
extrude. 
b) In the first step two adjacent polygons are created. Note the 
shared edge between polygons is not duplicated. A sequence of 
Euler operators: (the left polygon) MVVFS, MEV×2, MEF, (the 
right polygon) MEF, MVE×3. 
c) All vertices are extruded. Different heights of building parts 
are taken into consideration when the end points of the shared 
edge are extruded. A sequence of Euler operators: (the left 
polygon) MEV×2, (the shared edge) MEV×4, (the right 
polygon) MEV×3. 

d) ‘Roof’ edges are created. A sequence of Euler operators: (the 
left polygon) MEF×4, (the right polygon) MEF×5.  
e) Technically, two building parts are represented as one cell 
(without a face in between the parts). 
f) To split the cell into two parts the Split by Face operator is 
used. It creates a face between the parts. 
g) The result is a complex of connected cells.  
 
This method is suitable for building exterior representation. It 
can also be used for simple interior modelling – footprints of 
rooms on all building levels can be extruded to a predefined 
height which corresponds to the level of the footprints on the 
next floor. Rooms from different floor can then be linked into a 
single complex. However, this method is not suitable for 
complex interiors with sloping walls or intermediate levels 
within some floors. 
 

 
 

Figure 5. Building extrusion from a footprint: a) the footprint; 
b) two adjacent polygons; c) node extrusion; d) face generation; 
e) the building is represented as one polyhedron; f) a new face 

is added; g) the building is represented as two blocks. 
 
 

4. CITYGML BUILDING INTERIORS 

More detailed models are available in the CityGML LOD4. The 
room geometry is represented as a set of faces forming a closed 
cell, and each face as a list of vertices. There are also walls, 
windows, doors, furniture and other entities present, but rooms 
can be easily extracted from the model. Construction of single 
rooms using the DHE is straightforward, but topology in 
CityGML is limited - some models store shared faces between 
two entities only once, and then a link to the shared face is 
provided instead of an explicit list of cell faces. This is not 
compulsory, and connections between rooms need to be 
computed. One of the common situations is a room sharing a 
wall with two smaller rooms (see Figure 6). Before the rooms 
are linked it is necessary to split the big face into parts which fit 
faces from adjacent rooms. Once the connection is set, 
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navigation in the model is available without any geometrical 
computation. 
 
The resulting models can be enriched with the semantic 
information included in a CityGML model. For example, 
attributes assigned to a cell give it a new meaning, e.g. this is a 
storeroom, or this is meeting room; attributes assigned to a 
connection between cells can change relations between rooms, 
e.g. there is a thick wall between rooms – there is no passage, or 
else the wall is very thin – you can break through in case of an 
emergency. These attributes can be used in analysis by graph 
traversal algorithms, since the model has a graph structure. 
 

 
 

Figure 6. A big room with two smaller rooms sharing a face:  
a) original rooms; b) splitting a face; c) rooms linked into a 

complex. 
 
 

5. CONCLUSIONS 

The DHE is a general data structure that can be used for 3D 
spatial modelling, including building exterior and interior 
models. Thanks to the implemented 3D Poincaré duality the 
number of basic construction entities is limited to two, i.e. 
edges and nodes – which allows for a straightforward boundary 
representation. Thus CityGML building models can be easily 
reconstructed: however, topological relations between the cells 
forming the model need to be computed, as these relations are 
not compulsory in CityGML and topology implementation is 
basic. 
 
The proposed CAD construction method based on Euler 
operators allows not only changing the geometry, but also 
provides automatic topology. This is an important property 
which, together with semantic information described by 
attributes, makes models suitable for 3D GIS analysis – for 
example, standard graph traversal algorithms can be readily 
implemented. 
 
The next planned improvement is to unify 3D buildings with 
the external terrain, which in CityGML is represented as a 2.5D 
model. This will broaden the possibility of 3D city model 
analysis. 
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