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ABSTRACT: 

 

The reconstruction of camera orientations and structure from unordered image datasets, also known as Structure and Motion 

reconstruction, has become an important task for Photogrammetry. Only with few and rough initial information about the lens and 

the camera, exterior orientations can be derived precisely and automatically using feature extraction and matching. Accurate intrinsic 

orientations are estimated as well using self-calibration methods. This enables the recording and processing of image datasets for 

applications with high accuracy requirements. However, current approaches usually yield on the processing of image collections 

from the Internet for landmark reconstruction. Furthermore, many Structure and Motion methods are not scalable since the 

complexity is increasing fast for larger numbers of images. Therefore, we present a pipeline for the precise reconstruction of 

orientations and structure from large unordered image datasets. The output is either directly used to perform dense reconstruction 

methods or as initial values for further processing in commercial Photogrammetry software.  

 

1. INTRODUCTION 

Structure and Motion (SaM) methods enable the reconstruction 

of orientations and geometry from imagery with little prior 

information about the camera. The derived orientations are 

commonly used within dense surface reconstruction methods 

which provide point clouds or meshes with high resolution. This 

modular pipeline is employed for different applications as an 

affordable and efficient approach to solve typical surveying 

tasks. 

 

One example is the use of unmanned aerial vehicles (UAVs) in 

combination with a camera. For many tasks, such as the survey 

of a golf court or the survey of a construction site progress, the 

use of a manned aircraft in combination with classical 

photogrammetric methods would be ineffective and too 

expensive. Thus, additional market potential can be exploited by 

such UAV surveying in combination with automatic image 

processing software.  

 

Especially for low cost application, where a small fixed wing 

remote controlled airplane is used in combination with a 

consumer camera, this approach enables the surveying of large 

area at low costs. As shown by [Haala et al., 11], SaM 

reconstruction methods can be used to derive digital surface 

models and orthophotos. However, the current challenge is the 

processing of very large number of images at a reasonable time 

since the complexity of the SaM methods is typically increasing 

nonlinear. 

 

Another challenge is the derivation of orientations for 

applications with high accuracy requirements. One example is 

close range photogrammetry data recording for the derivation of 

point clouds with sub-mm precision, such as [Wenzel et al., 11]. 

Within this project about 2 billion points were derived using 

about 10,000 images and a software pipeline incorporating 

Structure from Motion reconstruction and dense image 

matching methods. Thus, a method capable of processing very 

large image datasets with high accuracy was required here.   

 

Therefore, we present a pipeline that was developed focusing on 

efficiency and accuracy.  As shown in figure 1, it is divided into 

four processing steps. It employs an initial image network 

analysis in order to avoid the costly matching of all possible 

image pairs and to guide the reconstruction process. The 

following tie point generation is designed to derive points with 

maximum accuracy and reliability. By building and optimizing 

a geometry graph based on the image network, the dataset can 

be split into reliable patches of neighboring images which can 

be processed independently and in parallel within the 

reconstruction step. Finally, all these patches are merged and 

optimized by a global bundle adjustment. Ground control points 

can be integrated within this step as well. 

 

In order to achieve a maximum accuracy a camera calibration is 

required. Current Structure and Motion implementations use 

self-calibration methods where the focal length and the radial 

distortion are usually determined within the bundle adjustment 

for each station individually. However, if the accuracy 

requirements of the application are high and a camera with high 

stability and fixed focal length is employed we use calibration 

parameters determined prior by standard calibration methods.  

 

•Feature extraction & matching 

•Build geometry graph 
Initial network 

analysis 

•Find suitable patches 

•Optimize patch graphs 
Divide dataset 
into patches 

•Find initial pair 

•Increase bundle incrementially 
Patchwise 

reconstruction 

•Stitch patches  

•Optimization of whole dataset 
Final bundle 
adjustment 

Figure 1. Flowchart for the presented pipeline 
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2. RELATED WORK 

In the past few years, the massive collection of imagery on the 

Internet and ubiquitous availability of consumer grade compact 

cameras have inspired a wave of work on SaM — the problem 

of simultaneously reconstructing the sparse structure and 

camera orientations from multiple images of a scene. Moreover, 

the research interest has been shifted towards reconstruction 

from very large unordered and inhomogeneous image datasets. 

The current main challenges to be solved are scalable 

performance and the problem of drift due to error propagation.  

 

Most SaM methods can be distinguished into sequential 

methods starting with a small reconstruction and then expanding 

the bundle incrementally by adding new images and 3D points 

like [Snavely et al., 07] and [Agarwal et al., 09]  or hierarchical 

reconstruction methods where smaller reconstructions are 

successively merged like proposed by [Gherardi et al., 10]. 

Unfortunately, both approaches require multiple intermediate 

bundle adjustments and rounds of outlier removal to minimize 

error propagation as the reconstruction grows due to the 

incremental approach. This can be computationally expensive 

for large datasets.  

 

Hence, recent work has used clustering [Frahm et al., 10] or 

graph-based techniques [Snavely et al., 2008] to reduce the 

number of images.  These techniques make the SaM pipeline 

more tractable, but the optimization algorithms themselves can 

be costly. Furthermore, we focus on datasets where one cannot 

reduce the number of images significantly without losing a 

substantial part of the model since no redundant imagery is 

available.  

 

In order to increase the efficiency of our reconstruction we 

employ a solution called partitioning methods like proposed by 

[Gibson et al., 02] and as used in [Farenzena et al., 09 & 

Klopschitz et al., 10]. Within this partitioning approach the 

reconstruction problem is reduced to smaller and better 

conditioned sub-groups of images which can be optimized 

effectively. The main advantage of this approach is that the drift 

within the smaller groups of images is lower which supports the 

initialization of the bundle adjustment. Therefore, we split up 

our dataset into patches of a few stable images, perform an 

accurate and robust reconstruction for each of it and merge all 

patches within a global bundle adjustment.  

 

3. INITIAL NETWORK GEOMETRY ANALYSIS 

This step is designed to accurately and quickly identify image 

connections for unordered collections of photos. A connectivity 

graph is the output of this step and is used as a heuristic about 

the quality of connections between the images. In addition, this 

connectivity graph reveals singleton images and small subsets 

that can be excluded from the dataset. Finally, it is used to guide 

the process of pairwise matching (sec. 3.2) instead of trying to 

match every possible image pair. In order to calculate the 

geometry graph, the images are matched to each other pair-

wise, followed by a geometry verification step.  

 

3.1 Similarity measures 

Recent developments regarding image similarities analysis can 

be distinguished into two major categories according to the type 

of image representation [Aly et al., 10].  Local feature based 

approaches use quality measures of matched local descriptors. 

In contrast, global feature based approaches utilize matching 

histograms describing the full image by visual words.  

In practice, it can be considered that both of these categories 

represent the same approach, which uses data structures to 

perform the fast approximate search in the feature database. It is 

performed with varying degrees of approximation to improve 

speed and storage requirements. Recent research showed that 

the best performance can be achieved by using local feature 

based approaches in combination with an approximate nearest 

neighbor search using a forest of kd-trees if only thousands of 

images need to be processed. Therefore, we follow this 

approach within the presented pipeline. 

 

Feature extraction: The first step is the extraction and 

description of local invariant features from each image, i.e. 

using the SIFT [Lowe, 04] or SURF [Bay, et al., 05] operator. If 

high-resolution images are processed, we can use either resize 

the imagery to a lower resolution or use a higher level as first 

DoG octave during the feature extraction to speed up the 

processing. 

 

Feature-base indexing: We follow an approach having  some 

analogy with [Brown and Lowe, 03 & Farenzena et al., 09]. In 

order to improve the effectiveness of the representation in 

higher dimensions, all descriptors are stored using a randomized 

forest of kd-trees.  

 

Then, each descriptor is matched to its nearest neighbors in 

feature space, i.e., ten features. Therefore, we employ the Fast 

Library for Approximate Nearest Neighbors (FLANN) [Muja 

and Lowe, 09] and the kd-tree implementation in the VLFeat 

library [Vedaldi and Fulkerson, 08] to find and analyze the 

nearest neighbors. Afterwards, the weighted number of matches 

between each pair is stored in a 2D histogram where all features 

with a distance more than a certain threshold are considered to 

be outliers. We use twice the standard deviation of the distances 

of closest neighbors as threshold value.  

 

Connectivity graph: The inverse of the distances between 

matched feature pairs are used as weights for similarity. 

Furthermore, we introduce additional quality measures for the 

similarity between images such as the approximate image 

overlap derived from the convex hull of the matched feature 

points. The quality measures are normalized and summarized to 

one single quality value, which is stored in the index matrix. 

Finally, this index matrix is binarized using three thresholds to 

determine initial probable connections and disconnections. 

 

3.2 Keypoint matching 

Matching each connected image pair is accomplished using the 

connectivity matrix obtained during the previous step (sec. 3.1). 

Thus, corresponding 2D pixel measurements are determined 

between all connected image pairs. For that, we follow the 

approach presented in [Farenzena et al., 09].  In particular, a set 

of candidate features are matched using a kd-tree procedure 

based on the approximate nearest neighbor algorithm. This step 

is followed by a refinement of correspondences using an outlier 

rejection procedure based on the noise statistics of correct and 

incorrect matches. The results are then filtered by a standard 

RANSAC based geometric verification step, which robustly 

computes pairwise relations. 

 

Homography and fundamental matrices are used with an 

efficient outlier rejection rule called X84 [Hampel et al., 86] to 

increase reliability and accuracy. Finally, the best-fit model is 

selected according to the Geometric Robust Information 

Criterion (GRIC) [Torr, 97] as initial model for the 

reconstruction.  
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Algorithm 1. Building graph for patches 

Input: geometry graph    

Output: collection of patches graph 

1. Set new empty graph (patch)    { } 

2. Determine most reliable edge     in     

3. Add      and its vertices        into    

4. Set       in    

5.      in    connected at least with two vertices       in 

   

If     
 
       

 
    ( 

 

 
   
 
     ) &     

        
   

 

 
   
  

 Add               into    

 Set             in    

6. Add edges in between inliers vertices in    

7. set all these edges    in    

8. Repeat steps 4,5 and 6 until      in step 4 

9. Store    and repeat steps 1:7 until all edges in      

 

3.3 Geometry graph 

Afterwards, a weighted undirected geometry graph,    (   ) 

is constructed where   is a set of vertices and   is a set of 

edges. Thus, two view relations are encoded such that each 

vertex refers to an image while each weighted edge presents the 

overlap between the corresponding image pair. The weights of 

the edges are stored according to the number of their shared 

matching points    
 
 and the overlap area    

  between view 

images   and  . 
 

4. PATCHWISE RECONSTRUCTION 

In order to speed up the reconstruction of large datasets and to 

reduce the drift problem we follow a partitioning approach. 

Therefore, we divide the dataset into overlapping patches where 

each patch contains a manageable size of images. Thus, a 

parallelizable process replaces the process of reconstructing the 

whole scene at once where the large number of iterations with 

the growing number of unknowns can lead to very high 

computation times for complex datasets.  

 

4.1 Dataset splitting into patches 

The idea is to start multiple reconstructions beginning at image 

connections with high overlap in order to ensure a reliable 

geometry. As shown in algorithm 1, we select an initial pair 

according to the most reliable edge being identified by its 

weights within the geometry graph. The graph of this patch is 

then extended using the neighboring edges with highest weights 

until a predefined number of images or patch graph level is 

reached. Also, only reliable connections are identified according 

to thresholds on the weights of the geometry graph edges to 

ensure the highest mutual compatibility.  

 

Furthermore, only images overlapping with at least two more 

images are considered. While the patch graph is growing, each 

used edge is eliminated in the geometry graph. As soon as the 

patch graph is finalized, the whole procedure is repeated to find 

the next patch until all imagery is covered. The overlap between 

the final patches is ensured by considering and removing edges 

only instead of cameras. Thus, common cameras remain. 

 

4.2 Keypoint tracking 

Once a graph is determined for each patch as described in the 

previous section, we can start the optimization process as 

following. We track the keypoints over all images in each patch 

and store the results in a separated visibility matrix, which 

depicts the appearance of points in the images. Subsequently, a 

filtering is applied where all points visible in less than 3 images 

are eliminated. Furthermore, tracks are rejected which have 

measurements with converging image coordinates in common. 

 

4.3 Dynamic keypoint filtering 

For more efficiency, we apply a homogeneous and dynamical 

filtering (see figure 2) approach for the tracked points to keep 

only the points with the highest connectivity. For each image 

we sort the keypoints in descending order according to their 

number of projections in other images. Then, the point with the 

greatest number of projections is visited, followed by 

identification and rejection of all nearest neighbor points with a 

distance less than a certain threshold (e.g. 20 pixels). This step 

is repeated until the end of the points list.  

 

In order to maintain continuity, all points selected in an image 

process must be considered as filtered (fixed) in the following 

filtering of other images. Filtering is done before the actual 

reconstruction step (section 3.1) in order to increase the 

accuracy but also to reduce the number of obsolete 

observations. Consequently, the geometric distribution of 

keypoints is improved, which reduces computational costs 

significantly without losing geometric stability. 

 

4.4 Patch graph optimization 

Once correspondences have been tracked and filtered, we 

optimize the patch graph such that we construct a weighted 

undirected epipolar graph for each patch    containing common 

tracks. The weight     of an edge represents the number of 

common points between the corresponding image pair. Then we 

build      the edge dual graph of   , where every node in 

   corresponds to an edge in   . Two nodes in    are connected 

by an edge if and only if the corresponding image pairs share a 

camera and 3D points in common. Thus, each edge represents 

an image pair with sufficient overlap. Note that even when    is 

fully connected any spanning tree of    may be disconnected. 

This can happen if a particular pairwise reconstruction did not 

have 3D points in common with another pair. 

 

Figure 2. Point distribution in the image space before and 

after filtering (3395, 2007 and 819 points according to a 

filtering distance of 0, 20 and 40 pixels) 
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Thus, we use three images as basic geometric entity by using 

only points that were tracked in at least three images. These 

points are used to build the graph in order to guarantee full 

connection for any sub sequential image. The maximum 

spanning tree (MST), which minimizes the total edge cost of the 

final graph is then computed. The image relation retrieved as 

  
    graph is used the guide a stable reconstruction process 

with minimized computational efforts.  

 

4.5 Reconstruction initialization 

The incremental reconstruction step begins with the 

reconstruction of orientation and 3D points for an initial image 

pair as shown in figure 3. The choice of this initial pair is very 

important for the following reconstruction of the scene.  

The initial pair reconstruction can only be robustly estimated if 

the image pair has at the same time a reasonable large baseline 

for high geometric stability and a high number of common 

feature points. Furthermore, the matching feature points should 

be distributed well in the images in order to reconstruct a 

maximum of initial 3D structure of the scene and to be able to 

determine a strong relative orientation between the images.  

Find the initial pair: The most suitable initial image pair has to 

meet two conditions: the number of matching points must be 

acceptable and the fundamental matrix must explain that the 

matching points are far better than homography models. For 

that, GRIC scores are employed as used in [Farenzena et al., 

09].   

Reconstruct initial pair: The extrinsic orientation values are 

determined for this initial pair by factorizing the essential 

matrix and the tracks visible in the two images.  A two-frame 

bundle adjustment starting from this initialization is performed 

to improve the reconstruction.  

Add new images and points: After reconstructing the initial 

pair additional images are added incrementally to the bundle. 

The most suitable image to be added is selected according to the 

maximum number of tracks from 3D points already being 

reconstructed. Within this step not only this image is added but 

also neighboring images that have a sufficient number of tracks 

as proposed by [Snavely et al., 07]. Adding multiple images at 

once reduces the number of required bundle adjustments and 

thus improves efficiency.  

Next, the points observed by the new images are added to the 

optimization. A point is added if it is observed by at least 3 

images, and if the triangulation gives a well-conditioned 

estimate of its location. This procedure follows the approach of 

[Snavely et al., 07] as well. The Jacobian matrix is used during 

the optimization step in order to provide a computation with 

reduced time and memory requirements.   

Sparse bundle adjustment after each initialization: once the 

new points have been added, a bundle adjustment is performed 

on the entire model. This procedure of initializing a camera 

orientation, triangulating points, and running bundle adjustment 

is repeated, until no images observing a reasonable number of 

points remain.  For the optimization we employ the sparse 

bundle adjustment implementation “SBA” [Lourakis, A., & 

Argyros, A., 09]. SBA is a non-linear optimization package that 

takes advantage of the special sparse structure of the Jacobian 

matrix used during the optimization step in order to provide a 

computation with reduced time and memory requirements. 

5. GLOBAL BUNDLE ADJUSTMENT 

After the reconstruction of points and orientations for the 

overlapping patches the results are merged. Since outlier 

rejection was performed within the previous processing the 

available 3D feature points are considered to be reliable and 

accurate. Due to the overlap the patches have a certain number 

of points and camera orientations in common which enable the 

determination of a seven-parameter transformation to align the 

patches into a common coordinate system. The transformed 

orientations and points are introduced into a common global 

bundle adjustment of the whole block. If ground control point 

measurements are available they can be used for the 

improvement of the bundle and to enable georeferencing. 

 

6. RESULTS 

The derived orientation and sparse point cloud can be used for 

further processing to derive photogrammetric products like 

dense point clouds or orthophotos. Therefore, we employ a 

dense image matching pipeline using a hierarchical multi-stereo 

method to derive dense point clouds while being scalable for 

large datasets [Wenzel et. al., 11]. Another option is to use the 

output of the pipeline in commercial Photogrammetry software 

such as Trimble Match-AT to refine the bundle adjustment or to 

derive surface models and orthophotos.  

 

6.1 Close range photogrammetry 

Within a cultural heritage recording project 10,000 images were 

recorded using a multi camera rig at short acquisition distance 

[Fritsch et al., 11 and Wenzel et al., 11]. The exterior 

orientations for the images were derived without initial values 

using the presented pipeline with high accuracy requirements. 

By performing a dense image matching step 2 billion points 

Patchwise Reconstruction 

Initial 
reconstruction  

Orient new 
images  

Tringulate 
new points 

Bundle adjust 

Optimize 
patch graph 

Figure 3. Flowchart for the patchwise reconstruction 

Figure 4. Camera stations (red), sparse point cloud from the 

SaM reconstruction (right) and point cloud derived by dense 

image matching (left) for a cultural heritage recording dataset 
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could be derived with sub-mm resolution (extract shown in 

figure 4). The high requirements of the orientations were met, as 

evaluated in section 7. 

 

6.2 Unmanned Aerial Vehicles (UAV) 

The increasing use of unmanned aerial vehicles for surveying 

tasks such as construction site progress documentation or 

surface model generation of small areas requires a method to 

derive spatial data at low costs. Typically, UAVs are equipped 

with consumer cameras providing a small footprint only. The 

imagery is challenging since the signal to noise ratio is low due 

to the small pixel pitch.  

 

Furthermore, the movements of the small aircraft in case of a 

fixed wing lead to a significant image blur as also present for 

the datasets presented in [Haala et al., 11]. Within this 

investigation the presented pipeline was applied to derive 

orientations and tie points (figure 5). The small footprint of the 

consumer camera led to dataset of 1204 images, where about 

230 images were eliminated before the processing because of 

image blur or low connection quality. From the remaining 975 

images 959 could be oriented successfully. Even though an 

image blur of up to a few pixels was present for most images 

the bundle adjustment succeeded with a mean reprojection error 

of 1.1 pixels. 

 

7. EVALUATION 

7.1 Relative accuracy 

In order to assess the relative accuracy of the results derived by 

the presented Structure and Motion reconstruction pipeline we 

analyzed control point measurements in the close range cultural 

heritage data recording project. About 100 targets are 

distributed over the whole object and are used in a later step for 

georeferencing. The control points are captured in 12 

independent datasets, represented by the 6 individually 

processed patches for the two facades.  

 

The shape of each target is a black circle with 20mm diameter 

and a white inner circle with 5mm diameter. The white circle is 

detected and measured in the image automatically using an 

ellipse fit. These image measurements are considered to have an 

accuracy of about 0.1pixels. 

 

Until this point the control points are not used in the bundle and 

thus do not impact the orientations to be evaluated. 

Consequently, they can be used to assess the quality using the 

triangulation error represented by the discrepancy of the rays to 

be intersected. Since all orientations are in a local coordinate 

system and since the intersection geometry differs, the projected 

error in image space is evaluated instead of the error in object 

space. Within the evaluation strategy the targets are identified 

and measured in the images. For each control point the 

corresponding image measurements are used together with the 

relative orientation to triangulate an object coordinate. 

 

About 6 projections per control point were averagely used for 

the triangulation. If the reprojection of a measurement exceeds a 

threshold of 1pixel it is considered to be a false measurement 

and eliminated. 

 
 

As shown in figure 6 and table 1, the root mean square of the 

reprojection error for each dataset is about 0.3 pixels. At 70cm 

distance this corresponds to an error of approximately 0.2mm 

for the image scale of this dataset. This is considered to meet 

the requirements for the later dense surface reconstruction step, 

where a relative accuracy in image space of better than 0.5 

pixels is required for a reliable image matching.  

 

7.2 Absolute accuracy 

After the automatic measurement and triangulation of control 

points, coordinates in object space are available for each control 

point. These coordinates in the local coordinate system defined 

during the Structure and Motion reconstruction can be used for 

georeferencing. Therefore, the control points were measured by 

reflectorless tachymetry.  

 

The mean standard deviation determined by the network 

adjustment amounts to 1.4mm in position and 1.6mm in height. 

However, many points were occluded and thus could not or 

only once be measured. Consequently, no accuracy information 

could be determined for these values. The residuals after the 

estimation of a rigid seven-parameter transformation in 

millimeters are presented in Table 2. The mean RMS for the 12  

Data Points Proj. Min Max Mean RMS 

Set 01 20 163 0,016 0,998 0,305 0,388 
Set 02 12 063 0,009 0,556 0,141 0,185 
Set 03 11 052 0,008 0,552 0,212 0,267 
Set 04 13 080 0,014 0,793 0,213 0,266 
Set 05 05 017 0,042 0,787 0,286 0,360 
Set 06 09 055 0,017 0,640 0,159 0,212 

Set 07 24 176 0,005 0,828 0,194 0,258 
Set 08 11 065 0,003 0,875 0,199 0,262 
Set 09 12 085 0,010 0,943 0,199 0,263 
Set 10 15 097 0,013 0,929 0,237 0,308 
Set 11 13 095 0,028 0,859 0,199 0,256 
Set 12 15 114 0,002 0,909 0,197 0,265 

Mean 13,3 88,5 0,014 0,806 0,212 0,274 

Table 1. Reprojection error in pixels for 1062 target 

measurements in 12 independent datasets. The targets were 

automatically measured and subsequently triangulated. 

Columns: point count, number of projections, minimum 

reprojection error, maximum, mean and RMS. 

Figure 5. Sparse point cloud and camera stations (red) for an 

image dataset acquired by an UAV 

Figure 2. Histogram of the reprojection error for all 

measurements of all datasets. 
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datasets is 2.2mm. The number of used control points is less 

than in the previous analysis, since reference measurements 

from tachymetry are not available for all points.  

 

However, the RMS values derived from the residuals after the 

seven-parameters cannot be used for an absolute accuracy 

assessment, since a reference measurement with the accuracy of 

one magnitude higher would be required. In contrast, the 

accuracy of the tachymetric measurements is in a similar range. 

Thus, these values are only used to validate the reconstructed 

orientations in object space.  

 

8. CONCLUSION 

The presented pipeline is capable of reconstructing orientations 

and sparse point clouds with high accuracy. Splitting up the 

dataset into suitable sub-groups of images not only enables 

scalability due to a faster and parallelizable reconstruction 

process. Also, the drift is reduced implicitly since the 

reconstruction starts at the most reliable parts and thus 

minimizes the propagation of errors. Thus, precise orientations 

can be derived for large and complex datasets. Within further 

processing the derived orientations can be used for dense 

surface reconstruction methods or other further processing with 

other Photogrammetry software. 
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Data Points Min Max Mean RMS 

Set 01 18 0,71 5,70 2,34 2,63 
Set 02 06 0,99 2,78 2,06 2,16 
Set 03 11 1,26 3,39 2,11 2,18 
Set 04 13 0,59 6,33 2,79 3,25 
Set 05 05 0,83 5,12 2,62 2,97 
Set 06 09 1,24 5,57 2,86 3,21 

Set 07 20 0,59 3,53 2,08 2,24 
Set 08 09 0,69 2,79 1,41 1,59 
Set 09 07 0,29 2,01 1,23 1,36 
Set 10 14 0,93 4,02 1,89 2,06 
Set 11 12 0,19 2,26 0,96 1,13 
Set 12 15 0,45 3,34 1,66 1,90 

Mean 11,6 0,73 3,90 2,00 2,22 

Table 2. Control point residuals in millimeters after the 

estimation of a seven-parameter transformation using 

control points measured by tachymetry. Columns: point 

count, minimum reprojection error, maximum, mean, RMS 
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