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ABSTRACT:

Thanks to a hybrid georeferencing unit coupling GNSS and IMU sensors, mobile mapping systems (MMS) with lidar sensors provide
accurate 3D point clouds of the acquired areas, mainly urban cities. When dealing with several acquisitions of the same area with the
same device, differences in the range of several tens of centimeters can be observed. Such degradation of the georeferencing accuracies
are due to two main reasons: inertial drift and losses of GNSS signals in urban corridors. The purpose of this paper is therefore to correct
these differences with an accurate ICP-based registration algorithm, and then to correct the MMS trajectory using these retrieved local
transformation parameters.The trajectory loop information plays a key role for that purpose. We propose a four-step method starting
from a 3D point cloud with overlapping parts, and the trajectory of the mobile mapping system. First, a polygonal approximation
of the trajectory is computed in order to first divide the whole registration problem in local sub-issues. Secondly, we aim to find all
the potential overlapping acquired areas between these segments using simple bounding box intersections. Thirdly, for each pair of
overlapping areas, an efficient variant of the ICP algorithm is proposed to (1) prune cases where segments do not share point clouds of
the same areas and (2) retrieve the transformation parameters, for real overlapping cases. Finally, all these transformations are linked
together, and fed into a global distance compensation problem, allowing to adjust the MMS trajectories for several passages. As a
conclusion, this method is successfully applied to data acquired over Paris (France) with the Stereopolis mobile mapping system.

1 INTRODUCTION

Cartography has been evolving for several decades following in-
formatics tools developments. Nowadays, 3D models have be-
come common place in diverse application areas such as naviga-
tion, tourism, heritage, infrastructure monitoring or urban plan-
ing. Many Mobile Mapping Systems (MMS) were developed
to provide accurate 3D point clouds and high-resolution images
mainly from urban cities. Those systems allow the creation and
the update of very fine 3D models by coupling lidar system and
HD digital cameras. Moreover, aerial data are simultaneously
used in order to refine 3D models reconstruction (Frueh and Za-
khor, 2004) and provide more realistic models.
Mobile Mapping Systems use hybrid georeferencing unit cou-
pling GNSS, odometer and IMU (Inertial Measurement Unit) sen-
sors in order to determine a precise position of the lidar sensors
and cameras (Grinstead et al., 2006). Due to urban corridors,
GNSS signals losses are quite frequent, degrading the quality of
the compensated trajectory. So that, with several acquisitions
of the same area, differences in the range of several tens cen-
timeters can be observed, which does not allow accurate appli-
cations as metrology or change detection. An analysis of such
errors is proposed in (Ellum and El-Sheimy, 2002). Neverthe-
less, this problem is not as complex as Multi-View Stereo (Frahm
et al., 2010), where most of the time no georeferencing data are
available. Since, overlapping areas may exist within datasets,
(Clemente et al., 2007) introduce loop information in order to im-
prove the MMS trajectory estimation. Such a redundancy allows
to compute accurate registration between two point clouds of the
same overlapping area. Moreover, the ICP algorithm provides
a robust and accurate registration of two coarse-aligned point
clouds (Chen and Medioni, 1992). Many variants of this algo-
rithm have been propose (Rusinkiewicz and Levoy, 2001). This
registration step can be for instance improved using geometrical
features proposed in (Demantké et al., 2011).

Therefore, the aim of this paper is to propose a correction strat-
egy of georeferencing inaccuracies that may appear after the ac-
quisition process with Mobile Mapping System. The method is
purely based on the analysis of 3D point cloud acquired with a
single lidar device. Trajectory loop information and overlapping
areas are used to compute local transformations, which are fed
into a global distance compensation problem, thus allowing to
adjust the MMS trajectory. After introducing the MMS trajec-
tory estimation, the four-step method is developed in Section 3 as
follows : polygonal approximation of the trajectory, research of
overlapping areas, registration of each of these areas and global
minimization of the trajectory. The dataset is presented in Sec-
tion 4. Finally, results of the method are presented in Section 5,
and conclusions are drawn in Section 6.

2 MOBILE MAPPING TRAJECTORY ESTIMATION

2.1 Estimation

Various on-the-fly systems, like GPSVan from Center of Map-
ping at the Ohio State University (Novak, 1991), GEOMOBIL
from ICC (Alamús et al., 2005), Cyclomedia (Swart et al., 2011),
Stereopolis from IGN (Paparoditis, 2011) have been developed
mainly for street mapping applications. In these systems, the tra-
jectory is estimated thanks to the direct georeferencing technol-
ogy. Satellite positioning and inertial navigation information are
provided by GNSS and IMU, respectively.
Both technologies are integrated so that position is given by the
GNSS receiver, and orientation by the IMU device. Such an in-
tegration allows to overcome their individual limitations. Since
IMU provide attitude data with a higher rate than GNSS posi-
tions, IMU is used to detect and correct GNSS cycle slips and
signal gaps. Conversely, IMU accelerometer calibration can be
performed thanks to the GNSS.
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An odometer is traditionally added to provide vehicle body ve-
locities and minimize the errors during GNSS signal losses. Fi-
nally, the trajectory is optimally estimated with a Kalman Filter,
that compensates the GNSS/IMU system errors (Abuhadrous et
al., 2003). Several solutions, based on more or less complicated
mathematical models exist, depending on the quality of the IMU.
For more details, please see (El Sheimy, 2000).
However, the IMU drift and the GNSS signal losses are such that
differences are still visible after the compensation step (Figure 1).

2.2 Improvement

Many solutions have been proposed to improve the quality of the
estimated MMS trajectory. As mentioned above, the first solu-
tion consists in improving the mathematical model introduced in
the Kalman Filter (KF) solution. Such strategy assumes that both
typical and large errors are well known, which is, in practice, not
straightforward to have. The KF solution can be improved with
the introduction of additional sensors or constraints. For exam-
ple, new IMUs or GNSS antennas can be added, and coupled in
a cascaded strategy (Cazzaniga et al., 2007). A coarse 3D model
is introduced in (Lothe et al., 2009) for real-time applications.
Finally, other methods directly rely on the acquired data. Con-
sequently, both photogrammetric and lidar-based solutions are
possible. Firstly, data resulting from Structure-from-Motion and
dense matching are often used. Tardif et al. (2008) have noted that
large field-of view cameras should be preferred to reduce the tra-
jectory drift. Secondly, unlike photogrammetric techniques, lidar
solutions are often not based on redundant measurements. Cal-
ibration is for example performed using planar patches detected
of the 3D point clouds. Howard et al. (2004) propose a three-
step approach in order to compute trajectory. Firstly, a ”Fine-
Scale” localization step use IMU and a ”scan matching” point
cloud registration method in order to compute accurate segment
of trajectory. Then, they perform a ”Coarse-Scale” localization
step of each previously computed segment using GNSS. Finally,
”Coarse-to-Fine” localization aims to compensate the whole tra-
jectory. Feature matching are introduced in this last step.

Figure 1: Georeferencing errors between two point clouds (red
and blue color). The two trajectories are also visible. Shift can be
noticed on cars and buildings facades.

3 IMPROVING TRAJECTORY ESTIMATION

3.1 Proposed strategy

Overlapping point clouds can indeed to locally registered to re-
duce the existing shifts. The retrieved transformations allow to

introduce new constraints in the estimation procedure, and there-
fore may benefit to areas that have been only acquired once.
The four steps are as follows:

• Polygonal approximation: The trajectory is fragmented in
segments in order to subsequently perform piecewise regis-
tration;

• Overlapping area detection: Segments corresponding to
the same geographical areas are matched;

• Registration: Pairs of segments (i.e., point clouds) are reg-
istered. An improved ICP method is proposed for that pur-
pose.

• Global trajectory estimation: Local transformations are
fed into a global minimization procedure.

3.2 Polygonal approximation

In order to fragment the initial trajectory in a reduce number of
segments, the method described in (Lowe, 1987) is used. A set of
points is recursively cut into segments with respect to both their
length and deviation. Here, the points correspond to the recon-
structed trajectory i.e., the estimated MMS positions. Since the
KF procedure is mastered by the georeferencing device with the
highest acquisition rate, one position is available for each IMU
measurement (100 Hz). This iterative algorithm consists of the
following steps, illustrated in Figure 2.
For a set of points {P1, ..., PN}, the segment l = P1PN is firstly
considered. The farthest trajectory point from this segment is
considered (Figure 2a).

Figure 2: Illustration of the polygonal segmentation.

im = argmax
i∈[1,N ]

d(l, Pi), (1)

where d(l, Pi) is the orthogonal distance between the segment l
and the point Pi.
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This maximum distance is noted dm = d(l, Pim). Then, a qual-
ity criterion Ψ of the approximation of the set {P1, ..., PN} by
the line l is defined by:

Ψ({P1, ..., PN}) =
d(P1, PN )

dm
. (2)

Furthermore, the same method can be computed on the subset
{P1, ..., Pim} and {Pim , ..., PN} (Figure 2c). This allows to de-
fine (Ψ0,Ψ1,Ψ2) as follows: Ψ0 = Ψ({P1, ..., PN})

Ψ1 = Ψ({P1, ..., Pim})
Ψ2 = Ψ({Pim , ..., PN})

(3)

In order to determine if the sub-segmentation is better than the
initial one, one can check whether:

max(Ψ1,Ψ2) > α ∗Ψ0 , (4)

where α is an adjustment coefficient that defines the level of gen-
eralization. If this inequality is true, point Pim is conserved, and
the process is recursively applied on the two sub-segments. Oth-
erwise, segment l is conserved. Finally, the polygonal approx-
imation can be defined by a subset of points of the trajectory
{Pa1 , ..., PaM } where a1 = 1 and aM = N .
Similarly and subsequently to the trajectory, the lidar point cloud
can be segmented. Since each 3D point is associated to a MMS
position during the KF procedure, the partition is straightforward.
It is noted : {S1, ..., SM−1} (cf. Figure 3).

Figure 3: Result of polygonal segmentation and the associated
partition of the lidar point cloud over an area of interest (one color
per segment, top view). One can note that all the segments do not
have the same length.

3.3 Overlapping area detection

In order to register areas acquired several times, overlapping parts
have to be found within the dataset. A first coarse approximation
can be provided by the use of axis-aligned minimum bounding
box. The result is then improved using point-to-point distance.

Approximation Firstly, the bounding boxBn of each lidar sub-
set Sn is computed. Then, for a given subset Si, non-empty
intersections with all previous bounding boxes of the trajectory
(Sj , i < j − ε) are computed, resulting in the set Ω:

Ω = {(i, j) ∈ [1,M − 1]2, i < (j − ε), Bi ∩Bj 6= ∅}. (5)

The ε parameter allows to avoid pairs of consecutive segments. It
is simply set to 2 in our method.

The following step then consists in merging segment pairs as
(Si1 , Sj), (Si2 , Sj), when Si1 and Si2 are consecutive segments
of the trajectory:

for ((i1, j1), (i2, j2)) ∈ Ω2, do
if (j1 = j2) and (‖i1 − i2‖ < 2) then

(Si1 ∪ Si2 , Sj1)⇒ Ωf

else
(Si1 , Sj1), (Si2 , Sj2)⇒ Ωf

end if
end for

A new set of pairs Ωf is therefore obtained. Such procedure al-
lows to avoid keeping several consecutive small segments in or-
der to perform robust registration.

Refinement For a given pair of lidar point sets (A,B) ∈ Ωf ,
matching points between A and B are retrieved. Such matching
points are retrieved using simple nearest neighbor query. The
number of corresponding matching points with a relatively small
distance (around the point cloud resolution) is noted N(A,B).
Finally, only pairs (A,B) where N(A,B) > T are conserved,
resulting in the set Ωr . T is set to 100 in order to achieve robust
results in the following registration step.

3.4 Registration

This step consists in registering each pair of lidar point sets. In the
literature, the most commonly adopted solution is the well-know
ICP (Iterative Closest Point) algorithm (Chen and Medioni, 1992;
Besl and McKay, 1992). This is a robust method that has been in-
cremented with many variants (Rusinkiewicz and Levoy, 2001).
This standard approach performs a fine registration of two over-
lapping point clouds by iteratively estimating the transformation
parameters, assuming that a good a priori alignment is provided.
In case of datasets acquired with a MMS equipped with GNSS
and IMU, such condition is fulfilled. Furthermore, this algorithm
can be easily improved and speed up using features of interest
(Sharp et al., 2002) and (Bae and Lichti, 2008). We follow this
strategy, and introduce in the ICP procedure the geometrical fea-
tures proposed in (Gressin et al., 2012).

Features of interest Many neighborhood descriptors exist in
the literature (Sharp et al., 2002) and (Rabbani et al., 2007). De-
mantké et al. (2011) have proposed a multi-scale method that use
geometric features computed from the local covariance matrix in
order to retrieve the optimal radius neighborhood of each point.
For a given radius r and his associate neighborhood Vr , a princi-
pal component analysis give three eigenvalues (λ1, λ2, λ3). The
standard deviation along an eigenvector i is denoted by σi =√
λj . Then, three geometrical features are introduced in order to

describe the linear (a1D), planar (a2D) or scattered (a3D) behav-
iors within Vr:

a1D =
σ1 − σ2

σ1
, a2D =

σ2 − σ3

σ1
, a3D =

σ3

σ1
. (6)

The dimensionality labeling (1D, 2D, or 3D) of Vr can be defined
by:

d∗(Vr) = argmax
d∈[1,3]

[adD]. (7)

If σ1 � σ2, σ3 , then a1D is greater than the two others so that
the dimensionality labeling d∗(Vr) results to 1. Conversely, if
σ1, σ2 � σ3, a2D prevails. Finally, σ1 ' σ2 ' σ3 implies
d∗(Vr) = 3. One example of dimensionality labeling is pre-
sented in Figure 4. Dimensionality features are computed for in-
creasing radius values between a lower bound rmin to an upper
bound rmax, using a square factor. For each radius r and for each
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Figure 4: Dimensionality labeling for a building facade (Blue:
1D; Green: 2D; Red: 3D).

point P , a measure of unpredictability is given by the Shannon
entropy of the discrete probability distribution (a1D, a2D, a3D):

Ef (Vr) = −a1D ln(a1D)− a2D ln(a2D)− a3D ln(a3D). (8)

Then, the optimal neighborhood radius r∗ is selected so as to
minimize the entropy feature (cf. Figure 5).

r∗P = argmin
r∈[rmin,rmax]

Ef (Vr). (9)

The optimal neighborhood V∗, associated to r∗ is then used to
compute the dimensionality labeling d∗(V r∗

P ). The more Ef , the
more prominent the retrieved local geometrical behaviour.

Figure 5: Entropy Ef , ranging from 0 (blue) to 1 (red).

Local registration The four steps of the ICP algorithm are: (1)
selecting a reduced number of points, (2) finding matching points,
(3) weighting each corresponding pair, and, finally, (4) designing
and minimizing a given error metric. Using geometric features
can improve several steps of this method. According to (Gressin
et al., 2012), the selection and the rejection steps can be enhanced
as follows.
Firstly, a selection of points with a high entropy value Ef (more
than 0.7) can better the convergence speed of a factor of two
while maintaining an accuracy of one tenth of the point cloud
resolution. This corresponds to points with a clear local promi-
nent behaviour, i.e. in urban areas, building facades (cf. Figure
5).
Then, rejecting 70% of the farthest matched points using a spe-
cific distance improves the registration accuracy to a few millime-
ter (depending on the point cloud resolution). The following dis-
tance dV (P1, P2) = ‖VP1 − VP2‖ has been introduced, where
V =

∏
i

σi is proportional to the ellipsoid volume, and allows to

characterize the shape of the 3D point neighborhood.
Finally, this algorithm is applied to each pair of subset point

clouds (Si, Sj) ∈ Ωr . This step provides two information for
each couple:

1. A transformation (T ICP
Si,Sj

), which allows to register the two
overlapping point clouds;

2. An indicator of the quality of the procedure (σICP
Si,Sj

), pro-
viding by the average distance of matched points after reg-
istration.

The first one will be used for the next stage of global minimiza-
tion.

3.5 Global compensation

The two previous steps linked overlapping areas. The aim is now
to compute the trajectory with more constrains in order to im-
prove its accuracy as well as the 3D point cloud accuracy. Be-
cause the positional system data (IMU, GNSS, odometer) are
some times not available, our method only necessitates the 3D
georeferencing position of the lidar scanner in order to obtain
two different types of constraints (absolute and relative position-
ing constraints).
Since the rotation resulting of the registration is very low, only
translation-based minimization has been formulated and applied.
Furthermore, introducing rotation in the minimization step results
in loosing the linearity of the problem.

Let {Pa1 , ..., PaM } be an approximation of the trajectory
{P1, ..., PM} of the mobile mapping system. Let {T ICP

ai,aj
} be a

set of transformation given by the previous steps. The equations
that the solution {P ∗ai

} must satisfy are :

• Absolute positioning constraint :

∀i ∈ [1,M ], P ∗ai
= Pai (10)

• Relative positioning constraint :

∀i ∈ [1,M ], P ∗ai
− P ∗a(i−1)

= Pai − Pa(i−1)
(11)

• Registration constraint :

∀(i, j) ∈ Ωr, P
∗
ai
− P ∗aj

= Pai − Paj + T ICP
ai,aj

(12)

This over constrained and linear problem can be solved using a
standard least squares method. Furthermore, different weighting
can be applied for the different equations. Indeed, the accuracy
of the various positioning devices have different orders of mag-
nitude. Whereas GNSS have typically an absolute accuracy of a
few meter, the IMU and the odometer can give a relative accu-
racy of a few centimeter, and the ICP gives a relative accuracy of
a few millimeter. So weights ranging in the same proportions are
introduced.

Finally, the transformation retrieves for each point of the approx-
imate trajectory is linearly distributed on all the points of the tra-
jectory, and transferred to the corresponding lidar points.

4 DATASET

Our method have been tested on one urban dataset, over Paris
(France), acquired with the Stereopolis (IGN) mobile mapping
system. This dataset covers a surface of 0.5 km2, with a tra-
jectory of 1.5 km along several streets. The whole point cloud
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includes 5 millions of points. The acquisition procedure of this
dataset is based on a RIEGL LMSQ-120 lidar sensor which pro-
vides vertical profiles perpendicular to the platform trajectory.
The distance range of the system is from 2 to 150 meters with
an accuracy of 20 mm. The lidar acquisition frequency is up to
30 kHz. The RIEGL sensor allows a vertical coverage of 40 deg
with an angular resolution of 0.04 deg, using a rotating polygon
mirror. Positioned vertically, the lidar sensor allows to acquire
both the roads, the sidewalks and medium-sized buildings. How-
ever, the tops of highest building may not be visible, depending
on the distance from the sensor to the building. This configura-
tion allows to cover areas with several interesting objects (street
furniture), but also included many moving objects as pedestrian
or cars. Using geometrical features permits to discard such items
from the ICP procedure. The positional system coupling two GPS
and one Applanix IMU POSVL200. The GPS acquire position at
1Hz, when the IMU have a frequency rate of 100Hz. This IMU
has a drift of 3 deg/hr, resulting an accuracy of about 20 cm for a
GPS signals looses of 1 minute (2 m for 3 minutes).

5 RESULTS

An upside view of this area can be seen in Figure 6 (left). Fig-
ure 6 (right) shows the polygonal approximation of the trajectory.
This polyline is composed of about 550 segments. This num-
ber of segment, directly depend on the choice of the α parame-
ter (Section 3.2). In this case, the value α = 0.5 is chosen in
order to have enough segments, allowing a good approximation
of the trajectory. This value also permits to not have too small
segment that not allow to perform accurate registration. After

1

2
3

4
5

6

-�
100m

Figure 6: Trajectory fragmentation. Left: raw data, colored
with respect to the distance from the MMS (low (black)→high
(white)). Right: extracted polyline, colored with respect to the
acquisition time (blue→red).

the refinement procedure, the second step provides 20 potential
overlapping areas. All these selected areas have then success-
fully registrated using our modified ICP algorithm. The global
compensation method delivers an adjusted trajectory. This cor-
rection ranges from -30 cm to 50 cm for the vertical component
(Figure 7). The planimetric correction ranges from 0 to 45 cm.
Peaks visible on the graph (1, 2, 4, 6) correspond to the overlap-
ping areas, where ICP constrains are applied. Contrariwise, not
compensated areas (3, 5) correspond to the area without redun-
dancy. Finally, this correction is propagated to the 3D lidar point
cloud (Figure 8). Figure 9 illustrates the results of the procedure
for three areas of interests. In these areas, significant elevation
differences are visible on the input data. These degradations are
correctly rectified by our method. One can see that the trajectory-
based correction of the georeferencing process is satisfactory and
is not limited to areas with multiple surveys.

6 CONCLUSION

The objective of this paper was to propose a method for correct-
ing georeferencing inaccuracies that may appear after the lidar

Figure 7: Results of the global compensation procedure. Areas
of interest are indicated in Figure 6

A }

B}
C }

-�
100m

Figure 8: Registration results, colored with respect to the distance
from the MMS. Three areas of interest (A,B,C) are detailed on
Figure 9.

acquisition process with a Mobile Mapping System in a urban
environment. The strategy was based on the trajectory loop in-
formation and used areas acquired several times to find the lo-
cal transformations, afterwards applied to the whole area. The
only mandatory input is the trajectory estimated with a standard
Kalman filter. The strategy did not require as input any measure-
ment provided by the GNSS, the IMU or the odometer.
The MMS trajectory is first fragmented in order to temporally
split the mapped environment into sub-areas. Each segment is
examined so as to find whether overlapping areas exist. Then,
the ICP algorithm is applied on point clouds belonging to pairs of
segments. In order to achieve very accurate and fast registrations,
the ICP is improved by the introduction of features, focusing the
process on the most reliable in terms of local geometry. The ob-
tained transformations are finally fed into a global compensation
procedure that allows to diffuse the retrieved information to the
other parts of the trajectory. The proposed method is success-
ful despite the single use of translation in the compensation step.
This is due to the fact that georeferencing errors are not very im-
portant in rotation. More accurate trajectories and point clouds
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Area A}

Area B}

Area C}

Figure 9: Results of our approach for three areas of interest. Left:
before registration. Right: after registration.

are now available, offering the opportunity of processing point
clouds with higher densities and quality or opening the field of
change and mobile object detection.
As the ICP algorithm can also provide a rotation term, improve-
ment may focus on introducing an orientation term in the global
compensation step. Moreover, since most of Mobile Mapping
Systems also include digital cameras with HD (panoramic) im-
ages, an approach integrating both photogrammetric and lidar-
based constraints is conceivable. For instance, Cannelle et al.
(2009) proposed an image-based method that allows to adjust the
MMS trajectory. These position data could be merged with those
from our method in order to improve the reliability of the final
compensation. Eventually, another possibility is to directly use,
in the compensation step, raw data from the georeferencing unit
that contains, as for the registration step, uncertainty information.
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