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ABSTRACT:

3-D feature matching is the essential kernel in a fully automated feature-based LiDAR point cloud registration. After feasible
procedures of feature acquisition, connecting corresponding features in different data frames is imperative to be solved. The objective
addressed in this paper is developing an approach coined RSTG to retrieve corresponding counterparts of unsorted multiple 3-D
features extracted from sets of LiDAR point clouds. RSTG stands for the four major processes, “Rotation alignment”; “Scale
estimation”; “Translation alignment” and “Geometric check,” strategically formulated towards finding out matching solution with
high efficiency and leading to accomplishing the 3-D similarity transformation among all sets. The workable types of features to
RSTG comprise points, lines, planes and clustered point groups. Each type of features can be employed exclusively or combined with
others, if sufficiently supplied, throughout the matching scheme. The paper gives a detailed description of the matching methodology
and discusses on the matching effects based on the statistical assessment which revealed that the RSTG approach reached an average
matching rate of success up to 93% with around 6.6 % of statistical type 1 error. Notably, statistical type 2 error, the critical indicator
of matching reliability, was kept 0% throughout all the experiments.

1 INTRODUCTION (Ankerst et al., 1999), depth buffer descriptor (Heczko et al.,
2002) and light field descriptor (Chen et al., 2003) are a few
common approaches in the retrieval of 3-D objects domain.
Matching is performed by pairing global or local shape

Laser scanning, often referred to as LIDAR (Light Detection
And Ranging), is nowadays widely employed as an efficient
technology for generating 3-D data representing physical descriptors for optimal relative transformation, where the
surface and object models in application areas as diverse as optimal matched mates minimize the differences between
topographic mapping, pattern recognition, heritage recording corresponding shape features (Chua and Jarvis, 1996; Belongie
and engineering metrology. LiDAR systems generate dense et al., 2001; Gelfand et al., 2005; Li and Guskov, 2005; Gal and
3-D point clouds, and these individual point clouds are Cohen-Or, 2006). However, retrieval precision is generally

registered to form a comprehensive surface for more  qor in particular when overall shapes of objects have obvious
information and better inference. Registration constitutes an discrepancy and the presence of numerous surface
essential data processing step; it commonly can be carried out self-similarities. Also, some methods implement principal
with the aid of artificial markers (Akca, 2003; Franaszek et al, component analysis (PCA) and centers of gravity of two data
2009), utilizing iterative closest point (ICP) approaches (Besl sets to retrieve the rotation component and translation vector,
and McKay, 1992; Chen and Medioni, 1992; Zhang, 1994) or  respectively; it actually only works in very specific conditions
employing geometric features implied within point clouds and obtains coarse estimation (Kim et al., 2011).
(Huang and Menq, 2001; Habib et al., 2005; Dold and Brenner,
2006; Rabbani et al., 2007; Jaw and Chuang, 2008, 2010). In the fields of photogrammetry and remote sensing, the
general strategy of surface matching techniques utilize a
In the perspective of feature-based techniques, automatic least-squares approach that minimizes the distances between
registration generally confronts three issues: acquisition of corresponding surface elements to solve for the registration
registration features which represent the involved data; a problem (Xu and Li, 2000; Gruen and Akca, 2005), and some
similarity —measure that mathematically ensures the pre-processing procedures may be needed (e.g., interpolation).
correspondence of conjugate features, and a transformation Regarding points, lines, planes and clustered point groups are
function that describes the transformation between the data sets. generally employed as the primary primitives in existing
This paper assumes that geometric features have been acquired, feature-based registration methods, and research into integrated
and focuses on solving the issue of retrieving correspondence multiple feature matching without any aid of initial information
of 3-D features. 3-D feature matching has attracted research (e.g., a prior alignment or approximations) is currently limited.
attention in a number of communities. In computer graphics To benefit from the rich sets of features, this paper proposes a

and pattern recognition communities, the shape histograms
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matching approach named RSTG to retrieve corresponding
counterparts from unsorted multiple 3-D features, where
different types of features can be integrated and employed
simultaneously; Moreover, the RSTG can synchronously
estimate the transformation parameters relating two data frames
while establishing the correspondence. Notably, uncertainty of
features be matched is taken into account with a weighting
arrangement throughout the process, which is rarely considered
in current matching methods. In addition, point-to-point
correspondence is needless retrieving the translation parameters
as the line-based similarity transformation model (Jaw and
Chang, 2008) is employed. The methodology of the RSTG is
given as follows.

2 RSTG APPROACH

The RSTG approach is strategically formulated towards finding
out 3-D matching solution with high efficiency and leading to
accomplishing the 3-D similarity transformation with four
major processes, namely “Rotation alignment”; “Scale
estimation”; “Translation alignment” and “Geometric check.”
Starting from the rotation alignment step, RSTG produces a
queue of possible associations for a set of features in both
query and reference frame data. The decision whether the set of
features is matched or not would be made by a judging function
taking account into both similarity and relative geometry of
features. This operation proceeds iteratively until the desired
number of matches is achieved or there is no more matches
found. That is to say, only some of qualified matches, called
‘initial matches,” are required in this phase as long as the
matched mates are satisfactory for estimating scale and
translation parameters in the subsequent procedures. Instead of
exploring whole data, the strategy would significantly reduce
the computational time. The remaining correspondence will be
retrieved in the final phase.

2.1 Rotation alignment

The purpose of rotation alignment is to find out the initial
matches, while constructing the rotation matrix between two

data frames as illustrated in Fig. 1.
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Fig. 1. the workflow of rotation alignment

At the beginning of the procedure, multiple features are first
converted into the form of normalized vectors (NVs). This
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allows different types of features which may be collected
through dissimilar methods with distinct scale can work
together. Utilizing the form of NVs makes the RSTG approach
a scale invariant algorithm. Additionally, the relevant scale
would be reconstructed in the scale estimation step. The NVs of
different features can be derived in both query and reference
frames by:
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where v(qy; and v,y are the ith normalized_v)ector in the
query and reference frames, respectively; APt); is the
difference vector derived by the i*® and j* points in the
query; Dvgy;, Nvgy: and Avgy; individually stand for the
it" direction vector of a line, the i*® normal vector of a plane
and the it" eigenvector vector of a cluster of points in the
query frame, whereas Dv(z);, Nvgy and Avgy; represent
their counterparts in the reference frame, respectively.
Therefore, the relative geometric matrix R; can be established
by Eq. (2), where P;y and Py represent the weight matrices
of features in query and reference frames, respectively; C(y
and C(,) matrices, as shown in Eq. (3), consist of stacking
NVs acquired from multiple features with respect to each data
frame. The normalized row vectors v, and v(y, can
arbitrarily be acquired by points, lines, planes or clustered
points with Eq. (1), and the n in both Ciy and Cpyy is
defined in advance as long as it embraces at least three
independent NVs forming the relative geometric matrix.
Consequently, the rotation matrix is derived by using the SVD
on the relative geometric matrix:
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where R is a rotation matrix; U and VT are two orthogonal
matrices, and X is a diagonal matrix. However, to estimate a
rotation matrix, the correspondences between features in the
query and reference frames has to be investigated in advance.
The way to find initial matches is described as follows.

2.1.1 Matches Mining via Rotation Estimation: Assume
that there are m; and m, NVs in each query and reference
frame, and the row number of matrices Cqy and C(,y is given
as n. The process starts from generating a short list for all
possible connections between the NVs in each frame by using
the permutation to pick n NVs from m; and m,
individually, and then implementing the combination for the set
of NVs. During the iterative calculation, the order and the
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elements within the C(;y and C(, change based on the short
list as forming the relative geometric matrix. And, the acquired
rotation matrix would go through three checks (introduced in
subsequent sections) to verify whether the relevant
corresponding NVs are matched or not. The procedure would
keep operating until the assigned number of initial matches is
fulfilled, or there is no matches accepted throughout the data.
Finally, the rotation matrix and the initial matches are
determined.

2.1.2 Orthogonal Matrix Check: The first check for the
nominative rotation matrices is based on the definition of the
orthogonal matrix. Although there are several ways to verify
whether a matrix is an orthogonal matrix, this paper examines
the rotation matrix by utilizing the ratio of its three singular
values. If the singular values have similar ratio with each other
within a tolerance, as described in Eq. (5), then the matrix is
regarded as an orthogonal matrix passing the first inspection.
M/ = A/ = A3/ Ay (5)
where A;, 4, and A; are the three singular values. However,
this check is not always strict in every situation. For example,
this principle would fail when a set of NVs in the query frame
conjugates with its mirror projection in the reference frame.
Therefore, the rotation matrices are further inspected by the
parallelism and the consensus checks.

2.1.3 Parallelism Check: The concept of parallelism check
is that the N\Vs in a set should be parallel with each counterpart
after removing the variant of rotation. If the angles between
corresponding NVs are all close to zero, the rotation matrix is
accepted. Additionally, the subsequent consensus check would
further ensure that all the approved rotation matrices have the
same trend.

2.14 Consensus Check: Although all approved rotation
matrices should be nearly identical with each other as long as
every matched sets of NVs are correct, the uncertainty of
correlative features may cause a little discrepancy. This check
statistically observes the values where the rotation matrices are
clustered, and applies all the sets of NVs whose corresponding
rotation matrices are within the cluster to recompute a global
rotation matrix. Finally, the features corresponding to each
matched normalized vector are regarded as the initial matches.

2.2 Scale estimation

The scale factor between two data sets can be evaluated by the
ratio of two identical distances measured in different frames,
and thus the corresponding features are prerequisite to connect
identical distances. The initial matches are used to solve the

scale factor avoiding manual identification for the
correspondents via Eq. (6):

_(yn -1ymn |dist )il
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where S is the scale factor, and P; stands for the weight of
the i*" distance ratio; dist(;); and dist(,); denote the i*"
spatial distance in the query and reference frames, respectively.
The measure of distances can be acquired by using the
perpendicular distance between two lines or intersected lines of
two adjacent planes.

2.3 Translation alignment

Provided that the scale factor and rotation matrix between two
data frames are known, translation parameters can be calculated
by the point-based 3-D similarity transformation. However,
reliable corresponding points have to be known in advance due
to the point-to-point restriction of the transformation. For a
more flexible processing, this paper employs the line-based
similarity transformation model (Jaw and Chuang, 2008),
which lies on trajectory-based restriction to get a closed-form
solution of transformation parameters. The collinear property
can be described by:
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where T=[Tx Ty T,]T is the translation vector;

(X(l)i'Y(l)i‘Z(l)i) and (X(Z)iv Y(Z)iJZ(Z)L') represent the l'th
point in the query and reference frames, which can be assigned
with an end-point of line or a foot-point of normal vector, etc.;
[t U@i V@i]T is the normalized vector of it" features
in the reference frame; [Fxay Fywi Fzail?
SR[Xwyi Yay Z@yul",i=1~n, n>2; n is the number of
transformed points.

2.4 Geometric check

After the first three steps of the RSTG approach, initial matches
and the similarity transformation are both acquired, and thus
the variants of scale, rotation and translation are eliminated by
transforming each kind of features into the same data frame
with the multi-feature transformation (Jaw and Chuang, 2010).
Therefore, the correspondence of remaining features is
investigated step by step with three geometric constraints: 1)
the minimum distance constraint; 2) the minimum included
angle, and 3) the relative connections with the initial matches.
The first constraint is utilized to search the nearest
correspondent which is the most possible matched entity,
whereas the second constraint which is specific for lines and
planes is employed to inspect the consistency of orientation
between matches. Furthermore, matches are verified by
comparing the relative connections with the initial matches.
The relative connections mentioned here comprise the distances
and angles between a feature and initial matches, if available.
Since the correspondence of initial matches has been known,
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the relative connections of conjugate features in the query and
reference data would be comparatively similar with each other.
Finally, these three constraints make certain erroneous matches
disappear from the final matching result, and features in the
query data are all explored for correspondents. Notably, the
thresholds involved are all determined by the error propagation
based on the uncertainty of features. In addition, a feature may
have multiple corresponding mates as long as they all pass
through the constraints.

3 EXPERIMENTAL ASSESSMENTS

For a practical matching algorithm, the effectiveness and

efficiency are the most significant issues that should be verified.

Therefore, the RSTG approach was inspected with both a
statistical assessment and a real case to prove the feasibility and
the effectiveness. The explicit setting of each examination is
introduced as follows.

3.1 Statistical Assessment

All experiments in this assessment were performed by multiple
3-D features. We investigated the performance and efficiency
which related to the distribution and uncertainty of features
between two data frames. The experiments were carried out
repeatedly for 100 times to derive a statistic result. There
comprised 40 points, 30 lines and 30 planes, 100 features
totally, generated randomly for every calculation. That is, the
distribution of features changes every time. Besides, random
errors, ranging from 0.0lm to 0.1m, were also added to
simulate the uncertainty of features. As shown in Table 1, the
type 1 error is defined as the wrong decision that rejects a true
match, whereas the type 2 error indicates the error that fails to
reject a false match. The statistical results reveal that the RSTG
reached an average successful matching rate of 98.83% while
the feature were added with +0.0lm random errors; an
average successful matching rate of 85.9% while the features
were added with +0.1m random errors. It is worth to point out
that the percentage of statistical type 2 error, which has critical
influences on the matching reliability, was kept 0% throughout
all tests. The operations took an average time of 67.87 seconds
to accomplish the matching based on Intel i5 CPU 2.53GHz in
Matlab. Yet, the efficiency would highly depend on
programming skills and language, facilities, and so on. It still
has space for further optimization. The statistical illustrations
are shown in Fig. 2, where the blue square line indicates the
it" successful matching rate; the red dotted line is the average
successful matching rate; the green star line represents the type
1 error, and the cyan star line denotes the type 2 error.

Table 1. the matching performance.

Std. of features (m) +0.01 +0.03 4005 0.1

Avg. matching rate (%) 98.83 96.10 925 8590
Avg. type 1 error (%) 1.16 3.90 750 14.10
Avg. type 2 error (%) 0 0 0 0

Avg. operation time (sec) 72.2 70.4 67.5 61.4
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Fig. 2. the statistic results.

3.2 The Real Case

Due to visibility constraints from a single terrestrial laser
scanner, scenes are normally performed by combining multiple
overlapping scans into a single data set. It depends on the
correspondents in different scan to establish the transformation.
Assuming that the features in each scan had been acquired
already, the RSTG approach assisted in finding out the
corresponding features in an automatic fashion. There were five
successive scans, marked “S-1”, “S-2”, “S-3”, “S-4” and “S-5”,
collected by Trimble (Mensi) GS200 describing the front door
of National Taiwan University in Taiwan. The nominal
positional accuracy of 4 shots as reported by Trimble (2005)
was up to 2.5mm at 25m range. The extracted features totally
contained 21 points, 46 lines and 22 planes as illustrated in Fig.
8 with white colour, and the relevant uncertainty was derived
based on error propagation from the origin accuracy of point
clouds.

() 54

(e) S-5
Fig. 3. the point clouds and extracted features.

Although the LiDAR point clouds were scanned sequentially,
we assumed that we didn’t have the information so feature
matching between scans were performed randomly. Once a
data set has matched, it would not be involved again in
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subsequent matching processes. In this case, we chose the scan
1 to start the matching process. As Table 2 shows, the
successful matching rate maintains above 92.3% and the total
operation time takes 1.85 seconds to fulfil the whole matching
procedures. In addition, Table 2 also reveals that the RSTG
approach remains obtaining correct result when two scans have
no overlapping features (e.g., S-1 and S-3; S-1 and S-4).

Table 2. the matching performances.

Successful
matching
ate (%) | S-1 | S-2 | S-3 | S4 | S5
Operation
time (sec)
S-1 100 | N/A | N/A | 100
S-2 0.18 92.3 | N/A | N/A
S-3 0.09 | 0.21 92.8 | N/A
S-4 0.11 | 0.11 | 0.19 100
S-5 0.23 | 0.10 | 0.07 | 0.16
Total 1.01 | 0.42 | 0.26 | 0.16

The visual inspections are shown in Table 3 where the white
colour denotes the correct matches of features; the blue colour
represents those features appearing only in one scan; the red
colour indicates false matches with type 1 error. In this case,
there was no false match with type 2 error.

Table 3. the visual inspection of matching results.

Query frame Reference frame

S-1&S-2

S-1&S-5

S-2&S-3

S-3&S-4
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S-4&S-5

Based on the experiments shown above, the RSTG approach

was proved as a workable algorithm with qualified
performances in terms of effectiveness, efficiency and
feasibility.

3.3 Evaluation of Algorithmic Contributions

The RSTG approach has some characteristics which can be
remarked as follows.

Scale invariant and multiple feature integration: Features
being matched may be acquired from distinct methods with
different types so they might not have an identical scale. By
utilizing the form of normalized vector, it allows that multiple
kinds of features or features with different scale work together.
And the relative scale between data is reconstructed in the scale
estimation stage.

Impact of the amount of feature data: As other matching
algorithms, efficiency would be degraded when dealing with a
large number of data sets. However, apart from the stage of
geometric check, the RSTG approach only performs a partial
matching process and employs initial matches, which can help
to reduce the computational cost. Indeed, the step of geometric
check would still be affected by the heavy loading of data.

Uncertainty of features: As long as the uncertainty of multiple
features is given, the tolerances such as distance and angular
thresholds can be determined by error propagation. According
to the experimental experiences, it would degrade the
successful match rate when the tolerance is either too strict or
loose. Therefore, the proper and reasonable error propagation
based on quality of features plays a significant role in the
RSTG approach.

4. CONCLUSIONS

This paper proposes the RSTG approach for 3-D feature
matching and has proved its effectiveness and efficiency via
successful demonstrations. The contributions of the RSTG
approach are the capability of matching multiple kinds of
features simultaneously while constructing the 3-D similarity
transformation. Furthermore, the RSTG approach also has
application potential in other research communities. The
methodology would be kept improving and investigating into
other types of features which can be involved to the RSTG
approach.
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