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ABSTRACT: 

 

We present a comparative study between two different approaches for tree genera classification using descriptors derived from tree 

geometry and those derived from the vertical profile analysis of LiDAR point data. The different methods provide two perspectives 

for processing LiDAR point clouds for tree genera identification. The geometric perspective analyzes individual tree crowns in 

relation to valuable information related to characteristics of clusters and line segments derived within crowns and overall tree shapes 

to highlight the spatial distribution of LiDAR points within the crown. Conversely, analyzing vertical profiles retrieves information 

about the point distributions with respect to height percentiles; this perspective emphasizes of the importance that point distributions 

at specific heights express, accommodating for the decreased point density with respect to depth of canopy penetration by LiDAR 

pulses. The targeted species include white birch, maple, oak, poplar, white pine and jack pine at a study site northeast of Sault Ste. 

Marie, Ontario, Canada. 

 

 

1. INTRODUCTION 

The goal of this paper is to compare the effectiveness of using 

geometric feature based descriptors for tree genera classification 

compared to the more conventional vertical profile descriptors. 

The advantages of deriving geometric descriptors are that these 

descriptors can be easily related to the physical and biological 

implication of tree form, such as growth direction, tree crown 

shape and the representation of internal tree crown structure. It 

also provides us with a graphical illustration of the tree for 

interpretation and an important visual aid for presentation. 

Conventional methods for retrieving vertical profile descriptors 

have proven effective and accurate for tree species 

classification. For example, Holmgren and Persson (2004) 

successfully classified Norway spruce and Scots pine with an 

overall classification accuracy of 95%; Moffiet et al. (2005) 

achieved an accuracy of 77% classifying Cypress Pine, Poplar 

Box, Silver Leaved Ironbark, Smooth Barked Apple and 

Brigalow; Ørka et al. (2007) achieved an accuracy of 74% for 

classifying spruce, birch and aspen. Ørka et al. (2009) achieved 

an accuracy of 88% for classifying large Norway spruce and 

birch trees. In the same year, Suratno et al. (2009) reported a 

classification accuracy of 95% when classifying ponderosa pine, 

Douglas-fir, western larch and lodgepole pine. Korpela et al. 

(2010) achieved an accuracy of up to 90% classifying Scots 

pine, Norway spruce and birch by using intensity variables; and 

Vauhkonen et al. (2010) showed a classification rate of 78% 

classifying Scot pine, Norway spruce and deciduous trees.  

 

This paper investigates the results from two different 

approaches for tree species/genera classification, the first 

approach classifies tree genera by extracting geometric 

information from LiDAR point data, we derived 24 features for 

each tree crown, instead of looking at the point distribution 

within individual tree crowns using height percentiles, we 

derive geometric information to provide context to the 

individual LiDAR tree crowns. The features are categorized into 

five groups:  

1. Line related features – describe orientation and 

characteristics of line segments (hypothetical 

branches) derived from within the tree crown  

2. Cluster related features – describe the shape of the 

clusters derived from individual segmented tree 

crowns 

3. Convex hull and alpha shape related features – 

describe the outer shape of the tree crowns  

4. 3D buffering related features – describe the amount 

and characteristics of LiDAR point density inside a 

tree crown  

5. Overall tree shape related features  

 

The second approach classifies tree genera by extracting vertical 

height profile information from LiDAR points, we derived 78 

features for each tree crown and the features can be categorized 

into three groups: 

1. Percentage of first, single, and last returns at different 

height percentiles 

2. Mean, standard deviation, coefficient of variation, 

kurtosis, skewness of first, single, and last returns for 

height values at different height percentiles 

3. Mean, standard deviation, coefficient of variation, 

kurtosis, skewness of first, single, and last returns for 

intensity values at different height percentiles 

 

We would like to study the potential to reduce the number of 

features for classification and the possibility to combine the 

most important features for classification. The advantage of 

combining features derived by two different methods is to take 

advantage of both perspectives, but before we can achieve this 

goal, we need to look at the features separately. The next step 

after this is to see if the two set of features are competitive or 

co-operative and combine them in a multiple classifier systems. 

Being able to classify tree genera or species accurately at a 
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stand level is useful for many applications. First, forest 

inventory can be updated more efficiently and therefore will 

have a better assessment for biomass estimation and a more 

effective forest management strategy. Another application 

related to this project is for identifying tree genera along utility 

transmission line right-of-ways (ROW); knowing tree genera 

information allows utility companies to better manage 

vegetation along the ROW.  In conjunction with the growth and 

yield tables, managers can better estimate and predict the 

potential growth of the vegetation in or near the ROW. This can 

be used to determine the amount of tree cutting, trimming or 

pruning to maintain safe clearance zones. 

 

 

2. STUDY AREA AND METHODS 

2.1 Study area 

The study area is located near Thessalon about 75 km east of 

Sault Ste. Marie, Ontario, Canada. We have selected eight field 

sites for capturing the diversity of environmental conditions in 

that region. In our study area, we have identified white birch 

(Betula papyrifera Marsh.), balsam fir (Abies balsamea (L.)), 

maple (Acer saccharum Marsh.), red oak (Quercus rubra L.), 

jack pine (Pinus banksiana Lamb.), poplar (Populus 

temuloides), white pine (Pinus strobus L.), white spruce (Picea 

glauca (Moench Voss)) and others during field visits. With the 

variety of species, our project aims to classify these species into 

three broader genera, pine, poplar, and maple. We sampled 186 

trees during our field validation visit but only 160 of them 

belong to the genera of interest and therefore only those will be 

used for classification. The LiDAR data was collected on 7 

August 2009, by a Riegl LMS-Q560 scanner. The flight altitude 

was about 122 m above ground level and the point density is 

approximately 40 pulses per m2 with up to five returns per 

pulse.  

 

We have surveyed eight field sites and they are 1) Poplar1 with 

an approximate area of 0.56 ha. 2) Poplar2, 0.6 ha 3) Maple1, 

1.7 ha, 4) Maple2 1.4 ha, 5) Maple3, 0.08 ha,  6) Corridor, 14.6 

ha, 7) Pine1, 8.7 ha and 8) Pine2, 0.05 ha. 

 

2.2 Methods 

To classify the three genera, we have derived two sets of 

features and after the features are derived, we use Random 

Forest (Breiman, 2001) for classification and feature importance 

calculation.  

 

Two field surveys were conducted from 30 July to 12 August 

2009 and 8-10 August 2011. 18 trees were measured during the 

first field visit, attributes measured include tree height, tree 

crown base height, tree crown diameter and diameter at breast 

height (DBH), the center location of the 18 trees was measured 

by total station as well as a handheld GPS. LiDAR trees were 

isolated after visiting the field with the coordinates measured. 

During the second visit, only tree location (measured by 

handheld GPS), species and DBH are measured. Individual 

LiDAR trees were segmented manually before visiting the field 

site. 

2.2.1 Features for classification: We derived features for 

classification in two different ways, the first involve defining 

groups of clusters within each tree crown, then the behaviours 

of best fit planes and lines for each cluster are described 

resulting features in F1 to F10 (Table 1). Volume and area 

related metrics for the tree crown are listed as F11 to F17 (Table 

1).  

 

The properties of how LiDAR points inside the tree crown 

conglomerate with the neighbouring LiDAR points if each point  

is buffered outward at a distance of 2% of the tree crown height 

is described by F18 to F21 (Table 1). The last category 

summarizes the overall tree shape (F22 to F 24). The detailed 

methodology of how each feature is calculated is described in 

Ko et al. (submitted). In total, we derive 24 features; each is 

described in Table 1. 

 

No. Description  

Line related 

F1 Average line segment lengths divided by tree height 

F2 Average line segment lengths divided by tree crown 

height 

F3 Average line segment lengths multiplied by the ratio 

between tree crown height and tree height 

F4 Average line segment angles (rad) measured from the x-

y plane to the line 

F5 Average line segment angles (rad) measured from the y-

axis to the line projected onto the x-y plane 

Cluster related 

F6 Average number of points in each cluster divided by the 

number of points in the tree crown 

F7 Average of the average orthogonal distance from each 

point to the line in the tree crown for each cluster 

F8 Average of the average orthogonal distance from each 

point to the plane in the tree crown for each cluster 

F9 F7 divided by the tree crown height multiplied by F8 

divided by the tree crown height 

F10 Average of the volume of the convex hull for each 

cluster divided by the number of points in the cluster 

Convex hull and alpha shape related 

F11 Average of volume of the convex hull for each cluster 

divided by the number of points in the cluster 

F12 The difference between the area of the convex hull and 

the alpha shape compared to the convex hull area 

F13 Volume of the tree crown convex hull divided by the 

number of points in the crown 

F14 Volume of the tree crown alpha shape divide number of 

points in the crown 

F15 Average distance from each point to the closest facet of 

the convex hull  

F16 Standard deviation of orthogonal distances from each 

point to the convex hull 

F17 Coefficient of variation (F15/F16) 

3D buffering related 

F18 Sum of overlapped volume between ith and jth spheres 

F19 Overlapped count of points captured by ith and jth 

spheres 

F20 

 

Overlapped volume divided by the number of points in 

the tree crown  

F21 Number of count divided by the number of point in the 

tree crown, squared 

Overall tree shape related 

F22 Tree height divided by the radius of the tree crown, 

radius is obtained by assuming when the tree crown is 

projected to xy plane, it is circular 
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F23 Tree crown height divided by the radius of the tree 

crown, radius is obtained by assuming when the tree 

crown is projected to xy plane, it is circular 

F24 Tree crown height divided by the tree height 

 

Table 1. Descriptive summary of geometric derived features 

 

The second set of features describes the vertical point 

distribution (height attributes and intensity attributes). There are 

78 features for each tree derived. Table 2 summarizes these 

features. Each tree is height normalized and segmented into 10 

vertical slices. The 10th percentile features represent the LiDAR 

points belonging to the bottom 10th percentile of the tree crown 

height whereas the 90th percentile features represents the points 

located at the top of the tree. Features include “first of many” 

returns; “single return” and “last of many” returns. Feature 

numbers are in bold.  

 

V1 to V12 are attributes related to counting the percentage of 

points belonging to the first, single, or last category in different 

percentiles. V13 to V45 are features related to statistics of 

height and V46 to V78 are features related to statistics of un-

calibrated intensity values.  

 

 

10th percentile 50th Percentile 90th percentile 

V1. % of first canopy return (V2. s) (V3. l) 

V4. % first return 

(V5. s, V6. l) 

V7. % first return 

(V8. s, V9. l) 

V10. % first return 

(V11. s, V12. l) 

V13. Mean height 

(V14. s, V15. l) 

V16. Mean height 

(V17. s, V18. l) 

V19. Mean height 

(V20. s, V21. l) 

V22. Mean height of first canopy return (V23. s) (V24. l) 

V25. Std of height 

(V26. s, V27. l) 

V28. Std of height 

(V29. s, V30. l) 

V31. Std of height 

(V32. s, V33. l) 

V34. Std height for first canopy return (V35. s) (V36. l) 

V37. Cv height for first canopy return (V38. s) (V39. l) 

V40. Kurtosis of variation height for first canopy return 

(V41. s) (V42. l) 

V43. Skewness of variation height for first canopy return 

(V44. s) (V45. l) 

V46. Mean 

intensity  

(V47. s, V48. l) 

V49. Mean 

intensity  

(V50. s, V51. l) 

V52. Mean 

intensity  

(V53. s, V54. l) 

V55. Mean intensity of first canopy return (V56. s) (V57. l) 

V58. Std of 

intensity  

(V59. s, V60. l)  

V61. Std of 

intensity  

(V62. s, V63. l) 

V64. Std of 

intensity  

(V65. s, V66. l) 

V67. Std intensity of first canopy return (V68. s) (V69. l) 

V70. Cv intensity of first canopy return (V71. s) (V72. l)  

V73. Kurtosis of variation intensity of first canopy return  

(V74. s) (V75. l) 

V76. skewness of variation intensity of first canopy return  

(V77. s) (V78. l) 

 

Table 2.  Summary of features derived from vertical point 

profile: s= single; l= last; Std= standard deviation; Cv = 

coefficient of variation  

 

 

Figure 1 shows an example of a sample tree from each genus we 

are trying to classify. Figure 1(a), (b), and (c) is an example of a 

pine, poplar and maple respectively and (d), (e), and (f) is an 

example of the point distribution for each genera, showing first 

of many returns, last of many returns, single returns and all 

returns.  
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Figure 1. (a), (b) and (c) show a sample LiDAR pine, poplar 

and maple respectively. (d), (e) and (f) show the frequency 

distribution of first return, single return, last return and all 

return for pine, poplar and maple respectively 

 

2.2.2 Random Forest: We use Random Forest for 

classification. Random Forest is an algorithm that construct a 

numerous classification trees recursively by randomly selected 

variables (Breiman, 2001), in our case, using the core 

randomForest package of the R software. This is a process for 

training the classification tree, Random Forest internally 

partitions approximately ⅔ of the data for tree construction and 

use the remaining ⅓ of the data for validation, called out of bag 

data (OOB). Therefore, the OOB error calculated from Random 

Forest represents the training error. In each of the iteration, 

different sub set of the features will be selected randomly for 

constructing the classification tree. By replacing different 

features, each iteration will result in different OOB error, the 

change of the error therefore determines whether a particular 

feature improve or degrade the overall classification and the 

change is recorded (mean decrease permutation accuracy) to 

evaluate the importance of the particular feature. 

 

We did not use the default OOB error for evaluating our 

classification results because in forestry applications, situations 

that allow using ⅔ of the data for training are rare. Moreover, 

we would like to find the optimal amount (least required for 

training and yet producing reasonable classification accuracy) 

of data required for training the Random Forest classifier. 

(d)                       (e)                           (f) 

(a)                          (b)                       (c) 
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Therefore we performed an additional test; the test will 

investigate the sensitivity of classification accuracy with 

incremental increase (5%) training data. Start from using 5% of 

the entire dataset for training (95% for validation), Random 

Forest and validation are repeated 20 times and the average 

OOB and classification accuracy (obtained from partitioned 

validation dataset) are obtained.  The average classification for 

both sets of features are plotted in Figure 2.  

 

 

3. RESULTS 

3.1 Partitioning results 

The classification accuracy increases for both sets of features 

when the data partitioned for training increases because there 

are more referenced data for training the classifier; the variance 

of classification accuracy decreases as the proportion of training 

data increases for the same reason. However, when the training 

partition approaches or exceeds 85%, the validation data 

becomes relatively small and thus a single mis-classified sample 

will lead to a large reduction in classification accuracy, 

resulting in a large variance when the validation sample size 

diminishes. The classification accuracy in Figure 2 represents 

the mean accuracy obtained from running Random Forest 20 

times at each partitioning increment.  The error bars shown in 

Figure 2 represents the minimum and maximum classification 

accuracy obtained within the 20 trials. At each trial, it is a 

balanced sample selection meaning we made sure each training 

set had similar amount of pine, maple and poplar in each 

partition. For both sets of features, by only using 5% of the data 

for training, the classification accuracy can reach an average of 

77%. From 10% to 25%, vertical profile derived features have a 

higher rate of gaining accuracy whereas geometric derived 

feature classifications increase at a slower rate until the 30% 

partition (using 70% of the data for testing); both methods 

attained a classification of 90%. For this project, we will 

compare the results of the two methods by using 30% of the 

data for running Random Forest and 70% of the data for 

validating the classification.  

  

55

60

65

70

75

80

85

90

95

100

5 15 25 35 45 55 65 75 85 95

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
 (

%
)

Percentage of the data used for training (%)

Geometric features

Vertical profile features

 
 

Figure 2. The average change in classification accuracy with 

increasing percentage of the data used for constructing 

classification trees, upper bars and lower bars represents the 

maximum and minimum accuracy respectively 

 

3.2 Classification accuracy 

In section 3.1, we show that for this project, by using 30% of 

the data for running training is optimal. Both methods can 

achieve comparable classification accuracy. Table 3 and Table 4 

show the confusion matrices for classification by geometric 

derived features and vertical profile derived features at a 30% 

partitioning level respectively.  

 

Expected

Pine Poplar Maple Class Error

Pine 867 90 24 11.6

Poplar 68 611 15 12.2

Maple 36 1 528 6.5P
re

d
ic

te
d

 
 

Table 3. Confusion matrix for the classification accuracy 

averaged over 20 iterations using 30% of the data for training 

using geometric derived features (values are average over 20 

iterations) 

 

 

Expected

Pine Poplar Maple Class Error

Pine 886 132 1 13.1

Poplar 51 682 2 7.2

Maple 18 16 472 6.7P
re

d
ic

te
d

 
 

Table 4. Confusion matrix for the classification accuracy 

averaged over 20 iterations using 30% of the data for training 

using vertical profile derived features (values are average over 

20 iterations) 

 

We used 70% of the 160 trees for validation; when this process 

is repeated 20 times with different samples, this result in 2240 

trees. The overall accuracy for both methods is 90% and both 

methods exhibit lowest class error when classifying maple trees 

and both sets of features have highest class error classifying 

poplar trees.  

 

3.3 Feature importance 

Feature importance is calculated by the mean decrease 

permutation accuracy. When running Random Forest, OOB 

error that is being recorded from each tree, e. Then, for each 

feature, fk, where k = number of features, the randomly 

permuted kth feature is being used and therefore will produce a 

new OOB error ek. Importance can be measured by using ek – e, 

average over all trees and are normalized by the standard 

deviation. This is called “mean decrease permutation accuracy” 

and is used in this paper. If a feature has a large value that 

means it is more important for classifying the three shapes and 

vice versa. Figure 3 shows the feature importance graph for 

geometric derived features and Figure 4 shows the feature 

importance graph for vertical profile derived features.  
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Figure 3. The mean decrease permutation accuracy for all 

genera for geometric derived features using 30% of the data for 

training 
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Figure 4. The mean decrease permutation accuracy for all 

genera for vertical profile derived features  

 

Figure 3 shows that the two most important features derived 

from geometric attributes are F24 and F20; where F24 

represents the ratio between the tree crown height and the tree 

height. F20 is calculated by buffering all LiDAR points outward 

by a distance equal to 2% of the tree crown height, points that 

increasingly proximal will result an overlapping volume. F20 

therefore is the summation of all overlapping volumes from all 

possible points divided by the total number of LiDAR points 

within the tree crown.  

 

Figure 4 shows that the two most important features derived 

from vertical profile attributes are V11 and V44; where V11 

represents the percentage of single returns at 90th percentile, and 

V44 is the skewness of variation in height for the canopy, single 

return only.  

 

4. DISCUSSION AND CONCLUSION 

From Figure 2, we show that the OOB error rate is not the only 

way to evaluate classification accuracy and stability, instead of 

using ⅔ of the entire dataset for constructing the classification 

tree, we have chosen to use 30% of the data for running 

Random Forest. We also showed that both sets of features show 

a very similar rate of increase in classification accuracy when 

the training sample size increases. Models that are built by the 

two sets of features learn at a similar pace. The error bars for 

both methods are large when the training sample sizes are small 

because if the sample being selected for training is not 

representative of the trees in the area, then the classification 

accuracy could be very low. The error bars are also large when 

the testing sample sizes gets smaller because one misclassified 

tree can result in a significant reduction in the classification 

accuracy. 

 

The overall accuracies for both methods are the same (90%) 

when using 30% of the data for training and 70% of the data for 

testing. Both features have the greatest difficulty differentiating 

between pines and poplar. This is because the vertical point 

distribution between pine and poplar are similar, with points 

located mostly at the top of the tree crown, density reduces, into 

the tree crown and decreases dramatically after it reaches the 

bottom of the tree crown (Figure 1d and 1e), where only points 

from the tree trunks are returned to the scanner. From the 

geometric feature perspective, the ratio between the tree crown 

and tree height for both genera could sometimes be similar 

resulting in the confusion. Geometric based features are more 

accurate in predicting pine trees and the error mostly comes 

from mistaking pine trees as poplars. Conversely, vertical 

profile derived features are more accurately classifying poplar 

trees. Both methods have high class accuracy for maple because 

maple trees usually grows in closed canopies where LiDAR 

pulses rarely reach to the lower levels of the forest canopy, 

resulting a sharp decrease in point density with height in the top 

part of the tree crown which is different from pine and poplar. 

The densely growing understory associated with maple field 

sites also makes the detection of the tree crown base difficult, 

often detected very close to the ground level (minimum height 

recorded from the LiDAR points for a particular segmented 

single tree). Lines (branches) derived from maple trees tend to 

be shorter and located at the top of the tree with no obvious 

orientation. As mentioned, the LiDAR points are mostly located 

at the top of the tree crown due to the low penetration rate, 

when points are buffered outward, the volume of overlapping 

also increases for maple trees compared with poplar trees. 

 

The two most important geometric features are the ratio 

between the tree crown height and the tree height (F24); and the 

overlapping volume by the buffered spheres divided by the 

number of points within the tree (F20). Poplars have the 

smallest ratio (small size tree crown) whereas maples have the 

largest. In the case where the bottom of the tree crown base 

cannot be detected, the ratio is equal to one. F20 highlights the 

tree crown spatial distribution properties among the genera, 

pines and maples have high values because points tends to 

cluster at layers of braches for pine and at the top of the tree 

crown for maples. Poplars have the lowest value because the 

spatial distributions of points inside the tree crown are more 

even. The two most important vertical profile derived features 

are the percentage of single returns at 90th height percentile 

(V11) and skewness of variation in height for the canopy, first 

return only (V44). V11 is related to the penetration rate, it is 

noted that, at 90th percentile, if a tree permits LiDAR pulses to 

penetrate further into the tree crown, the proportion of single 

return is less, for example in Figure 1d, pine tree leaves are 

smaller than poplar (Figure 1e) and maple (Figure 1f). As a 

result, the proportions of single returns for poplar and pine trees 

are higher at 90th percentile. For the same reason, V44 is the 
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skewness of height distribution for single returns and is also 

important in differentiating the three genera.  

 

Our vertical profile feature research demonstrates similar results 

with Persson and Holmgren (2004), where the important 

features located in the upper percentiles of the tree top. We also 

show that height attributes and the count attributes are more 

important than the intensity attributes, this is unlike the studies 

found in Korpela et al. (2010) but their intensity values are 

normalized by range and ours are not. Intensity values should 

be normalized by range because it is a function of range itself 

and to be able to interpret the received intensity value properly, 

the effect of range has to be removed. In Ørka et al. (2009), by 

using uncalibrated intensity value, they have shown that the 

maximum and mean intensity for first return and mean intensity 

for the last return are important for differentiating species for 

large trees. Our results illustrate that within the intensity 

attributes, V48 (mean intensity at the 10th percentile, last return 

only) is the most important feature.  

 

Our comparative study shows that by using the two sets of 

features separately for classification, the classification 

accuracies are about the same. We also confirm the possibility 

of using geometric derived features for classification. The 

advantage of using geometric derived features is their valuable 

association between the derived geometric features within the 

tree crown to the actual tree forms. Although the classification 

accuracies are very similar in our studies, we believe the two 

sets of the features should complement each other under 

complex environmental conditions. For example, when tree 

crowns are severely overlapped with each other, or when only 

half the tree can be viewed by the LiDAR scanner, this situation 

is common in ROW corridor applications, due to the required 

vegetation clearance zones along both sides of the 

infrastructure; one side of the tree can be viewed openly 

whereas the other side of the tree could be occluded by other 

vegetation. We have already noted that there are some 

discrepancies in class error, meaning some features in each set 

of features are better at classifying certain genera. We also 

would like to discover if the performance of the two sets of 

features behave differently in complex situations.   
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