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ABSTRACT: 

 

In this work, the co-registration steps between LiDAR and photogrammetric DSM 3Ddata are analyzed and a solution based on 

automated plane matching is proposed and implemented. For a robust 3D geometric transformation both planes and points are used. 

Initially planes are chosen as the co-registration primitives. To confine the search space for the plane matching a sequential automatic 

building matching is performed first. For matching buildings from the LiDAR and the photogrammetric data, a similarity objective 

function is formed based on the roof height difference (RHD), the 3D histogram of the building attributes, and the building boundary 

area of a building. A region growing algorithm based on a Triangulated Irregular Network (TIN) is implemented to extract planes 

from both datasets. Next, an automatic successive process for identifying and matching corresponding planes from the two datasets 

has been developed and implemented. It is based on the building boundary region and determines plane pairs through a robust 

matching process thus eliminating outlier pairs. The selected correct plane pairs are the input data for the geometric transformation 

process. The 3D conformal transformation method in conjunction with the attitude quaternion is applied to obtain the transformation 

parameters using the normal vectors of the corresponding plane pairs. Following the mapping of one dataset onto the coordinate 

system of the other, the Iterative Closest Point (ICP) algorithm is then applied, using the corresponding building point clouds to 

further refine the transformation solution. The results indicate that the combination of planes and points improve the co-registration 

outcomes. 

 

 

1. INTRODUCTION 

Three dimensional building data are used extensively in 

numerous city applications such as modeling of urban 

environments, city planning, emergency response, 

environmental assessment and determining spatio-temporal 

urban changes. Building databases are generated by various data 

sources but mainly aerial and satellite images and airborne laser 

scanning data are the most common ones. The complimentary 

characteristics of LiDAR and photogrammetric data for data 

conflation or change detection required the proper co-

registrations these two data sets. Therefore horizontal and 

vertical alignment of various 3D datasets is necessary by 

determining the rigid transformation that co-registers different 

3D datasets in a common coordinate reference system using 

primitives, such as points, lines and planes. Considering the 

urban environment and the 3D building modeling applications 

we observe that linear features and planar surfaces are important 

invariant geometric and semantic elements. Planes and lines are 

typical primitives that can be found in man-made environments 

such as cities due to the nature of the city landscape. For 

example, buildings are formed by planar surfaces. Habib et al. 

(2004) used straight lines as the registration primitives, while 

planes for surface matching have been also used (Habib and 

Schenk, 1999; Schenk and Chatho, 2002; Sampath and Shan, 

2006, Brenner et al., 2008). The quality of the integration 

outcomes unquestionably depends on the registration process 

towards respective data (Postolov et al., 1999). Current 

approaches rely on the manual identification of corresponding 

spatial features (points, lines planes) between the two data sets 

to be used for determining the transformation parameters 

between the two coordinate systems. However, the volume of 

data makes the workload of manual registration quite tedious. 

Hence, automatic 3D datasets co-registration processes are on 

demand to efficiently align different datasets into a common 

reference system.  

 

Given two arbitrary datasets, overlapping regions between the 

datasets must be determined and corresponding primitives must 

be defined within the common regions (Planitz et al., 2005). A 

pair-wise correspondence is required to ensure primitives 

matching between feature representations. The process of 

primitive matching allows an algorithm to identify potential 

correspondence between primitives, and more importantly 

discard grossly erroneous matches. This ensures that matches 

only occur between similar features. Therefore, it is essential to 

determine how to extract features/primitives from a dataset. 

Considerations such as which feature extraction algorithm to be 

used are necessary. Features must be represented in such a way 

that they are comparable to other feature representations.  

 

In this paper emphasis is given in introducing automation in the 

co-registration process of LiDAR and photogrammetric DSM 

3D points, particularly by automatically identify and generate 

conjugate geometric primitives in the different data sets to serve 

as anchor features for mapping one dataset onto another; and 

automatically localize and determine the correspondence of 

common primitives. This is followed by the actual mapping of 

one dataset onto the spatial reference system of the other 

through a 3D geometric transformation and by assessing the 
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accuracy of the proposed method. For a robust 3D geometric 

transformation both planes and points are used. Initially planes 

are chosen as the co-registration primitives. A region growing 

algorithm based on a Triangulated Irregular Network (TIN) is 

implemented to extract planes from both datasets. Point clouds 

are subsequently used as another registration primitive to 

complement the plane-based registration. Next, an automatic 

iterative process for identifying and matching corresponding 

planes from the two datasets has been developed and 

implemented. The extracted planes are associated as plane pairs, 

initially by a building matching process which is then followed 

by the plane matching algorithm. After the correspondence 

between the buildings has been established, a plane matching 

process is implemented to create plane pairs through a robust 

matching process, which thus eliminates outlier pairs. The 

selected correct plane pairs are the input data for the geometric 

transformation process. Three different geometric registration 

algorithms are used to obtain accurate transformation 

parameters between the two datasets. Following the mapping of 

one dataset onto the coordinate system of the other, the 

corresponding building point clouds are used to further refine 

the transformation solution. 

 

2. IDENTIFICATION OF PRIMITIVES 

In our case we are interested in integrating photogrammetric 

and LiDAR data. The space of comparison was based on the 

minimum processing of the data sets. Thus, the framework for 

the comparison is based on two 3D point sets that cover the 

same area. However, there is no one-to-one point 

correspondence between the photogrammetric and LiDAR 

point-based 3D surfaces. In addition the 3D point data covering 

the same area usually are geo-referenced either to local 

coordinate systems or to ones defined by their acquired sensors. 

Thus, even in the case of having corresponding features their 

3D positions will not coincide. The critical task is to 

automatically identify common features between the two 3D 

point data sets that will allow the determination of the 

parameters of the 3D transformation. 

 

Traditionally comparison of digital surface models (DSM) data 

is based on establishing the point correspondence by 

establishing a common XY grid and derived the Z values of 

each DSM by interpolation. This allows for the estimation of 

the displacements between the two data sets but obviously is 

error prone to the interpolation, particularly in urban areas. 

Another approach used for deriving the alignment between two 

point clouds is the Iterative Closest Point (ICP) method (Besl 

and McKay, 1992). It is an iterative procedure requiring good 

initial transformation values and it is based on the minimization 

of the distance between a point belonging to one data set and its 

closest points in the second data set. In this work we propose a 

two prone approach. Initially use the normal vectors of plane 

primitives in corresponding buildings to determine the 

transformation parameters. Then use the ICP algorithm applied 

to the initial 3D point clouds of the corresponding building 

using these derived transformation parameters as the initial 

transformation parameters. There are numerous planar patches 

in urban environments, especially roofs of buildings, which 

make the selection process of common planes incredibly 

laborious. It will save significant time and effort if the search 

pool for plane correspondence can be narrowed down into 

building level. Therefore, in our case the question is to how to 

first automatically determine the corresponding buildings in the 

two data sets and second how to automatically identify the 

corresponding plane pairs within the area covered by each of the 

corresponding buildings. 

3. BUILDING EXTRACTION AND MATCHING 

The LiDAR and DSM points of buildings were extracted using 

the TerraScan software (Terrasolid, 2011). Initially low 

elevation and ground points were extracted. The building 

candidate points were extracted by height distance from ground 

points followed by manual editing to remove any non-building 

points. Buildings have various characteristics and identifying 

the same building between the photogrammetric DSM and 

LiDAR point cloud often requires a lot of information, time and 

effort. The buildings were much through a stepwise process, 

first by grouping them in single and multi-layered buildings, 

then by applying three matching tests. 

 

3.2.1 Grouping of single buildings  

 

First a building group algorithm is implemented based on a 

common building characteristic. All buildings are divided into 

two main categories: Single-layer roof buildings and multi-layer 

roof buildings using a grouping algorithm. The algorithm is 

based on a common characteristic of the building called Roof 

Height Difference (RHD). The Roof Height Difference is 

defined as the difference between the highest roof and the 

lowest roof patch of the same building. Since single-layer roof 

building has only one roof, the RHD of any single-layer roof 

buildings is 0 while that of a multi-layer roof building is a 

positive number. Therefore, the RHD parameter is introduced as 

a shift and rotation invariance factor to determine whether a 

building is a single-roof building or not.  

 

3.2.2 Multi-layer buildings - first matching test 

 

All multi-layer roof buildings are further divided into several 

smaller groups according to their RHD. To avoid a building pair 

being divided into two neighbouring groups, a buffer zone is 

defined by the standard deviation value  assuming a normal 

distribution of RHD for all buildings to enlarge the space of 

grouping. Following the building grouping, the buildings that 

have similar attribute are further grouped together.  

 

Additionally to the RHD, we introduce a novel metric named 

3D histogram of individual buildings as another element to 

better represent the complexity of a building and generate links 

for corresponding buildings in two datasets. The 3D building 

histogram can represent a random multi-layer building based on 

certain attributes. Let the x-axis represent the different 

directions of normal vector of each roof patch in a building by 

calculating the zenith angles of the normal vectors; the y-axis 

records elevation gaps between each roof patch; and the z-axis 

is the sum of areas of the roof patches which are located in the 

specific space defined by direction (x) and elevation (y). The 

building 3D histogram then contains both direct and inherent 

information about each building. An example can be seen in 

Figure 1 where (1a) displays the aerial image of a building; (1b) 

is the 3D histogram of the building from the LiDAR data; and 

(1c) is the 3D histogram of the same building from the DSM 

data. The higher class in Figure (1b) and (1c) represents the 

bigger lower plane roof in Figure (1a) while the lower class 

represents the smaller upper plane roof in Figure (1a). As one 

can see, the 3D histogram of the building from both the LiDAR 

and the photogrammetric data are very much alike. Hence the 

3D histogram of building is a good measurement for building 

matching between LiDAR buildings and DSM buildings. Each 

building can be represented by a 3D histogram. Therefore the 

building matching problem can be transferred to a 3D histogram 

matching problem. 
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(a) 

 
(b) 

 
(c) 

Figure 1. 3D histogram of a building 

 

Since the 3D histogram matching heavily depends on the 

segmentation results, we define two indices of the 3D histogram 

that are relatively invariant to over-segmentation and for the 

cases of over smoothness. The two indices that are used in our 

building matching algorithm are: 

 

- The block distance between the two histograms, SD.  

SD12 is used to calculate the distance between two columns 

x1and x2 in the 3D building histogram: 

 

 
k

kk xxSD
1

2112  (1) 

 

where, k is the number of dimensions of a histogram (k = 3 in 

this example). 

 

- The z-value of the largest class in the 3D histogram, ZLB: 

The z-value of the largest class in 3D histogram (ZLB) is used 

as a criterion to identify if two random buildings are alike. The 

ZLB represents the area of the largest layer in one building. 

Small layers may vary due to noises, system errors and/or 

segmentation precision, but large and flat areas are always more 

resistant to those kinds of disturbance.  

 

Besides these two indices of 3D building histogram, two other 

indices are also combined into the building matching equation. 

 

- The area of the individual building, Area; 

- Roof Height Difference of an individual building, RHD. 

 

Thus, the objective function SM of the similarity measure for 

building matching using the 3D building histograms is defined 

as: 

 

SHwSAwSZwSDwSM  4321  (2)
 

where 

DSMDSMDSM RHD
w

Area
w

ZLB
ww

1
,

1
,

1
,1 4321   
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LidarDSM

LidarDSM

RHDRHDSH
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
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The similarity function is applied between one building B1 from 

dataset 1 and with all the buildings in the same group from 

dataset 2. If building B2 from dataset 2 is the corresponding 

building of building B1, then in the ideal case, the similarity 

measure between them will be 0 (perfect match). In reality 

however, when a building B2 found that minimizes the 

objective similarity function with building B1 this will be the 

corresponding building of building B1. Therefore: 

 

niSMSM AiAB ,...,2,1,)min( 
  (3)

 

 

where n is the number of buildings in the same group from 

system 2. This pair (B1, B2) of buildings will be used for 

finding corresponding plane pairs within these matched 

buildings. 

 

3.2.3 Multi-layer buildings - second matching test 

 

We observe that the two histograms that represent 

corresponding buildings in two different datasets they are 

different in shape and can vary considerably from each other, 

due to the different point density of two different datasets and 

the goodness of segmentation. This is the major reason why 

some buildings that should be corresponding failed during the 

first building matching test. Therefore, a second building 

matching process is applied to reduce these failed building cases 

from elimination during the plane matching phase. The failed 

building cases are put together as a new group and a new 

building matching scheme is applied on this new group. Since 

the 3D histogram cannot correctly represent these buildings a 

new similarity matching objective function SM2, is defined as 

following: 

 

SHwSAwSM  432
   (4)

 

where 

DSMDSM RHD
w

Area
w

1
,

1
43   
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After the second test, most buildings should pass with their 

corresponding buildings. If some buildings still failed the 

matching test after the second test, then these buildings 

participate in a third test this time together with the all the 

single-layer buildings grouped during the initial grouping of all 

buildings. 

 

3.2.4 Single layer and unclassified multi-layer buildings - 

third matching test 

 

From previous tests, we have observed that the coverage area of 

building is relatively more stable than the Roof Height 

Difference (RHD). What is more, single-layer buildings were 

not included in the first two matching tests because these 

buildings lack the RHD information. Therefore, the remaining 

multi-layer buildings from the first two matching tests and all 

single-layer buildings are grouped together and building area 

will be the only criterion used to calculate the similarity 

objective function SM3, where: 

 

SAwSM  33
    (5)

 

where 

DSMArea
w

1
3   

 

LidarDSM AreaAreaSA   

 

4. PLANE EXTRACTION AND MATCHING 

First, a planar segmentation is applied to both LiDAR point 

clouds and photogrammetric DSM to generate plane patches for 

the buildings based on TIN generation. A region growing 

algorithm based on the similarity of the normal vectors of the 

TIN triangles was used for the extraction of planes. 

 

Following the determination of building correspondence, plane 

matching is addressed at the building level within the coverage 

of the building, thus greatly reducing the spatial search window. 

Since the potential plane primitives should be easy to represent, 

a rectangularity test is applied initially before finding the 

corresponding plane pairs in order to select as much as possible 

regular shapes. Three parameters were used to characterize a 

plane. Its area and two shape measures, the rectangularity and 

the compactness. The two shape parameters describe how 

‘rectangular’ and ‘square’ a plane patch is. They are defined as: 

 

glecndingMinimumBouPerimeter

ObjectPerimeter
RITYRECTANGULA

tanRe_

_


 

      (6) 

polygonofPerimeter

circleareaequalofnceCircumfere
SCOMPACTNES

__

____
  

 

If a plane has area, compactness and rectangularity values that 

fall into certain threshold zone, then it will be labelled as one of 

the candidate planes for the plane matching process. The values 

of the thresholds are determined experimentally based on the 

footprint size of the buildings and of known polygon shapes. 

Then all the rectangular planes in one building pair will be 

matched according to their boundary box area. However, this 

plane matching based only on the plane area can introduce some 

matching errors because some planes in the same building may 

have similar area. In this case, a plane in one building in system 

1 can find more than one corresponding planes in the 

corresponding building system 2. Therefore spatial distribution 

of the planes within the building was ap[plied to eliminate 

potential plane matching errors. This was done by comparing 

distance between the plane centroids in one dataset to that in the 

other dataset.  

 

5. CO-REGISTRATION TRANSFORMATIONS 

The final steps to the co-registration process are the actual 

mapping of one dataset onto the spatial reference system of the 

other through a geometric transformation function, and the 

accuracy assessment of the process. The proposed methodology 

for establishing the mapping parameters from one system to the 

other is based on a rigid 3D surface registration based on the 

common primitives between the two data sets. The registration 

process is performed in two steps to obtain accurate 

transformation parameters between the LiDAR and the DSM 

datasets. First using the corresponding plane pairs, a 3D 

conformal transformation based on their centroids and normal 

vectors at the centroids is applied to obtain the transformation 

parameters. Second using these estimated parameters the 3D 

point datasets is mapped into the other coordinate system is 

performed followed by the Iterative Closest Point (ICP) 

algorithm. In the latter the corresponding building point clouds 

are used to further refine the transformation solution. 

 

The 3D conformal transformation parameters are estimated in 

two steps. The rotation matrix  RRRR   is estimated by 

least squares adjustment from the k pairs of conjugated normal 

vectors n as: 

 

kinRn ii ,1,12 


    (7)
 

 

Non-accurately derived planes and thus normal vectors lead to 

quite different angular parameters. In our case, and generally in 

urban environments, most plane primitives are horizontal planes 

and their normal unit vectors are very close to (0, 0, 1) values, 

that is they are almost parallel. Hence the values of the three 

rotational angles are numerically very sensitive to the quality of 

planes. Another way to represent attitude relationship between 

two coordinate systems is the rotation quaternion (or attitude 

quaternion). A quaternion q as either a 4x1 vector q=

 
T

, , ,a b c d or as a pair  ,v s where v is the vector part where 

 
T

, ,v a b c and s is the scalar part that equal to the real 

number d . Unit quaternions ||q||=1 provide a convenient 

mathematical notation for representing orientations and 

rotations of objects in three dimensions. By using the 

characteristics of quaternion, we know that the relationship 

between rotation matrix R and q is as follows (Zhao, 2009): 

 
2 2

2 2

2 2

1 2( ) 2( ) 2( )

2( ) 1 2( ) 2( )

2( ) 2( ) 1 2( )

b c ab dc ac db

R ab dc a c bc da

ac db bc da a b
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 

     
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The R is orthogonal matrix, and contains only three unknowns 

(a, b, c) in it since 2 2 21d a b c     according to the 

characteristics of unit quaternions. If (X) (Y) (Z) be the estimates 

of normal vector components of X Y Z, in system 2 then the 

normal equation of least squares of rotation quaternion is: 

 

( )

( )

( )

x

y

z

v a X X

v A b Y Y

v c Z Z

         
        

           
                

 (9) 

 

where 
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                   (11) 

 

Then the translation matrix  TZYX TTTT  between 

the corresponding planes is estimated from the conjugate plane 

centroids m as:  

 

kimRmT ii ,1,12 


   (12)
 

 

The average translation of the k pairs of centroids is utilized for 

the estimation of the translation parameters. Finally, the 3D 

conformal transformation of data set A to the coordinate system 

of data set B is computes as: 

 

XYZ

A

XYZ

B

XYZ TRAA 
    (13)

 

 

The transformation results were assessed in the object space as 

the differences of normal vectors  12 nRn


  and plane 

centroids  12 mRmm


 . 

 

6. APPLICATION 

The Keele Campus of York University was used as the study 

area. It has 66 building. The DSM was generated from 

UltraCam digital aerial images taken in 2005 from a flying 

height of about 1660m. It has a resolution of 0.78m and 

therefore a point density of 5.8 points/m2. Its X and Y 

coordinates are in the NAD83 UTM coordinate system and the 

Z elevations are orthometric heights. The lidar data were 

generated in 2009 from a flying height of about 2000m and 

have point density of about 3 points/m2. Its X and Y are in the 

NAD83 UTM coordinate system and its Z are ellipsoidal 

heights. The point density of photogrammetric DSM is 

approximately 2 times of that of LiDAR data clouds. 

 

The overall quality metrics of the building matching test are:  

 

-Pass rate = (TP+FP) / Total No of buildings = 89% 

-Correctness = Success rate = TP/ Total Positive = 89% 

-Completeness = TP / ( TP + FN) = =93% 

-Inherent Error Rate = TN / Total Negative (fails) = 57% 

where: TP: true positive, FP: false positive; TN: true negative; 

FN: false negative. 

 

Among the 59 buildings that passed the building matching tests 

there are 53 buildings that contain at least one rectangular plane 

based on the rectangularity and compactness tests. The number 

of the rectangular planes from these buildings is 138 in LiDAR 

dataset and 212 in DSM system, respectively. That is to say, 

some buildings may have more than one plane that passed the 

rectangularity test while some others may not have any 

rectangular plane. Thus, 138 rectangular planes following the 

rectangularity test are the input of our plane matching process. 

After comparing the areas of two planes in the two different 

systems and eliminating outlier pairs using the linear fitting of 

the plane distances, 25 pairs of planes that satisfied the 

conditions set were matched and used as the co-registration 

corresponding primitives. These 25 pairs are from 21 buildings 

which contain 46 rectangular planes as candidate planes for 

matching. The low rate of generating these 25 plane pairs from 

138 rectangular planes is attributed to: 1) the quality of planes 

extracted from the two systems that have different point 

densities; and 2) the strict constrains (thresholds of area and 

plane distances) to make sure the correspondence between 

planes are rightly connected. 

 

From the 25 corresponding pairs, 15 pairs of the normal vectors 

of planes were randomly chosen as the input to the 3D 

conformal transformation. The other 10 pairs were used as 

“check normal vectors” for evaluation purpose. The differences 

at these check planes are given in Tables 1 and 2. 

 

 

Pair 

ID 
1 2 3 4 5 6 7 8 9 10 

xn
 (x10-3) 2.7 4.4 3.4 -0.7 8.7 -0.4 2.4 1.8 5.1 3.5 

yn
( x10-3) 1.2 2.2 1.6 15.4 2.1 3.5 4.9 0.2 -0.2 0.9 

zn
   (x10-3) 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 

 

Table 1. Check planes normal vectors differences 

 

Pair ID 1 2 3 4 5 6 7 8 9 10 

xm
(m) -0.73 -0.85 -1.34 4.41 -2.21 -0.52 1.31 -2.83 0.42 -0.87 

ym
(m) 0.31 0.33 0.70 0.89 3.23 0.47 0.16 0.36 -0.25 0.51 

zm
(m) -0.04 0.01 -0.07 0.03 0.03 0.03 0.00 0.02 0.03 -0.09 

 

Table 2. Check planes centroids differences 

 

After the transformation parameters were calculated, they were 

applied to the LiDAR data points to transform them to the 

coordinate system of the DSM. Then the overlap area between 

the convex hulls of the transformed LiDAR buildings and their 

corresponding DSM buildings was calculated. Their estimated 

mean value is 98.60%. 

 

The boundary of a building was selected as an example to 

display the transformation performance. In Figure 2, the blue 

line is the building boundary of the photogrammetric DSM and 

the red line is the building boundary of the LiDAR data. After 
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applying the 3D-conformal transformation, it can be seen that 

there is still a slight  rotational bias between the transformed 

LiDAR building boundary and the corresponding 

photogrammetric building boundary. Since now the point clouds 

for each building for both data sets are closely located the ICP 

algorithm is applied to get the final adjusted transformation 

parameters. The ''iterative'' aspect of the ICP comes from the 

fact that the correspondences are reconsidered as the solution 

comes closer to the local minimum of the error. As any gradient 

descent method, the ICP is applicable when there is prior a 

relatively good starting point. The previously derived conformal 

transformation parameters were used as initial values for the 

ICP algorithm. After applying the ICP algorithm to the 

transformed LiDAR data shown now with blue line in Figure 2, 

the small bias has been almost eliminated. The overlap area 

between the convex hulls of the transformed LiDAR buildings 

and its corresponding DSM buildings was calculated. Their 

mean value was estimated to be 98.78% which is slightly higher 

than the overlap ratio (98.60%) that calculated after the 3D 

conformal transformation is performed. 

 

 
Figure 2. Results from 3D conformal and ICP transformations 

 

 

7. CONCLUDING REMARKS 

In this work an automated method for the integration of 

photogrammetric and LiDAR data in urban 3D environments is 

being proposed. The alignment of heterogeneous data for their 

integration in urban environments serves numerous applications 

from database updating and mapping, to 3D modelling and city 

planning, to sensor calibration. Both planar and point data have 

been used to achieve a stable co-registration of LiDAR and 

photogrammetric DSM point data. Initially planes are selected 

as the main registration primitives because they are easy to be 

represented mathematically, they are stable spatial features, and 

building roofs are major features in urban environment. The 

approach is based on automatically deriving the conjugate 

planes between LiDAR and photogrammetric datasets. A 

building matching algorithm is first introduced to narrow down 

the spatial search window for the planes to be matched and 

speed up the process since there is no direct spatial relationship 

between the extracted planes in each dataset and the number of 

planes is large. Having defined the search space, this is followed 

by plane matching within the region covered by each building 

pair. After obtaining the plane pairs as registration primitives, 

two transformation methods, 3D conformal transformation 

along with quaternion rotation and the Iterative Closest Point 

(ICP) transformation were applied in order to obtain accurate 

and correct transformation parameters between LiDAR and 

photogrammetric data coordinate systems. The 3D conformal 

transformation applied first for the determination of the 6 

transformation parameters. The quaternion rotation is also 

applied as we observed that the Euler rotations solution is 

sensitive to the directions and accuracy of the plane normal 

vectors. Then the ICP transformation was applied to already 

transformed building points to further refine the transformation 

parameters. Thus, the normal vectors and the centroids of the 

planes is the input for 3D conformal transformation, while the 

input for ICP is the 3D points of each building buildings and the 

rotations and translations from the conformal transformation as 

initial values. The ICP algorithm further reduces the mismatch 

of the two data sets and thus improved the accuracy of the initial 

transformation based on data uncertainty. Therefore accurate 

transformation parameters between LiDAR and 

photogrammetric DSM point clouds in urban environments can 

be obtained by combining 3D conformal transformation based 

on planar surfaces followed by the application of the ICP 

algorithm on the 3D building points using a combination of 

building / plane matching approach for the determination of the 

corresponding planes. Future work will explore the different 

roof (plane) orientations and the inclusion of linear features. 
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