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firstname.lastname@ign.fr

Commission III - WG III/2

KEY WORDS: Building, edge, detection, lidar, waveform, line, segmentation, diagnostic.

ABSTRACT:

The full-waveform lidar technology allows a complete access to the information related to the emitted and backscattered laser signals.
Although most of the common applications of full-waveform lidar are currently dedicated to the study of forested areas, some recent
studies have shown that airborne full-waveform data is relevant for urban area analysis. We extend the field to pattern recognition with
a focus on retrieval. Our proposed approach combines two steps. In a first time, building edges are coarsely extracted. Then, a physical
model based on the lidar equation is used to retrieve a more accurate position of the estimated edge than the size of the lidar footprint.
Another consequence is the estimation of more accurate planimetric positions of the extracted echoes.

1 INTRODUCTION

1.1 Context and objectives

Information related to the emitted and backscattered laser sig-
nals can be completely accessed with the full-waveform (FW) li-
dar technology. Such signals gather the contribution of one or
several objects that have been hit by the laser beam. An off-
line post-processing step extracts maxima of the recorded sig-
nals. These maxima are called ”echoes“ and will be turned into
3D points thanks to a georeferencing process. Each of them cor-
responds to one or several objects closer than the sensor spa-
tial resolution along the axis of the laser beam. A majority of
the applications of full-waveform lidar deals with forested areas,
but some recent works based on small-footprint data (diameter
d < 1 m) have demonstrated the relevance of lidar waveforms
in urban areas, mainly for land-cover classification (Mallet et al.,
2011), and vegetation detection (Höfle et al., 2012). The litera-
ture has barely investigated the field of pattern recognition (Jutzi
and Stilla, 2005b). Building edges, and more generally 3D lines,
are patterns of high interest for many applications such as strip
registration, building detection, change detection or database up-
dating (Lee et al., 2007).
For that purpose, small-footprint lidar waveforms may be rele-
vant. Typical footprint size and digitization rate are around 0.5 m
and 1 GHz : each echo within the waveform is likely to cor-
respond to a specific target. Information from several objects
will not be mixed since the distance between the object is large
enough. This is all the more interesting when detecting build-
ing edges as, in case of high altimetric shift between the tar-
gets, echoes will not overlap, and particular contributions may
be specifically analysed.
Two issues are tackled in this paper. Firstly, we aim to detect
building edges using both georeferenced 1D signals and extracted
3D points. Only linear structures are considered. Secondly, based
on the assumption that building roofs are locally homogeneous in
terms of geometry and radiometry, we use the knowledge of the
coarse position of the edges to estimate the correct position of
the 3D point within the lidar footprint, and, finally, re-estimate
more precisely the 3D edge segments. In addition to the stan-
dard ”waveform processing step“ which mainly add information
in the altimetric component of the 3D points, our work is thus
also dedicated to the planimetric improvement of the points ex-

tracted from the waveforms. This is particularly important when
the lidar beam is not very focused.

1.2 Existing works
FW-based building edge detection has only be carried out in (Jutzi
and Stilla, 2005a). However, plethora of papers exist when deal-
ing with standard multiple-pulse lidar data. Two major kinds of
approaches are possible: image and 3D-based approaches.
Raster methods are mainly based on the analysis of Digital Sur-
face Models (DSM) or normalized DSM (Rutzinger et al., 2009).
Morphological filters, rank filters, robust hierarchical interpola-
tion or gradient computation can be used to detect building edges.
Vegetation areas are then commonly filtered by subtracting the
last-echo DSM to the first-echo DSM. Classification can also be
carried out by calculating the local curvature or variance of the
normal vectors for each area of interest (Arefi, 2009). Further-
more, the intensity or amplitude value may also provide discrimi-
nant images for building edge detection. However, such informa-
tion requires a calibration step (Höfle and Pfeifer, 2007), and has
not yet been optimally used. Visible or Infra-red geospatial im-
ages are therefore often preferred as complementary information
(Rottensteiner et al., 2005; Matikainen et al., 2007).
The second possible approach is based on the geometrical study
of the 3D point cloud. Linear features or significant vertical dis-
continuities can be directly detected in the point cloud (Sampath
and Shan, 2007). Such analysis can be preceded and facilitated
by a building focusing step, traditionally 3D point classification
as in (Zhang et al., 2006; Poullis and You, 2011). Mesh-based
methods such Zhou and Neumann (2010) may allow to compute
accurate edges while loosing the semantic information.
Only few specific methods are dedicated to the lidar signal anal-
ysis. The aim is to estimate a more accurate position of the edges
than the size of the lidar footprint. Jutzi and Stilla (2005a) have
initiated the field with airborne simulated data, and managed to
improve edge location to one to seven tenth of a pixel according to
the measurement noise. Their method is based on the fact that the
building edge orientation cannot be estimated with a single wave-
form. For each waveform, the distance to the building edge is es-
timated. The 3D point positioned on the roof can be anywhere on
a circle centered on the waveform line of sight. Several possible
building edges are extracted and the ambiguity problem is solved
thanks to the power of the first backscattered echo. 3D point posi-
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tion improvement has only been tackled with real data for terres-
trial datasets (Neilsen, 2011). In the proposed method, the lidar
point cloud is corrected from the surface response, and particu-
larly the 3D position is refined with the backscattered waveform.
Unfortunately, there are major differences between aerial and ter-
restrial lidar issues. This method assumes all surface to be homo-
geneous within the lidar footprint, which may be inaccurate with
airborne large scale data.
The paper is organised as follows. The proposed strategy will be
first presented as well as the available dataset. Then, each step of
the workflow will be described and commented. Finally, results
will be presented, and conclusions will be drawn.

2 OVERALL STRATEGY
2.1 Methodology
The proposed methodology is based on the assumption that build-
ings can be approximated by polygons, i.e., fragmented in seg-
ments. Given a set of lidar measurements, our method is decom-
posed into three steps:

• Step 1: Segmentation of boundary regions. Firstly, the
location of building areas is coarsely retrieved, in order to
decompose the problem and offer parallelization opportuni-
ties. Main vegetated areas are removed and not examined
in the following steps. Secondly, for each focus area, lidar
waveforms are segmented in ”boundary region“ or not. The
process is not limited to waveforms with multiple echoes.

• Step 2: Initial boundary extraction and diagnostic. A
coarse determination of the 3D locations of the segments is
first performed. 3D point clouds are first extracted from the
waveforms.Then, 3D boundary segments are estimated with
the standard RANSAC algorithm, adapted to deal with re-
maining vegetated areas and with focus areas composed of
several buildings. Finally, segments are qualified, and veg-
etation points are filtered. Only the most reliable segments
are fed into the adjustment process.

• Step 3 : Boundary adjustment. Based on a physical model,
the positions of the 3D segments and support 3D points are
improved, up to twice more accurately than the lidar foot-
print.

2.2 Data

Full-waveform data has been acquired over the city of Amiens,
France, in February 2008, under leaf-off conditions (OPTECH
3100-EA sensor). The point density is 2 points/m2. We will fo-
cus our study on the city center, which corresponds to 5 million
backscattered waveforms covering 0.7 km2 . For each lidar pulse,
both emitted (pulse width = 4.8 ns) and backscattered waveforms
(1 GHz digitization rate), GPS time, position and attitude of the
sensor are available. Therefore, waveforms can be georeferenced,
as well as 3D subsequent points (see Section 4.1).
The French national 2D topographic database is available in order
to qualify the results. The building layer has a planimetric accu-
racy of around 1 m. A 0.5 m orthoimage is also used to visually
assess the extraction process.

Due to the scan pattern, the 3D genuine spatial sampling of the
data is not regular, which does not facilitate the local analysis,
required in Section 3. Knowledge of sensor direction and posi-
tion for each waveform allows to adopt a sensor topology strategy
for neighbourhood computation (David et al., 2008). A georef-
erenced image is created where each pixel represents the conical
region of the landscape illuminated by the laser beam. One line
represents one scan line, whereas one column corresponds to one
angle of incidence. The major advantage of this topology is its
execution time for retrieving adjacent waveforms.

2.3 Acquisition of building edges

Depending on the angle of incidence of the laser beam and the
position of the sensor, edges of a building will not be all similarly
acquired. Two cases can be distinguished:

• ”Single echo“ (SE): Edges corresponding to walls illumi-
nated by the laser beam will create waveforms with a single
echo (ground, facade or roof).

• ”Multiple echo“ (ME): The backscattered waveform is com-
posed of two echoes : one on the roof, and one on the
ground.

Our strategy mainly relies on the detection of ”multiple echo“
waveforms, but Step 1 is designed to retrieve all the roof wave-
forms close to the gutter heights. We consider that the other lidar
strips may take measures on the building from the reverse point
of view, thus offering the adequate complementary information
for the full contour description.

3 SEGMENTATION OF BOUNDARY REGIONS
3.1 Focus on boundary areas

The method is based of the computation of vertical discontinu-
ities in 3D waveform data. For each waveform, if the vertical
discontinuity is superior to a theoretical minimal building gutter
height, hmin (set to 2 m to favour a high detection rate), it may lie
on an edge. Computing such discontinuity as only the difference
of elevation between the first and the last echoes of one waveform
is not adequate, since it may discard many waveforms and pro-
vide noisy results. Therefore, a 4-connexity neighborhood V in
the sensor topology is used to detect the two illumination cases.

∀w ∈ W, w ∈ B ⇐⇒ (Zwfirst − argmin
w∈V

Zwlast > hmin) , (1)

WhereW and B are the sets of waveforms and of coarse bound-
ary waveforms respectively. Zfirst (resp. Zlast) is the elevation of
the first (resp. last) object hit by a given laser pulse. Such val-
ues can be retrieved by detecting local maxima within the signal
(e.g., Gaussian smoothing + first derivative computation). Once

Figure 1: Results on the focusing step : one color per area.

B is filled, a binary regular occupancy grid is generated with a
resolution of 1 m. Since only a coarse segmentation is expected,
this value is sufficient. The sparse grid is densified by applying a
morphological closing (3×3 structuring element). Segments that
may correspond to building areas are retrieved by connectivity
constraint. This fast procedure allows to decompose the problem
into local sub-issues.
As illustrated in Figure 1, the approach is successful: all build-
ing edges are in a single focus area. However, one area may in-
clude several buildings, that will require specific constraints in
the segment extraction step. One can note that some areas focus
on vegetation: such segments will be removed afterwards.
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3.2 Waveform segmentation

The goal of this part is to select waveforms from the pth focus
area (w ∈ Fp) which really lying a building edge by favouring
a high detection rate. Selecting waveforms with two echoes will
result in segmenting both building edges, chimneys, and vegeta-
tion. The segment extraction may be highly corrupted by such
false detections.

Two assumptions are made for this segmentation : the height (hi)
and the gutter line elevation (Ei) are approximately constant by
piece for the ith building edge. So, for each wall, waveforms
have a first echo elevation of Ei and a difference of elevation
between their first echoes and one of the echoes of their neigh-
bouring waveforms of hi. Thus, one of the major difficulties is to
compute Ei and hi.

An area can contain several buildings, and in case of sloped ter-
rains, may have walls with different heights. Thus, an iterative
procedure should be set up, starting with the most prominent wall
until finding the lowest one. In one focus area, waveforms with
two echoes and largest differences of elevation between the first
and the last echoes are likely to be located on building edges.
Building height can then be computed among the most important
differences of elevation. Since trees can be taller than buildings,
the largest differences of elevation may sometimes be discarded.
A rank filter is applied on the candidate waveforms: the 70th per-
centile (P70) is selected, and provides the hi value. Thus, for
each waveform w ∈ Γi (Γi is the set of waveforms which lying
the ith building edge), we have:

hi = P70
w∈Fp

({Zwfirst − Zwlast , Z
w
first 6= Zwlast}) . (2)

Such value allows to select all multiple-echo waveforms that ex-
hibit similar differences. A buffer χ around hi is introduced to
gather all relevant waveforms. χ is set to 0.5 m, which corre-
sponds to half of the maximum variation of the wall height for a
building. Moreover, the median (Md) altitude of the first echo of
these waveforms is a good approximation of the elevation of the
tallest gutter line (Ei).

Ei = Md
w∈Fp

({Zwfirst , |Zwfirst − Zwlast| = hi ± χ}) . (3)

Wall height and gutter line altitude of the tallest building in the
focus area are then known. Waveforms lying on this building can
now be selected. A waveform w is labelled as ”building edge“
lying on Γi if:

• Its first echo altitude is in the buffer γ around the gutter line
elevation Ei. γ is set to 0.2 m, which is the addition of the
spatial resolution of waveforms (0.15 m), and an altimetric
tolerance on the gutter line elevation (0.05 m);

• The difference of elevation between its first (or single) echo
and one echo of the neighbouring waveforms (in the sensor
topology, 4-connexity) is close to the wall height hi (±χ).

∀w ∈ W, w ∈ Γi ⇐⇒

Z
w
first − argmin

w∈V
Zwlast = hi ± χ

Zwfirst = Ei ± γ
(4)

In practice, the procedure starts with the highest building. The
corresponding waveforms are then removed, and the process iter-
ates until no significant differences of elevations are found in one
area.

4 INITIAL BOUNDARY EXTRACTION AND
SEGMENT DIAGNOSTIC

4.1 3D point extraction

Once waveforms lying on building edges have been segmented,
3D segments can be computed. Two strategies are conceivable:
processing the spatio-temporal data volume of the georeferenced
waveforms as proposed in (Jutzi and Stilla, 2005b) or the 3D
points extracted from the waveforms. In order to deal with large
scale issues, the second possibility is selected. For that purpose,
the Gaussian decomposition is performed on the waveform (Mal-
let and Bretar, 2009), and only the first detected echo is preserved.
Figure 2 shows the location of the extracted 3D points for an area
of interest. One can notice that, building edges are well described
but also that many points remain on trees. Since the following
steps will deal with this problem, the segmentation step is con-
sidered as satisfactory: a high true positive rate is achieved for
”building edge“ points. These ”building edge“ points are evalu-
ated with the available ground truth. Around 50% of the extracted
3D points are located on building edges (Figure 2).

Figure 2: First echoes extracted from waveforms labelled as
”building edge“ in Section 3.2. Yellow (resp. red) points are
located on building (resp. vegetation) areas, with respect to the
ground truth.

4.2 Segment extraction

In order to fit segments on the 3D points, a robust algorithm is re-
quired. These 3D points are positioned in the center of the 0.8 m
lidar footprint diameter. Furthermore, for various configurations
and objects (balconies, antennas etc.), multiple echoes are out-
liers and may appear. The iterative RANdom SAmple Consensus
(RANSAC) algorithm is appropriate to achieve this step (Fischler
and Bolles, 1981). However, it has to been adapted to cope with
two main issues: points located in vegetation, and separated but
aligned buildings within a single focus area. For the latter case,
a single segment would be extracted for two distinct buildings.
Consequently, two constraints are introduced. 3D points have to
fulfil both criteria to yet be considered as inliers. (cf. Figure 3,
red segments).

• Orientation consistency of lines. For a given building edge,
the roof is always in the same side i.e., the vertical discon-
tinuity has always the same orientation (Poullis and You,
2011). The orientation of the building edge is thus con-
strained to be in the same direction along the segment. A
tolerance of ±45◦ is sufficient to remove false detections in
vegetation. (false positive rate: 59%→ 34%).

• A maximum horizontal range between two successive points
projected on the extracted line. It is set to 2 m to prevent the
extraction of a unique segment on both sides of a street.
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4.3 Boundary diagnostic

The final adjustment procedure requires a correct initialization.
Furthermore, some remaining segments are still lying on vege-
tated areas, and should be removed. Consequently, the boundary
diagnostic is decomposed into two steps. Firstly, segments in
vegetated areas are removed, and then filtered segments are di-
agnosed (geometrical accuracy and reliability). The segments in
vegetation areas are filtered by using two criteria:

• Planimetric scattering: Vegetated areas are known to gen-
erate backscattered lidar signals with a larger width than the
width of the emitted pulse (here 4.8 ns). Indeed, several ob-
jects closer than the sensor range resolution will contribute
to the same echo. Such echo will be wider because of the
spatial extent of these targets. This is particularly true for
the first echo which corresponds to the tree canopy with
many material. Conversely, if the waveform hits a build-
ing edge, a single object will contribute to the first echo
but the proportion of roof within the footprint is not suffi-
cient to notice a big influence on the echo width (even if
the roof is inclined). Thus, roof echoes are narrower. Con-
sequently, segments where RANSAC inliers were extracted
from waveform which have an average width superior to a
threshold of 5.5 ns. Such value has been retrieved using a
study of waveform widths in vegetation areas.

• Volumetric scattering: This criterion is point density-based.
Vegetation generates more 3D points, that are in addition
spatially scattered. A segment is labelled as ”volumetric“
whether :

N3q −Nq

Nq
> 0.4 . (5)

Where N3q and Nq are the numbers of 3D points located in
a buffer respectively of 3q and q meters around the segment.
This criterion is similar to (Höfle et al., 2012). For building
areas, point density does not vary much while considering
increasing areas of interest: N3q ' Nq. In this paper q=1 m
so 3q is lesser than street width. The 40% increase reflects
the ability of lidar beams to penetrate vegetated areas, and
thus generating multiple scatterings. The buffer size has to
be empirically adapted to the lidar footprint and the increas-
ing rate needs to be adjusted to the point cloud density.

TRUE FALSE
TRUE 88 12
FALSE 7 93

Table 1: Confusion matrix for segments corresponding to build-
ing edges.

A segment is considered as ”planar“ if it fulfils these two crite-
rion. Non-planar segments are removed. As illustrated wit the
Table 1 and on Figure 3, the global filtering step permits to ef-
ficiently remove vegetated segments. The ratio of segments in
vegetation areas decreases from 34 % to 7%. Few isolated resid-
ual false detections are still noticeable, but we consider that an
optional regularization step that turns segments to polygonal ar-
eas, posterior to our workflow, is likely to remove these errors.

The final quality of the extracted segments can be estimated with
two criterion :

• Geometrical accuracy: The Root Mean Square (RMS) value
is used. An segment is ”accurate“ when: RMS < 0.5 d,
where d is the lidar footprint.

Figure 3: Vegetation filtering. Red segments are discarded using
orientation criterion (RANSAC procedure), blue segments with
planar criterion. Yellow segments are can be diagnosed.

• Reliability: A segment with a point density higher than 0.5
inlier/m is considered as ”reliable“.

The segment adjustment step is only processing accurate and re-
liable segments.

5 BOUNDARY ADJUSTMENT

5.1 Principle

This step is inspired from the theoretical inversion on simulated
data of Jutzi and Stilla (2005a). 3D extracted points have the
same order of accuracy than the lidar footprint radius. The Gaus-
sian decomposition permits to retrieve a correct vertical accuracy
but their horizontal position need to be adjusted. For that purpose,
the lidar equation (Wagner, 2010) is used and inverted to exactly
find their position. A Lambertian assumption allows a clear sim-
plification of this equation but is only valid for echoes lying on
building roofs :

Pr =

∫
t

∫
τ∈ξ

K
′

R4
cos (α)

ρm
CCal

Pe(t) d(t) d(τ) , (6)

with Ccal is a calibration constant, R is the range between the
sensor and the target, α is the angle between the local normal
of the roof and the direction of incidence of the laser beam, ξ is
the footprint area, Pe and Pr are the emitted and received power.
K
′

gathers other constant values. One can notes that area of the
target can’t be approximated by a disk for waveforms which lying
the building edge, as illustrated on Figure 5 .

Roof are locally planar and radiometrically homogeneous inside
the lidar footprint, but this is not the case for ground and vegeta-
tion echoes. Only first echoes are considered to adjust a segment.
Our proposal method consists to iteratively :

• Use the knowledge of segment orientation to adjust its points
(inliers).

• Estimate a new segment (and therefore a new orientation).

The proposed approach is a numerical Expectation-Maximisation
algorithm, as illustrated in Figure 4.

5.2 Initialisation

For the j th accurate and reliable segment (Section 4.3), the initial
coarse orientation (θ0j ) and position (r0j ) are already estimated in
Section 4.2. The normal ~N of each part of the roof edge can be
extracted from the 3D point cloud using RANSAC. The first set
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Expectation
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Maximisation

Θ0, θ0, ~N , ρm

k = k + 1

Θk

θk j
Yes

Final solution

No

�

|θk − θk−1| ≤ η

Figure 4: Iterative segment adjustment algorithm.

of points Θ0
j is composed of the 3D points extracted from the first

echo of waveforms lying the building edge. The local reflectance
can be interpolated (up to a calibration factor) from the one echo
waveforms of the neighbourhood:

∀w ∈ WSE,
ρm
CCal

=
R4 sw pw
4 ξ cos2 α

, (7)

with sw and pw are, respectively, the amplitude and the width of
the echo. WSE is the set of waveforms with a single echo.

K
′
j can be estimated with one echo waveforms, lying building

roofs using:

K
′
j =

Pr R
4

cos (α) ξ Pe
ρm
CCal

. (8)

5.3 Expectation

The goal of this step is to adjust the horizontal position of points
extracted from multiple-echo waveforms and located on roof edges.
In a first time, the ellipsis resulting from the intersection between
the laser beam and the roof plane is computed. This requires the
knowledge of N , the beam divergence β, the position and orien-
tation of the sensor, and the standard deviation of the beam σR.
σR, in case of spatial Gaussian beam, is the distance between the
center of the line of sight and the roof, where the amplitude is
divided by e2 (σR = R(2 ln 2)−1/2). The ellipsis is then spa-
tially sampled (A(τ) = 1 cm2). An angular decomposition is
performed in order to have a regular mesh in the orthogonal di-
rection of propagation. A Kronecker test δ(τ), based on orienta-
tion, is run for each cell τ in order to know whether it belongs to
the roof.

Roof

R

~N

α

hj

δ(τ) = 1

δ(τ) = 0

Figure 5: Illustration of the iterative segment adjustment algo-
rithm.

In a second time, the laser beam is temporally sampled (1 GHz).
For a fixed time t, the intersection between each discretized ray

and the roof is computed. Then, the associated transmitted inci-
dent power for each cell can be calculated:

Pt(t, τ) = Pe(t) c(R)A(τ) exp
(
−d2
2σ2

R

)
δ(τ),

where d is the orthogonal distance between the laser beam axis
and the intersection between the discretized ray and the roof,
c(R) is the amplitude diminution factor due to the distance R
between the sensor and the roof. For each discretized ray integra-
tion, the associated backscattered power Prth can be calculated
by using the simplified lidar equation (Mallet and Bretar, 2009):

Prth =
∫
t
K
′′

cos (α)R2 ρm
CCal

Pt(t)d(t),

whereK
′′

is a constant which depends on the wavelength and the
aperture of the laser. By an integration over time, the backscat-
tered power of each laser beam is known.
With the fixed orientation, θk−1

j , different positions of the build-
ing edge are simulated for the given ellipsis position. Calcu-
lated backscattered powers Prth are compared to the measured
backscattered power Pr . The position of the good simulated
building edge is obtained when the sign of (Prth − Pr) change.
The adjusted point is positioned in the orthogonal position to the
laser beam axis on the good simulated position of the building
edge.

5.4 Maximisation

Adjusted segment can be computed on the set of adjusted points
with a least-square algorithm (Θj). Then, the new orientation θkj
and position are rkj derived. Such value can be used to iterate on
the 3D point positions. The algorithm stops when the change of
the orientation is negligible (η = 5o).
As illustrated on Figure 6, the adjusted segment has a better ac-
curacy (in average the RMS decrease by 0.15 m).

Figure 6: Adjustment results. Extracted points before adjustment
(red), after adjustment (green). Segment RMS decreases from
0.37 to 0.27 m.

6 RESULTS

Segment extraction before adjustment provides very exhaustive
results. A comparison with a topographic database shows that
the major part (87 %) of building edges are detected. Extracted
segments are positioned on edges between building and street.
False detection rate is therefore very low (12 %), corresponding
to few isolated segments inside vegetation. These segments will
be deleted if a polygonalization algorithm (merging segments to
obtain closed polylines) is performed. Furthermore, borders that
separate two connected buildings are not detected because the
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vertical distance between each side of these edges is not impor-
tant enough.
Segment adjustment results are less exhaustive (about 5%). The
major parts of segments cannot be adjusted because the one ma-
terial planar roof is a too restrictive assumption. However, when
the procedure is possible, the extraction is improved: the RMS
increases of 0.15 m, which is satisfactory with respect to the foot-
print radius (0.4 m).
Figure 7 provides an overview of the full process applied to the
whole dataset. One can notice that once results from different
strips are merged, building are correctly outlined.

Figure 7: Extracted feature before vegetation filtering : one
colour per strip.

7 CONCLUSION

Building edge detection using airborne full-waveform lidar is a
problem which have never been addressed with real data before.
The approach described in this paper proposes a solution provid-
ing reliable boundaries segments with very low false positive rate.
We have tried to benefit from the particular specification of the
acquisition process with 0.8 m footprint size, delivering a large
number of waveforms with multiple and well separated echoes.
The algorithm is decomposed into several independent parts that
can be easily tuned to fit to the specification of other surveys. The
main concern of the paper was to provide fast methods to be able
to efficiently process large amount of data.
The first limitation of the proposed approach is that only seg-
ments are considered. However, other primitives (such as circles,
curves) may be inserted for specific landscapes. One just has to
add a model selection step within the RANSAC procedure. Fur-
thermore, the adjustment step is limited because of the too strict
roof modelling. Future work focusing therefore in improving the
roof reflection model, by providing a more complete mathemat-
ical formulation. This would increase the rate of adjusted prim-
itives, and being quantitatively assessed with simulated datasets.
Finally, it would be interest to add a final step that would turn
the set of adjusted primitives into polygons to obtain geometric
forms similar to cadastral data.

References

Arefi, H., 2009. From lidar point clouds to 3D building models.
PhD thesis, Universität der Bundeswehr München, Institut für
Angewandte Informatik, Germany.

David, N., Mallet, C. and Bretar, F., 2008. Library concept and
design for lidar data processing. International Archives of
the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 38 (Part 4-C1), (on CD-ROM).

Fischler, M. and Bolles, R., 1981. Random sample consensus: A
paradigm for model fitting with applications to image analy-
sis and automated cartography. Communications of the ACM
24(6), pp. 381–395.
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