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ABSTRACT: 
 
Terrestrial laser scanners have become a standard piece of surveying equipment, used in diverse fields like geomatics, manufacturing 
and medicine. However, the processing of today’s large point clouds is time-consuming, cumbersome and not automated enough. A 
basic step of post-processing is the registration of scans from different viewpoints. At present this is still done using artificial targets 
or tie points, mostly by manual clicking. The aim of this registration step is a coarse alignment, which can then be improved with the 
existing algorithm for fine registration. The focus of this paper is to provide such a coarse registration in a fully automatic fashion, 
and without placing any target objects in the scene. The basic idea is to use virtual tie points generated by intersecting planar surfaces 
in the scene. Such planes are detected in the data with RANSAC and optimally fitted using least squares estimation. Due to the huge 
amount of recorded points, planes can be determined very accurately, resulting in well-defined tie points. Given two sets of potential 
tie points recovered in two different scans, registration is performed by searching for the assignment which preserves the geometric 
configuration of the largest possible subset of all tie points. Since exhaustive search over all possible assignments is intractable even 
for moderate numbers of points, the search is guided by matching individual pairs of tie points with the help of a novel descriptor 
based on the properties of a point’s parent planes. Experiments show that the proposed method is able to successfully coarse register 
TLS point clouds without the need for artificial targets. 
 
 

1. INTRODUCTION 

Terrestrial Laser Scanners (TLS) are increasingly used the last 
10 years, in a continuously growing number of applications 
ranging from cultural heritage documentation, surveying, 
industry and manufacturing to medicine. Many applications 
have the goal to generate high-quality geometric models. The 
processing of the resulting large datasets with billions of points 
is time-consuming, cumbersome and not automated enough. 
 
Due to the fact that TLS is a line-of-sight instrument with 
limited range of coverage, most applications require a series of 
scans to obtain a complete model. Hence, the scans need to be 
registered in a common coordinate system. 
 
 

2. RELATED WORK 

To speed up the registration process, numerous approaches have 
been published over the last couple of years, which aim at the 
automatic registration of two or more point clouds. In this 
section we review the state-of-the-art. 
 
The registration amounts to finding the relative orientation of 
two or more point clouds. If the scan orientations are known 
from external sensors (e.g. from GNSS and INS), the problem 
does not arise. Such direct georeferencing is often applied in 
mobile laser scanner applications (e.g. Asai et al., 2005). Due to 
the uncertainty of the additional sensors, the resulting 
registration is often rather coarse. Furthermore, the costs for the 
sensor system increase. 
 
The standard technique to achieve a coarse registration without 
additional sensors is to place artificial targets in the scene and 

identify them in different scans. The targets are typically 
objects, which are invariant to the scanner viewpoint (e.g. 
planes, spheres, cones). Often, they are retro-reflective to 
simplify their automatic recognition (e.g. Bornaz et al., 2002). 
Many commercial software packages support automatic 
registration with reflective targets. A related approach finds 
non-reflective spheres (Franaszek et al., 2009). 
 
To avoid the need to place targets in the scene, a logical next 
step is to base the registration on natural geometric elements in 
the scene such as points, lines or surfaces (Goshtasby, 2005). 
Thus, the main challenge is to reliably extract and match 
corresponding features in different scans. Roth (1999) describes 
a method based on point features, which are extracted from the 
laser intensity image with an interest operator and transferred to 
3D using the range information. The matching is accomplished 
by an exhaustive search for congruent tie point triangles. 
Seo et al. (2005) investigate the possibility to apply standard 
interest point operators to register laser point clouds. Similar 
approaches are presented in Bendels et al. (2004) and Böhm and 
Becker (2007). They apply the SIFT operator (Lowe, 2003) on 
the intensity image to find adequate tie points. Likewise, 
Moldovan et al. (2009) use intensity information and the SIFT 
operator to register multiple scans. To further improve the 
registration with the SIFT operator Mateo and Binefa (2009) 
first extract dominant planes in the scan and apply the interest 
point operator on them. Plane extraction is done by calculating 
the local normal for each point with singular value 
decomposition. Robust matching of the extracted point features 
is often achieved with RANSAC (Fischler and Bolles, 1981). 
Kang (2009) present an approach based on pixel-to-pixel 
correspondence in the intensity image, followed by outlier 
detection and computation of the transformation parameters in 
the 3D space.  
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Instead of exploiting the intensity data, Basdogan and 
Oztireli (2008) apply a geometric descriptor, which is based on 
the distance from each point to the centre of mass of its 
neighbours, at every single 3D point. Thus, the method is only 
suitable for small point clouds. Barnea and Fillin (2007) present 
a tie point extractor by applying a 3D corner detector to the 
range image. Johnson and Herbert (1999) use spin images as 
descriptor to find correspondences. This descriptor is generated 
by computing a local basis at an oriented point (3D point with 
local surface normal), and storing the resulting two-parameter 
description of nearby points to describe the local geometry. 
Shan et al. (2004) improves that approach with geometric 
constraints between simple configurations of multiple tie points.  
 
He et al. (2005) propose an approach to register range images 
using Complete Plane Patches. The main idea is to extract 
planar surfaces and pick out only those, which are complete (not 
occluded). Correspondence is established using an interpretation 
tree and several constrains. Dold and Brenner (2006) have 
developed a similar approach based on planar patches found by 
region growing. Patches are matched using their area, boundary 
length, bounding box and mean intensity value. Additionally, an 
on-board image sensor is used to improve the registration. 
Instead of constraining the matching based on the plane 
properties, Dold and Brenner (2007) use the intersection angle 
to prune the number of possible plane triples to calculate the 
coarse transformation. 
 
The approaches described so far are primarily designed for 
coarse registration. The results are then polished with a fine-
registration algorithm. The most established method is the 
Iterative Closest Point (ICP) algorithm (Besl and McKay 1992, 
Chen and Medioni 1992). The algorithm iteratively minimizes 
the distances of all points in one scan to the nearest point or 
plane in the other. There are many variants and extensions of 
the initial algorithm (e.g. Masuda and Yokoya, 1995, 
Bergevin et al., 1996, Bae and Lichti, 2004), aimed to increase 
computational efficiency, robustness, convergence etc. ICP is a 
local optimization scheme and requires a good initial 
approximation of the transformation. An alternative is Least 
Squares 3D Surface Matching (Gruen and Akca 2005). Again, 
the method finds a local optimum and needs good initial values 
to converge to the correct solution.  
 
To summarize, the crucial step is the coarse registration, 
whereas the refinement of an approximate registration can be 
considered solved. 
 
 

3. PROPOSED METHOD 

The goal of our method is a coarse registration of two terrestrial 
laser point clouds without the need for artificial objects. The 
principle workflow is shown in Figure 1. The focus of the paper 
is on tie point extraction and matching. To complete the 
registration process, a fine registration with a standard 
algorithm (e.g. ICP, LS3D) is necessary. As the goal is coarse 
registration, the paper focusses on pairwise registration (i.e. two 
scans), which is sufficient to generate approximate 
transformations for further processing. 
 
Our method is based on virtual tie points which are generated 
by intersecting triples of scene planes. The planes are detected 
with RANSAC, embedded in a multi-scale pyramid, which on 
the one hand increases the chance to find the dominant planes 
and on the other hand reduces the computation time.  

 
 
Figure 1: Workflow of proposed method for autonomous coarse 

registration of terrestrial laser scans 
 
The reasoning behind the apparent detour of generating virtual 
tie points – rather than directly matching the planes - is the 
following: plane matching so far proved to be rather unreliable, 
because the geometric properties of planar segments tend to 
vary a lot across viewpoints. Points, corresponding to triples of 
intersecting planes, have additional geometric invariants, which 
allow for more powerful local descriptors. 
 
Matching based on geometric constraints between tie points is 
very reliable, but of combinatorial complexity and thus 
intractable for useful numbers of tie points. On the contrary, 
matching points individually using local descriptors is efficient, 
but error-prone and often ambiguous. We thus opt to combine 
the two steps in a two-stage procedure to get the best of both 
worlds. First the combinatorial set of putative correspondences 
is filtered with a novel geometric descriptor, by discarding the 
large majority of correspondences whose descriptors are very 
different. Then, rather than taking final decisions based on 
descriptors, matching within that reduced set of candidate 
matches is accomplished by searching the largest subset, for 
which all point-to-point distances are consistent between the 
two scans. 
 
 

4. TIE POINT EXTRACTION 

The tie points are virtual 3D points, which are generated by 
intersection of three non-parallel scene planes. These planes are 
extracted from the scan data by means of RANSAC on a multi-
scale pyramid. 
 
Individual laser scans are represented as range images, which 
due to the polar measurement principle of the scanner does not 
entail any loss of information. For each scan pyramids are 
created by repeated down sampling of the range image by a 
factor of 0.5. For our purposes it is more important to avoid 
smoothing over range discontinuities, whereas geometric 
aliasing is not a concern, thus we use nearest-neighbour 
resampling. The required number of pyramid levels depends on 
the point density and on the geometry of the scene – denser 
scans and larger number of dominant planes require more 
levels. 
 
Plane extraction starts at the highest pyramid level (i.e. the one 
with the smallest range image, respectively the lowest 3D point 
density). Planes are found by iterative RANSAC. To increase 
the chance of finding correct planes we constrain the random 
sampling to points within a maximal radius. As usual, the 
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parameters of detected planes are re-estimated with all inlier 
points. Laser scans have an absolute scale, such that thresholds 
can be specified in metric world units. 
 
With a set of points (3 or more) plane fitting is accomplished in 
a total least squares sense by estimating the normal vector with 
singular value decomposition (SVD). Given the normal 
vector N the orthogonal distance to the origin D is found by 
projecting the 3D points’ centre of mass തܺ onto the normal 
vector, ܦ ൌ	 ത்ܺ ∙ ܰ. We point out that in range scans the point 
density in world coordinates decreases with the distance from 
the scanner. The threshold t for the minimum support of a plane 
is thus adapted to the range. Given the total number of points in 
the scan S0, the current pyramid level l and a user-specified 
proportion p, as well as the mean range of the scan R0, the 
threshold for a plane with the mean range Ri is computed as 
 

 ௜ܵ ൐ ݐ ൌ
௣∙ௌబ
௟
∙
ோబ
ோ೔

  (1) 

 
Planes which fulfil the condition are accepted. When no further 
planes can be detected, the extraction continues on the next-
lower pyramid level. The scalar p specifies what fraction of the 
total scan a plane shall minimally cover. The appropriate value 
depends on the size of the planes in the recorded scene. The 
linear scaling with the pyramid level adapts the threshold to the 
point density of a given level while still biasing the extraction 
process towards dominant planes. 
 

 
 

Figure 2: Panorama image with the extracted planes in an 
indoor environment 

 
 

Figure 3: Extracted planes in the 3D space in an indoor 
environment (without the ceiling) 

 
Figure 2 shows an example scan with the detected planes coded 
by different point colours. The same result in a 3D view is 
presented in Figure 3, with the ceiling plane removed for better 
visibility. The figure demonstrates the completeness and 
correctness of the plane extraction – almost all planes of 
reasonable point count have been found, with only few spurious 
planes. 
 
For all triples of detected planes, the intersection point x is 
computed analytically to yield a virtual tie point. 

ݔ  ൌ ൭
ଵܰ

ଶܰ

ଷܰ

൱

ିଵ

∙ ൭
ଵܦ
ଶܦ
ଷܦ
൱ 	ൌ ଵିܣ ∙ ܾ (2) 

 
The quality of each tie point is calculated using the reciprocal 
condition number of the matrix A. A well-conditioned matrix 
indicates that the planes are not near-parallel and all intersection 
angles are large enough. Consequently the tie point is well 
defined. Very badly conditioned tie points are discarded.  
 
The order of the parent planes is based on the z-value of the 
plane normal. Ambiguous order was treated by taking all 
solutions as possible tie points. 
 
 

5. TIE POINT MATCHING 

Laser scans have an absolute Euclidean scale and thus distances 
between tie points are directly comparable across scans. For any 
two pairs of corresponding tie points the point-to-point 
distances in both scans must therefore be the same. This 
geometric constraint is exploited in our scheme. Scan matching 
is formulated as finding the largest possible set of 
correspondences, for which all pairwise distances are the same 
(up to noise). This is an instance of the maximum-clique 
problem, which is NP-hard. Even though there are faster 
approximations, the problem is computationally too expensive 
for large point sets. To make it tractable, we therefore 
conservatively prune the exhaustive set of possible matches 
with a novel descriptor before geometric matching, which 
greatly reduces the number of putative correspondences and 
hence the search space for the maximum clique. 
 
5.1 Construction of the Description Vector 

For each tie point we construct a descriptor vector, which 
encodes local properties of the point, respectively the planes 
from which it has been constructed. The vector has the 
following entries: 

- Reciprocal condition number (1 value) 
- Intersection angles between planes (3 values) 
- Extent of planar segments (6 values) 
- Smoothness of planes  (3 values) 

We go onto explain the individual entries of the 13-dimensional 
descriptor in more detail. 
 
Reciprocal Condition Number 
 
This scalar is already calculated when intersecting the three 
planes. It encodes the geometric quality of the intersection. 
 
Intersection angles 
 
The three parent planes of a tie point give rise to three pairwise 
intersection angles, calculated simply as the scalar product of 
the two unit normal vectors. By convention we use the smaller 
of the two intersection angles and divide angles by pi/2, such 
that the values are between 0 and 1. 
 
Extent of Segments 
 
The tie point’s parent planes are constructed by fitting a set of 
3D scan points found with RANSAC. For each plane we 
calculate the bounding rectangle of those points. The width and 
height of the rectangle are found by principal component 
analysis in the 2D coordinate system of the plane. Outliers 
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outside the three-sigma interval are ignored. To obtain values 
between 0 and 1, the width and height values are divided by the 
maximum possible range, which equates to twice the maximum 
measurement range of the scanner. 
 
Plane Smoothness 
 
Although all planes are extracted with the same absolute 
threshold on residuals (in our experiments 1 cm), their average 
residuals are quite different due to varying material properties 
of the planar surfaces. To preserve that information, the mean 
residuals of the three plane fits are added to the descriptor. The 
values are scaled by the inlier threshold to map them to the 
range [0...1]. 
 
5.2 Descriptor-based Pruning  

So far the relative scaling of the descriptor entries is arbitrary. 
To obtain meaningful similarities between descriptors, the right 
relative scaling between the descriptor dimensions is needed. 
We have experimentally determined suitable weights. The 
experiments showed that the most reliable values are the 
intersection angles and the reciprocal condition number. This 
can be explained by the fact that the angles and thus the 
condition number depend only on the quality of the normal 
vectors, which are very accurate due to the large number of 
points used to calculate them. On the other hand, the extent of 
the planar segments depends on the viewpoint and the 
associated occlusions. The smoothness is also less reliable, 
because it is sensitive to the range – more distant planes with 
the same surface properties are noisier. A possible solution 
would be to normalize the smoothness value with the mean 
range value of a plane. However this has not yet been tested, 
and is left for future work. 
 
In Table 1 the empirical weights are shown which we have used 
in our experiments. 
 

Property Weight 

Reciprocal Condition Value 10 

Intersection Angle 100 

Plane Extent 1 

Plane Smoothness 5 

 
Table 1: Weighting of the description vector 

 
After applying the weights, Euclidean distances are used for 
descriptor matching, and all matches below a threshold are 
declared putative correspondences. Note that, contrary to most 
descriptor-based schemes, we only prune very dissimilar 
matches. We do not attempt to disambiguate matches below the 
threshold based on their descriptors, since in our experience the 
descriptor distances are too unreliable to do so and vary across 
different scanning environment. A variable threshold is used for 
accepting candidate matches, and adjusted such that the number 
of putative matches is not too high for the subsequent geometric 
verification. 
 
5.3 Geometric constraint matching 

The Euclidean distance between tie points is invariant across 
scans and can thus be used to reject false correspondences. 
Finding the largest possible subset of the reduced pool of 
matching candidates is a maximum clique problem, which has 
exponential complexity. Intuitively speaking, it can only be 

solved to global optimality by (nearly) exhaustive search. At 
present we solve the problem with a greedy multi-start heuristic. 
Although it works well, we are planning to switch to a more 
sophisticated approximate optimization scheme in the future. 
The current scheme works as follows. For all pairs of candidate 
matches the point-to-point distances are computed in both scans 
and compared to a threshold (in the experiments 10 cm). Pairs 
which do not exceed the threshold are flagged as compatible, 
resulting in a symmetric binary matrix of pairwise 
compatibilities. Each candidate match in turn (i.e. each line in 
the matrix) is chosen as seed point, and all candidates are 
removed for which the point-to-point distances to the seed are 
incompatible. In the remaining candidate set the one with the 
smallest number of compatible matches (i.e., the smallest 
number of ‘1’ entries) is removed, and that step is iterated, until 
no more incompatibilities remain.  
 
The cliques of compatible matches for every seed are sorted by 
decreasing size (number of correspondences), and starting from 
the biggest one, the rigid transformation is estimated. If the 
residuals of the transformation are above a threshold, the clique 
is discarded and the next smaller one is tested, until a valid 
transformation has been found. The last step is required since 
testing pairwise distances does not account for long-range error 
accumulation. The output of the scheme are two sets of tie 
points in the two scans, which have the same (high) cardinality 
and the same geometric configuration, i.e. they can be matched 
without geometric contradictions. 
 

 
 

Figure 4: Set of matched tie points in two scans 
 
Figure 4 shows a subset of matched tie points. While some 
points are purely virtual, others correspond to existing objects 
(e.g. room corners). 
 
 

6. EXPERIMENTAL EVALUATION 

6.1 Test Set Up 

The proposed method has been tested with an indoor data set 
consisting of 4 scans. The rectangular room (~15 x 10 metres) 
has desks and tables, chairs, round pillars and some whiteboards 
on the walls. The scans have been acquired with the Zoller + 
Fröhlich TLS Imager 5006i and have a field of view of 360° 
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horizontal and 150° vertical. Each scan consists of 2.7 million 
points (2502 x 1076).  
 
The following parameters were used: 5 pyramid levels for plane 
fitting; outlier threshold 1 cm; minimum plane cardinality 0.1% 
of all scan points; minimal reciprocal condition number to 
accept a tie point 0.1; maximum number of candidate matches 
after descriptor matching 5000 (corresponding to descriptor 
distances between 0.01 and 0.001); threshold for compatible 
geometric distances 10 cm; maximum allowable mean residual 
of rigid transformation 10 cm. Except when testing the noise 
sensitivity, these parameters were left unchanged. 
 
6.2 Success rate 

The success rate has been computed for all pairs of scans in the 
test data set, see Table 2. All experiments were repeated 50 
times with the same parameters, because of the randomness 
induced by RANSAC plane fitting. The estimated 
transformation parameters were compared to manually 
registered ground truth.  
 

 Master     
Slave 

1 2 3 4 Total 

1  86% 80% 88% 87% 

2 84%  100% 88% 81% 

3 82% 100%  100% 94% 

4 86% 88% 98%  91% 

Total 84% 91% 93% 92% 90% 

 
Table 2: Success rate of proposed method using test sets 

 
As shown in Table 2, 90% of the scan pairs were correctly 
matched. Most of the mistakes are due to the high degree of 
symmetry of the scene: regarding only the main walls, several 
registrations are equally correct. The remaining dominant planes 
(e.g. tables) mostly reduce the ambiguity to two cases, which 
differ by a rotation of 180° around the vertical axis.  
 
Further tests were performed to assess, how the success rate 
depends on the number of extracted planes. In Figure 5, the 
minimum, maximum and mean number of extracted planes in 
two scans is visualized. As expected, with more planes, the 
number of successful registrations increases, at the price of 
increased computational cost. Note the timing is based on an 
unoptimized Matlab implementation on a current 8-core 
machine including the whole working process (from import 
until the resulting transformation). 
 

 
 

Figure 5: Correctness of registration and computation time for 
varying numbers of extracted planes 

As an extreme case to test the limits of the method, the 
registration of an additional scan was attempted, taken from the 
ground, and thus leading to massive occlusions by the furniture. 
The success rate decreases to 39%, and the most dissimilar scan 
pairs could not be matched at all. 
 
6.3 Sensitivity to Noise 

Noise affects the proposed method only during plane extraction, 
since all subsequent steps are based on the planes and not on the 
3D points themselves. To test the sensitivity to noise in the 
point cloud, we have repeated the test with different levels of 
synthetically added Gaussian i.i.d. noise (see Figure 6). In these 
experiments, the outlier threshold of RANSAC was set to 
3 sigma. For completeness we also show the results with 
constants thresholds of 1 cm (low) and 10 cm (high).  
 

 
 

Figure 6: Successful registrations with different noise level 
regarding the outlier threshold 

 
As expected, a low threshold quickly causes the method to 
break down. A higher threshold is less efficient in case of lower 
noise, but surpasses the lower and even the adaptive threshold 
with increasing noise (> 3 cm), since it has a higher chance of 
finding very noisy planes, even though the inlier/outlier 
separation might not be accurate. Overall, when the correct 
threshold (respectively the measurement uncertainty) is known, 
the results start to deteriorate for sigma bigger than 3 cm. Given 
that laser scanners typically have measurement uncertainties 
below 1 cm, the robustness of our algorithm should be sufficient 
for practical applications. 
 
6.4 Contribution of Descriptors and Geometric Constraints 

As already mentioned in Chapter 5.2 the number of candidate 
matches was limited (in our tests to 5000). The mean number of 
candidates during a correct registration process was 4000, of 
which in average 45 were accepted. The geometric matching 
thus can successfully discover correct cliques which cover only 
1% of the candidates. Reducing the maximum candidate 
number results in lower success rates, by wrongly pruning 
correct correspondences. This confirms the claim that descriptor 
matching alone is not yet reliable enough. 
 
 

7. CONCLUSIONS 

Our proposed algorithm is able to perform coarse registration of 
two laser scans in a fully automated fashion, such that 
registration can be completed with a suitable algorithm such as 
ICP. 
 

0.0

0.4

0.8

1.2

1.6

2.0

0%

20%

40%

60%

80%

100%

15 20 25 30 35 40

C
om

p
u

ta
ti

on
 T

im
e 

in
 m

in

S
u

cc
es

s 
R

at
e

Number of Extracted Planes

Minimum Planes
Maximum Planes
Mean Planes
Time

0%

20%

40%

60%

80%

100%

0 0.5 1 1.5 2 3 4 5 10

S
u

cc
es

s 
R

at
e

Noise Level in cm

Low

High

Adaptive

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

177



 

Our preliminary tests have shown the potential of the proposed 
method, although further improvements are necessary, 
especially regarding the efficiency of the descriptor. So far, only 
geometrical information is used to describe a tie point. We plan 
to also use intensity measurements of the scanner itself, and 
possibly also colour information of a camera with known 
orientation, to construct stronger descriptors. Also, splitting the 
matching into two sequential steps might allow one to better 
exploit weaker features like the plane extent, which at present 
have almost no influence due to their excessively low weight. 
 
Furthermore we will also test the method in outdoor 
environments. We expect that extensions to other geometric 
elements may become necessary, since fewer planes are 
available outdoors.  
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