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ABSTRACT: 

 

The problem of image correspondence measure selection for image comparison and matching is addressed. Many practical applications 

require image matching “just by shape” with no dependence on the concrete intensity or color values. Most popular technique for 

image shape comparison utilizes the mutual information measure based on probabilistic reasoning and information theory background. 

Another approach was proposed by Pytiev (so called “Pytiev morphology”) based on geometrical and algebraic reasoning. In this 

framework images are considered as piecewise-constant 2D functions, tessellation of image frame by the set of non-intersected 

connected regions determines the “shape” of image and the projection of image onto the shape of other image is determined. 

Morphological image comparison is performed using the normalized morphological correlation coefficients. These coefficients 

estimate the closeness of one image to the shape of other image. Such image analysis technique can be characterized as an “intensity-

to-geometry” matching. This paper generalizes the Pytiev morphological approach for obtaining the pure “geometry-to-geometry” 

matching techniques. The generalized intensity-geometrical correlation coefficient is proposed including the linear correlation 

coefficient and the square of Pytiev correlation coefficient as its partial cases. The morphological shape correlation coefficient is 

proposed based on the statistical averaging of images with the same shape. Centered morphological correlation coefficient is obtained 

under the condition of intensity centering of averaged images. Two types of symmetric geometrical normalized correlation coefficients 

are proposed for comparison of shape-tessellations. The technique for correlation and matching of shapes with ordered intensities is 

proposed with correlation measures invariant to monotonous intensity transformations. The quality of proposed geometrical correlation 

measures is experimentally estimated in the task of visual (TV) and infrared (IR) image matching. First experimental results 

demonstrate competitive quality and better computational performance relative to state-of-art mutual information measure. 

 

 

1. INTRODUCTION* 

 

Image matching is one of actual problems in remote sensing and 

machine vision. The selection of image matching procedure for 

some practical application depends on different aspects of the 

whole matching algorithm. Some of these aspects concern with 

discontinuities in object space and perspective distortions of 

compared images. Other aspects deal with sub-pixel precision 

and computational cost of matching. Many researchers have 

explored these aspects. We have investigated them too in our 

previous works (Zheltov, Sibiryakov, 1997; Zheltov, Vizilter, 

2004). This paper concerns the other aspect of matching 

procedure – the measure of image fragments similarity (or 

dissimilarity) to be utilized in matching algorithm. 

In some practical cases the final quality and performance of 

image matching procedure essentially depends on quality and 

performance of image comparison function. So, there are some 

special functions for comparison of binary, grayscale, colored, 

multispectral and other types of images. This paper devoted to 

the problem of image matching “just by shape” with no 

dependence on the concrete intensity or radiometric pixel 

values. For example, one can compare images of one scene 

captured at different seasons, different time of day, in different 

weather and lighting conditions, in different spectral ranges and 

so on. The most popular technique for such image shape 

comparison utilizes the mutual information measure based on 

probabilistic reasoning and information theory background 

(Maes, 1997). The other approach was proposed by Pytiev (so 

called “Pytiev morphology”) based on geometrical and 

algebraic reasoning (Pytiev, 1993). This paper develops the 

ideas of this geometrical approach. 

                                           

*   Corresponding author. 

In the framework of Pytiev morphology images are considered 

as piecewise-constant 2D functions. The tessellation of image 

frame by the set of non-intersected connected regions with 

constant intensities determines the “shape-tessellation” or 

simply “shape” of the image. Morphological image comparison 

is performed using the normalized “morphological” correlation 

coefficients. 

The motivation of reported theoretical research is following. In 

Pytiev approach one supposes that the “shape” F of some “class 

sample” f is given by supervisor, and one needs to determine 

whether any observed image g belongs to this class. This 

scheme presumes that the shape of f is more believable than the 

shape of g. But in practice it is not always reasonable. A lot of 

applications require estimating the closeness or difference 

between two images with the same belief of shape. So, one 

needs to suppose that both f and g are randomly selected from 

their “shape sets” F and G correspondingly. In such case they 

should be compared either as images (“intensity comparison” 

like in linear correlation) or as pure shapes (“geometrical 

comparison”). The intermediate “intensity-geometrical” 

comparison like Pytiev correlation is not reasonable here. 

Besides, the geometrical shape comparison could provide the 

possibility of image matching for images segmented not only by 

intensity, but by other features, for example, by texture. Finally, 

it is useful to design some symmetric image comparison 

measures invariant to shape preserving intensity transforms. 

According to this motivation some new correlation tools for 

geometrical comparison and matching of shape-tessellations 

will be proposed based on generalization of Pytiev 

morphological correlation. Destination and properties of  

proposed geometrical correlation tools will be comparable and 

competitive with those of mutual information. 
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2. IMAGE COMPARISON PROBLEM 

 AND RELATED WORKS 

 

Let image is represented by 2D intensity function f(x,y): R, 

R2, where  is a frame region of bounded size, R – set of 

real numbers, R2 – 2D plane of image. The operation of 

“comparison” of images f(x,y) and g(x,y) presumes the 

estimation of their “similarity” or, conversely, “dissimilarity”. 

Numerical estimation of “similarity” is usually performed by 

such similarity measures as correlation coefficients. 

“Dissimilarity ” is estimated by distances in some metrics. The 

proper formulas of such coefficients and distances are 

determined by image models and image spaces we use. 

Classical approach to image comparison considers images as 

elements of Hilbert space L2() with scalar product (f,g), 

Euclidean norm || f ||2 = (f,f) and Euclidean distance 

dE(f,g) = || f – g ||. But photographic linear transforms of image 

intensity can essentially change the distance between images 

and even the pair of very similar images will seem to be very 

“far”. So, for image comparison invariant relative to linear 

intensity transform the following normalized linear correlation 

coefficient is applied 
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In this formula images are usually centered, i.e. decreased by 

their constant average values. 

Such approach is well-known in photogrammetry as a least 

squares matching (Gruen, Baltsavias, 1985). 

But even the normalized linear correlation is not invariant 

relative to more complex (nonlinear) intensity transforms 

occurred in practice. For image comparison under such complex 

and unknown intensity transforms the mutual information 

approach was proposed (Maes, 1997). Mutual information 

I(A,B) estimates the dependence of two random variables A and 

B by measuring the distance between the joint distribution 

pAB(a,b) and the distribution of complete independence 

pA(a)pB(b) by means of following expressions 

 

 

I(A,B) = H(A) + H(B) – H(A,B), 

H(A) = – a pA(a) log pA(a), 

H(B) = – b pB(b) log pB(b), 

H(A,B) = – a b pAB(a,b) log pAB(a,b), 

 

 

where H(A) is an entropy of A, H(B) is an entropy of B, and 

H(A,B) is their joint entropy. For two image intensity values a 

and b of a pair of corresponding pixels in the two images, 

required empirical estimations for the joint and marginal 

distributions can be obtained by normalization of the joint (2D) 

and marginal (1D) histograms of compared image fragments. 

Maximal I(A,B) value corresponds to the best geometrical 

matching of image fragments. 

This approach is based on probabilistic reasoning. It provides 

the robust tool for matching of images with different intensities 

based on their joint 2D histograms. But these histograms can 

not explain the geometrical idea of image “shape” in some 

evident form. Such mathematical “shape” formalism is given in 

evident form in the so-called “morphological” approach for 

image comparison proposed by Pytiev (Pytiev, 1993). 

In the framework of this approach images are considered as 

piecewise-constant 2D functions 

 

 

f(x,y) = i=1,..,n fi Fi(x,y), 

 

 

where n – number of non-intersected connected regions of 

tessellation F of the frame , F={F1,…,Fn}; f=(f1,…,fn) – 

corresponding vector of real-valued region intensities; 

Fi(x,y){0,1} – characteristic (support) function of i-th region: 
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Set of images with the same tessellation F is a convex and close 

subspace FL2() called shape-tessellation or simply shape: 

 

 

F = { f(x,y) = i=1,..,n fi Fi(x,y), fRn}. 

 

 

For any image g(x,y)L2() the projection onto the shape F is 

determined as 

 

 

gF(x,y) = PF g(x,y) = i=1,..,n gFi i(x,y), 

gFi = (Fi,g) / || Fi ||
2, i=1,…,n. 

 

 

Here PF is a projective operator called projector to F. Let’s note 

that for any image f(x,y) the description of its “shape” by a set 

of frame tessellation regions F={Fi}, by corresponding vector 

subspace F and by corresponding projection operator (“shape 

projector”) PF are practically equivalent. 

Pytiev morphological comparison of images f(x,y) and g(x,y) is 

performed using the normalized morphological correlation 

coefficients of the following form 
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The first formula estimates the closeness of image g to the 

“shape” of image f. Second formula measures the closeness of 

image f to the “shape” of image f. In general KM(g,F) is not 

equal to KM(f,G). So, this morphological image matching score 

is asymmetric in contrary to symmetric linear correlation 

coefficient KN(f,g). 

 

 

3. GENERALIZED INTENSITY-GEOMETRICAL 

CORRELATION 

 

While the linear correlation coefficient KN(f,g) compares images 

just as intensity functions (“intensity-to-intensity” matching), 

morphological coefficient KM(f,G) compares the intensity 

distribution of f(x,y) with geometrical shape of g(x,y) 

(“intensity-to-geometry” matching). In other words, there are 

different types of image correlation: intensity and intensity-

geometrical correlation. Are these correlation techniques 

principally independent or could be united in some more 

generic correlation frame work? In this section the answer will 

be given. 

Let some images f and g are given and some shape W is 

considered. Then one can measure the angle (fW  gW). The value 
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(fW,gW) characterizes the similarity of images g and f relative to 

shape W. In particular, if cos(fW  gW)=0, then images f and g are 

orthogonal or independent relative to shape W. 

This allows introducing the normalized linear correlation 

coefficient of images g and f relative to shape W: 
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Following expressions are satisfied: 
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So, the generalized intensity-geometrical correlation coefficient 

KN(f,g,W) includes both the linear correlation coefficient and the 

square of Pytiev correlation coefficient as its partial cases. It 

means that the intensity-geometrical (morphological) 

correlation is more generic relative to intensity (linear) 

correlation and includes it as a part of its own framework. 

Note that in this generic form KN(f,g) “structurally corresponds” 

to the square of morphological coefficient KM
2(f,G). Hence, if 

one needs to compare the sensitivity of different correlation 

techniques, one should compare KN with KM
2, but not with KM. 

 

 

4. GEOMETRICAL SHAPE COMPARISON BASED ON 

STATISTICAL AVERAGING OF PROJECTED IMAGES 

 

 

If one fixes some shape G and takes some different images f 

from shape F, there will be different values of KM
2(f,G). 

Nevertheless, one can try to average these values over a set of 

images from F and obtain some “average effective” 

morphological correlation coefficient for comparison of shapes 

F and G. Let f(x,y) form F is a piecewise-constant 2D function 

described above (in section 2). Image g(x,y) from G is an 

analogous 2D function with m as a number of tessellation 

regions G={G1,…,Gm}; g=(g1,…,gm) – vector of intensity 

values; Gj(x,y){0,1} – support function of j-th region. Let’s 

introduce following additional set of “S-variables”: 

S – area of the whole frame ; 

Si = || Fi(x,y) ||2 – area of tessellation region Fi; 

Sj= || Gj(x,y) ||2 – area of tessellation region Gj; 

Sij= ( Fi(x,y), Gj(x,y) ) – area of intersection FiGj. 

In terms of mutual information approach these S-variables 

correspond to following marginal and joint probabilities: 

pF(fi) = Si /S, pG(gj) = Sj /S, pFG(fi,gj) = Sij /S. 

With account of these S-variables 

 

 

|| f ||2 = i=1,..,n fi
2 Si, 

|| fG ||2 = j=1,..,m fGj
2 Sj, 

 

 

where fGj = (i=1,..,n fi Sij)/Sj, j=1,..,m. 

Additionally introduce the following assumptions about the 

distributions of probability densities for intensity values f1,…,fn: 

1) p(f1,…,fn) = p(f1)…p(fn) – values f1,…,fn are independent in 

general; 

2) p(f1) = … = p(fn) – values f1,…,fn are equally distributed; 

3) i=1,..,n: p(fi) = p(–fi) – values f1,…,fn are distributed 

symmetrically relative to 0. 

Consequently, the expectation of all intensity values in this 

model is zero-valued: fi =0, and the covariation has the form 
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where  – is a dispersion of probability distribution p(fi). 

With account of introduced assumptions the mean square of 

norm for image f of shape F has a form 

 

 

 || f ||2  = i=1,..,n fi
2 Si = i=1,..,n 

2 Si = 2 i=1,..,n Si = 2 S. 

 

 

The mean square of projection norm for image f of shape F and 

fixed shape G has a form 

 

 

 || fG ||2  = j=1,..,m fGj
2 Sj = j=1,..,m (i=1,..,n fi Sij)

2/Sj
2 Sj = 

= j=1,..,m (i=1,..,n 
2 Sij

2) / Sj = 2 j=1,..,m i=1,..,n Sij
2 / Sj . 

 

 

Let’s determine the mean square effective morphological 

correlation coefficient (MSEMCC) for shapes F and G as 

 

 

.
||||

||||
),(

2

2
2






f

f
GFK G

M

 

 

 

After evident substitutions MSEMCC takes the following form 
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         = j=1,..,m i=1,..,n K(Fi,Gj) KM
2(Gj,Fi),  (1) 

 

 

where K(Fi,Gj) = Sij / S – normalized influence coefficient for 

pair of regions Fi and Gj; 

KM
2(Gj,Fi) = Sij / Sj – square of normalized morphological 

correlation for pair of regions Fi and Gj of the form 

KM(A,B) = || PB A || / || A || = || A  B || / || A ||; 

KM(F,G)  [0,1] – normalization property; 

KM(F,F) = 1 – identity property. 

However there is one important problem with MSEMCC (1). It 

can not take in account the “independence” of shapes in a 

Pytiev sense. For such independent shapes F and G for any 

centered images fF, gG: KM(g,F) = KM(f,G) = 0, but 

MSEMCC can not provide the property KM(F,G) = KM(G,F) = 0 

due to the fact that intensity of images in our reasoning above 

was not supposed to be centered. 

Let’s start from the centered Pytiev morphological coefficient 
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where f0 = i=1,..,n fi Si / S – average intensity value for image f. 

Introduce the mean square centered morphological correlation 

coefficient (MSCMCC) for shapes F and G as 
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After some substitutions MSCMCC takes the following form 
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Expression (2) is not so compact as (1), but due to relation 
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MSCMCC provides both properties of (1) and important 

additional property 

 

 

KMC(F,G) = 0, KMC(G,F) = 0  

 fF, gG: || PF g – g0  || = || PG f – f0 || = 0. 

 

 

This property describes the independence of shapes in a Pytiev 

sense (Pytiev, Chulichkov, 2010). 

 

 

5. SYMMETRIC GEOMETRICAL SHAPE 

CORRELATION COEFFICIENTS 

 

Let’s try to construct symmetric modification of MSEMCC (1). 

Symmetric pair correlation coefficient for regions Fi and Gj can 

be defined as follows: 

 

 

,),(
2

2

ijji

ij

ji

ji

jiMS
SSS

S

gf

gf
GFK









 

 

 

Then modifying the expression (1) one can obtain the following 

symmetric geometrical correlation coefficient (SGCC): 
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                   = j=1,..,m i=1,..,n K(Fi,Gj) KMS(Gj,Fi). (3) 

 

SGCC satisfies both properties of (1) and symmetry property 

 

 

KMS(F,G)=KMS(G,F). 

 

 

The other symmetric modification of geometric correlation (1) 

can be proposed based on the linear normalized pair correlation 

coefficient for regions Fi and Gj: 
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Geometrical linear correlation coefficient (GLCC) can be 

defined as 
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                  = j=1,..,m i=1,..,n K(Fi,Gj) KN(Gj,Fi). (4) 

 

 

Properties of GLCC are the same as the SGCC properties. 

 

 

6. COMPARISON OF SHAPES WITH ORDERED 

INTENSITIES 

 

Finally let’s consider the problem of comparison of shapes with 

ordered intensities. This case corresponds to the class of 

monotonous intensity transforms. For simplicity we suppose 

that there are no equal values in intensity vectors f and g.  

For each region Fi one can define the relative intensity function 
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and each region Gj has the analogous function Gj(x,y). 

The similarity of ordered intensity sequences in “ordered 

shapes” F+ and G+ related to pair of regions Fi and Gj can be 

described by pair relative intensity correlation coefficient 
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The use of this pair coefficient allows easy modifying the 

proposed geometrical correlation coefficients (1), (3) and (4) in 

order to take in account the ordering of intensity values. 

For example, the modified geometrical linear correlation 

coefficient (MGLCC) will have a form 

 

 

KN
+(F+,G+) = j=1,..,m i=1,..,n K(Fi,Gj) KN(Gj,Fi) K(Fi,Gj). 

 

 

Following properties of MGLCC are satisfied: 
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KN
+(F+,G+)  [-1,1]; 

KN
+(F+,F+) = 1; 

KN
+(-F+,F+) = -1; 

KN
+(F+,G+)=KN

+(G+,F+). 

 

 

Here “-F+” means the shape with the same frame tessellation as 

F+, but inverse order of region intensities. In analogous way the 

correlation coefficients (1) and (3) can be modified too for 

obtaining their intensity ordering sensitive modifications. 

 

 

7. EXPERIMENTAL RESULTS 

 

Proposed geometrical correlation techniques were implemented 

in software and tested over a set of real images including remote 

sensing and multispectral images. The quality of proposed 

geometrical correlation measures was investigated relative to 

the quality of mutual information measure and Pytiev 

correlation coefficient in the task of TV (visual band) and IR 

(infrared band) image matching. TV and IR images were 

geometrically co-registered. Then some fragments of TV image 

were compared with all equal-sized fragments of corresponding 

IR image. For increasing of matching robustness the histograms 

of these TV and IR fragments were segmented with n=m=4 

levels using least square optimal segmentation procedure. For 

segmented image fragments f (TV) and g (IR) at each fragment 

g position (x,y) following similarity measures were calculated: 

- mutual information MI = I(F,G); 

- square of centered Pytiev morphological coefficient 

  Kp = KM
2(f – f0,G); 

- square of MSEMCC Km = KM
2(F,G) (1); 

- square of MSCMCC Kmc = KMC
2(F,G) (2); 

- SGCC Kms = KMS(F,G) (3); 

- SLCC Kn = KN(F,G) (4). 

The quality of these measures was estimated by following 

statistics of 2D correlation function С(x,y) – SNR (signal-to-

noise ratio) and E (exceeding of first maximum to second one): 
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where C1 – global maximum of correlation value; C2 – second 

global maximum of correlation value out of some small 

neighborhood of first global maximum; μ – mean value of 

correlation function; σ – dispersion of correlation function. 

Figure 1 demonstrates the example (Example 1) of experimental 

TV-IR data corrupted by Gaussian noise. Figure 2 demonstrates 

2D-graphs (correlation fields) of different correlation measures 

for matching of TV etalon and IR image (for Example 1). 

Corresponding numerical data are listed in Table 1. Example 2 

(Figures 3, 4; Table 2) presents the other TV-IR image pair 

corrupted by Gaussian noise with smaller size of etalon 

fragment.  

Analysis of these and other analogous TV-IR matching 

examples allows making following conclusions: 

1. In case of relatively large fragment matching for clear and 

noisy images both Pytiev morphological coefficient and all 

proposed geometrical correlation measures (1)-(4) provide SNR 

and E values close to mutual information characteristics (a little 

bit worse or better). 

2. In case of relatively small fragment matching both for clear 

and noisy images proposed asymmetrical geometrical 

correlation measures (1)-(2) provide SNR and E values slightly 

better than Pytiev morphological coefficient and mutual 

information characteristics. But proposed symmetrical 

geometrical correlation measures (3)-(4) with small fragment 

and essential noise provide SNR and E values essentially worse 

than other tested measures and even can fail in global peak 

position (like in Example 2). These measures are not robust 

enough relative to noise and fragment size. 

3. Both shapes of correlation fields and SNR and E values for 

proposed measures (1) and (2) are exactly equal in all 

experiments due to the linear relation pointed in section 4 (but 

they will be not equal in case of inverse order of etalon and test 

shape arguments). 

 

 

Measure Max value SNR E 

MI 0.00865*10-3 4.7334 2.7357 

Kp 0.01159 4.7320 2.9902 

Km 0.25491 4.7200 2.7725 

Kmc 0.00384*10-3 4.7200 2.7725 

Kms 0.14647 4.8785 2.5354 

Kn 0.25548 4.8587 2.3340 

 

Table 1. Numeric data for TV-IR matching (Example 1). 

 

 

Measure Max value SNR E 

MI 0.03613 9.2157 1.7512 

Kp 0.04361 8.9576 1.6643 

Km 0.28774 10.3510 1.8913 

Kmc 0.00159*10-3 10.3510 1.8913 

Kms 0.1599 4.6429 1.2303 

Kn 0.27794 4.1009 1.2635 

 

Table 2. Numeric data for TV-IR matching (Example 2). 

 

Totally, we can resume first experimental results as follows. 

Proposed MSEMCC and MSCMCC measures are very close to 

mutual information by matching characteristics and shape of 

correlation field. In our experiments these measures are usually 

a little bit better than MI (not statistically proved). But, taking in 

account the computational simplicity of expression (1) relative 

to MI and MSCMCC formulas, one can conclude that 

MSEMCC is the best geometrical correlation measure for 

practical applications with matching of different band images. 

 

 
 

 

a) 
 

b) 

 
c) 

 
d) 

 

Figure 1. Example 1: a) etalon TV fragment; b) test IR image; 

c) segmented TV fragment; d) corresponding segmented IR 

fragment. 
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Figure 2. Correlation fields for TV-IR matching (Example 1). 

 

 

 

a) 
 

b) 

 
c) 

 
d) 

 

Figure 3. Example 2: a) etalon TV; b) test IR; c) segmented TV 

fragment; d) corresponding segmented IR fragment. 

 

 

CONCLUSION 

 

This paper generalizes some results of Pytiev morphological 

image analysis (Pytiev, Chulichkov, 2010). 

Following theoretical results of this paper are new and original: 

- The generalized intensity-geometrical correlation coefficient is 

proposed that includes the linear correlation coefficient and the 

square of Pytiev correlation coefficient as its partial cases. 

- The mean square effective morphological correlation 

coefficient (MSEMCC) is proposed based on the statistical 

averaging of projected images with the same shape. Mean 

square centered morphological correlation coefficient 

(MSCMCC) is obtained under centering for projected images. 

- Two types of symmetric geometrical normalized correlation 

coefficients are proposed based on the form of MSEMCC. 

- The technique for correlation and matching of shapes with 

ordered intensities is proposed too. It is invariant just relative to 

monotonous intensity transformations. 

 

 

 
 

Figure 4. Correlation fields for TV-IR matching (Example 2). 

 

First experimental testing of proposed similarity measures is 

performed for TV and IR image matching task. Based on these 

experiments, MSEMCC seems to be competitive in quality and 

better in computational performance relative to the state-of-art 

mutual information measure. But proposed symmetric 

correlation measures are not stable enough relative to noise and 

should be improved. 

Further research will include the design of more robust 

symmetric geometrical correlation coefficients and massive 

experimental exploration of precision and robustness for all 

described shape correlation techniques. 
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