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ABSTRACT: 
 
In order to tackle the problem of consistently integrating 2D vector data and a DTM, we presented an approach for the adaptation of 
2D GIS road objects to airborne laser scanning (ALS) data using active contours (snakes) in (Göpfert et al., 2011). In this paper the 
algorithm is modified for the integration of stereo images as an alternative data source for area-wide height information. For that 
reason, a new image energy is developed that exploits geometric and radiometric features derived from the image data. Afterwards, 
we compare the applicability of our method with respect to the ALS data and stereo images as input. In addition, a new approach is 
suggested that analyses the different energy terms of active contours after the optimisation process in order to automatically detect 
contour parts that did not reach a suitable position in the sensor data. This concept of an internal evaluation is able to guide the user 
during post processing. Experiments show that the snake approach with an image energy based on stereo images is generally able to 
adapt GIS road centrelines to the sensor data and thus to improve the quality of the 2D vector data. However, the comparison to the 
results for ALS data demonstrates that the algorithm perform slightly worse for image data in the high precision level. 
 
 

1. INTRODUCTION 

1.1 Motivation 

Topographic information systems such as the German 
Authoritative Topographic Cartographic Information System 
(ATKIS®), usually consist of object-based 2D vector data and a 
digital terrain model (DTM). The vector data describe the 
objects on the Earth’s surface and additional attributes, whereas 
the DTM is a continuous 2.5D representation of the terrain. For 
applications such as flood risk assessment, 3D modelling of the 
topographic objects is necessary, which requires the integration 
of the 2D vector data and the DTM. However, there are 
discrepancies between the vector data and the DTM due to 
different methods of acquisition, processing, and modelling. As 
a consequence, integration without matching the data sets leads 
to semantically incorrect results, e.g. road surfaces having large 
gradients in the DTM. Thus, the two data sets have to be 
adapted for accurate combined visualization and processing. 
 
In (Göpfert et al., 2011), road centrelines from topographic data 
bases (as linear features) were adapted to airborne laser 
scanning (ALS) data by means of network snakes (Butenuth & 
Heipke, 2012). The road centrelines were used to initialise the 
snakes, defining their topology and their internal energy, 
whereas features in the ALS data exert external forces to the 
snake via the image energy. ALS delivers a 3D point cloud, 
from which the digital surface model (DSM) is interpolated. A 
DTM can be generated by filtering methods. The DSM also 
contains information about objects situated on the terrain, such 
as buildings and bridges. In addition, ALS intensity data contain 
reflectance information of the illuminated objects. We have 
shown that suitable image energies for the adaptation of road 
centrelines can be composed using these ALS features (Göpfert 
et al., 2011). However, ALS flights are expensive and thus 
many providers of topographic data acquire nation-wide height 
information by means of stereo images, which are often 

gathered in periodic flights for the purpose of map updating. To 
make use of these data in our framework, a new formulation of 
the image energy is proposed for the adaptation process. It is 
exclusively based on geometric and radiometric information 
from stereo images, whereas the general geometric object model 
of the snakes is not changed. The quality of the adaptation 
results is compared for the two different sensor data, i.e. ALS 
data and stereo images. 
 
One major disadvantage of our previous adaptation approach 
and of active contour models in general results from the lack of 
a suitable internal evaluation. Thus, in this paper a strategy for 
the interpretation of the different energy terms of the snake 
nodes is suggested in order to detect contour parts that did not 
reach a suitable position in the sensor data.  
 
It is the general goal of this paper to present a new algorithm for 
improving 2D road vector data using stereo images. The 
approach is tested using road centrelines from different GIS 
data bases, namely ATKIS and OpenStreetMap (OSM). ATKIS 
roads typically have an accuracy of 3-5 m, with local deviations 
that may reach 10 m. Roads from OSM have a very 
inhomogeneous accuracy due to the patchwork characteristic of 
this data set, which may disturb the local geometry of the road 
network and makes the adaptation process more challenging. 
 
1.2 Related Work 

Pilouk (1996) as well as Lenk and Heipke (2006) investigated 
the incorporation of the 2D geometry of the vector objects into a 
DTM modelled by a TIN, but the inconsistencies between the 
vector data and the DTM were not considered. Rousseaux and 
Bonin (2003) model 2D linear objects such as roads and dikes 
as 2.5D surfaces by using attributes of the GIS data base and the 
DTM heights with the goal of generating an improved DTM. 
They use slopes and regularization constraints to check the 
semantic correctness of the objects, but they do not adapt the 
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objects if this check fails. Koch and Heipke (2006) extend the 
integration methods based on TIN structures by a least squares 
adjustment using equality and inequality constraints in order to 
incorporate the semantics of the objects. However, the approach 
is rather sensitive to the definition of the weights. Furthermore, 
the implicit information about the vector objects in the height 
data such as structure lines at road embankments is not 
considered. We tackle these deficits by using image energies for 
active contours based on stereo images in order to correct the 
positions of the objects considering their height information. 
 
Snakes or parametric active contours are a well-known concept 
for combining feature extraction and geometric object 
representation (Kass et al., 1988; Blake & Isard, 1998). Snakes 
explicitly represent a curve parameterized by its arc length. The 
concept is widely used in image and point cloud analysis as well 
as GIS applications. For example, Burghardt and Meier (1997) 
suggest an active contour algorithm for feature displacement in 
automated map generalisation, and Cohen and Cohen (1993) 
introduce a finite elements method for 3D deformable surface 
models. Borkowski (2004) shows the capabilities of snakes for 
break line detection in the context of surface modelling. Laptev 
et al. (2001) extract roads using a combined scale space and 
snake strategy. In the standard formulation, snakes cannot 
handle changes in the topology such as splitting and merging of 
entities (McInerny & Terzopoulos, 1995). This is not a problem 
for the adaptation of the 2D vector data to height information, 
because the initial topology is taken from the GIS data base and 
should be kept fixed during the process. 
 
In order to extract roads from height data, Rieger et al. (1999) 
propose twin snakes to model roads as parallel edges. This 
integration of model knowledge stabilises the extraction and is 
able to bridge gaps in the structure lines in the vicinity of roads, 
which are often not continuous in nature. Road extraction can 
also be improved by fusing height and image data (Zhu et al., 
2004) as well as GIS data (Oude Elberink & Vosselman, 2006). 
 
In our previous work we used network snakes, which preserve 
and exploit topology (Butenuth & Heipke, 2012), for adapting 
2D road vector data to ALS intensity and height data (Göpfert et 
al., 2011). The image energies consisted of a combination of the 
ALS intensity, DTM features, such as terrain roughness and 
slope, and information about extracted bridges and buildings. 
However, due to the high cost of ALS flights many providers of 
topographic data derive their area-wide height information from 
stereo images. Therefore, it is one goal of this paper to design a 
new image energy that integrates not only the height 
information but also radiometric features provided by aerial 
stereo images. Furthermore, the quality of the image energy 
derived from ALS data and stereo imagery is compared with 
respect to the adaptation task. 
 
Förstner (1996) emphasised that empirical testing is not enough 
for performance characterisation of a computer vision 
algorithm; it should be assisted by an evaluation based on the 
theory underlying the algorithm. However, existing approaches 
of parametric active contours usually do not provide such an 
internal evaluation, which could be used to detect snake parts 
where the optimisation does not converge to a satisfactory 
solution. Kerschner (2003) analysed the change of the width of 
the twin snake model for that purpose. However, a strategy for 
the general snake model is not available. Thus, the second goal 
of this paper is to present an automatic self-diagnosis of the 
optimisation results by analysing the different energy terms of 
the snake nodes. This concept should be able to detect contour 
parts that did not reach a suitable position in the sensor data and 
to guide the user during post processing. 
 

2. METHOD 

2.1 General work flow 

We propose a top-down method using the concept of network 
snakes for adapting road networks from a topographic data base 
to stereo images. The initialization of the snake and therefore 
the internal energy are obtained from the vector data, whereas 
stereo images define the new image energy forcing the snake to 
salient features (Section 2.3). Compared to our previous work 
(Göpfert et al., 2011), where ALS features are exploited to 
design the image energy, here we use geometric and radiometric 
features derived from colour infrared (CIR) stereo images. 
Image matching algorithms are used to derive a DSM, from 
which the DTM is generated by filtering methods. Buildings are 
extracted in the DSM and integrated into the image energy as 
context objects to act as repulsion forces for road parts. After 
defining and weighting the different terms of internal and image 
energies the iterative optimisation process is started, modifying 
the position of the network snake. The change of the position of 
the contour in the current iteration is used to determine the 
convergence of the algorithm. Afterwards, the new position of 
the contour should match the corresponding features for the 
road network in the image data. In order to detect contour parts 
that did not reach a suitable position in the sensor data, a 
strategy for an internal evaluation based on the analysis of the 
different energy terms of the snake is suggested (Section 2.4). 
 
2.2 Snakes and network snakes 

In this section a short introduction about snakes and some 
extensions used in our method is given; cf. (Göpfert et al., 2011) 
for details. It is the general idea of snakes to determine the 
position of the contour in an image in an iterative energy 
optimisation process. An initialisation of the contour is 
required. Three energy terms are introduced by Kass et al. 
(1988). The internal energy Eint defines the elasticity and 
rigidity of the curve or more generally the geometric object 
model. The image energy Eimage represents the features of the 
object of interest in order to attract the contour to the desired 
position. Additional terms (constraint energy Econ not used in 
our approach) can be integrated in the energy functional, forcing 
the contour to model predefined external constraints: 
 

௦௡௔௞௘ܧ ൌ ׬ ሺܧ௜௡௧ሺܞሺݏሻሻଵ
଴ ൅ ሻ൯ݏሺܞ௜௠௔௚௘൫ܧ ൅  (1)       ݏሻሻሻ݀ݏሺܞ௖௢௡ሺܧ

 
In (1), v(s) = (x(s), y(s)) is the parametric curve with arc length 
s. In order to obtain the optimal position of the snake in the 
image, the energy functional in Eq. 1 has to be minimised, e.g. 
by variational calculus. The original model of the internal 
energy (Kass et al., 1988) favours a smooth and straight shape 
of the snakes, but this model is not well-suited for roads that are 
not straight. Therefore, we prefer another approach, firstly 
introduced by Radeva et al. (1995). Rather than the deviations 
from a smooth and straight shape, the new internal energy 
penalises the differences between the current and the initial 
shape of the snakes: 
 

௜௡௧ܧ ൌ 0.5 · ሾߙ · ሺ|ܞ௦ሺݏሻ|ଶ െ ௦ܞ|
଴ሺݏሻ|ଶሻ ൅ ߚ · ሺ|ܞ௦௦ሺݏሻ|ଶ െ ௦௦ܞ|

଴ ሺݏሻ|ଶሻሿ 
(2) 

 

In (2) ܞ௦, ௦ܞ ௦௦ andܞ
଴, ௦௦ܞ

଴  are the derivatives of contour v and its 
initialisation v0 with respect to s, and α and β are weights. The 
first order term, weighted by α, is responsible for the elasticity 
of the curve. High values of α preserve the initial node 
distances, whereas a small weight α allows for stretching and 
contraction. The second order term, weighted by β, controls the 
curvature of the snake. High values of β preserve the initial 
curvature in the corresponding nodes, while contour parts with a 
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small β are able to change their curvature during the 
optimisation process. The use of the initial geometry of the 
contour as geometric object model supports the adaptation 
process. The concept of network snakes additionally allows 
exploiting the initial topology of a network of contours during 
energy minimisation. The individual contours of the network 
are connected via nodes of an order higher than two at the 
junctions. The internal energy is modified so that the initial 
topology is preserved in the resulting line network. This means 
that at junctions, the elasticity term in (2) is disregarded (α = 0), 
while there is a smoothness term (weighted by β) per line 
intersecting at the junction node (Butenuth & Heipke, 2012). 
 
2.3 Image energy 

The image energy has to be defined in a way to ensure that the 
snake is attracted to image features that are characteristic for the 
object to be extracted. Thus, model knowledge is also 
incorporated into the image energy. The design of the image 
energy is very similar to our previous approach (Göpfert et al., 
2011). There are two main differences due to the replacement of 
the ALS data by stereo images as primary sensor data: the DSM 
and all derived products (DTM, extracted buildings and bridges) 
are based on 3D point clouds generated by matching, and the 
ALS intensity is substituted by the Normalised Differenced 
Vegetation Index (NDVI) derived from the CIR images. The 
image energy Eimage consists of three components, namely a 
general image energy Egen, a building term Ebuild that repulses 
the snakes from buildings, and a bridge term Ebridge attracting 
the snake to bridges detected in the height data: 
 

Eimage = κI • [λ(x,y) • Egen + μ(x,y) • Ebuild + ν(x,y) • Ebridge]   (3) 
 

In (3), κI is a weight for the entire image energy term, and 
 λ(x,y), μ(x,y), and ν(x,y) are weight functions for the individual 
terms that may vary across the image. More specifically, our 
method requires the detection of buildings and bridges. Let 
Build(x,y) be a binary image that takes a value of 1 to indicate 
the presence of a building and 0 otherwise. Analogously, let 
Bridge(x,y) be a binary image indicating the presence of a 
bridge. Then we define  
 

 λ(x,y) = λ0 • [1 - Build(x,y)] • [1 - Bridge(x,y)]  
 μ(x,y) = μ0 • Build(x,y)     (4) 
 ν(x,y) = ν0 • Bridge(x,y) 
 

with λ0 = μ0 = ν0 = 1 = const. In other words, in regions 
classified as a building, only Ebuild is taken into account, in 
regions classified as a bridge only Ebridge is considered, and in 
all other areas only Egen is used. In the subsequent sections, we 
will briefly describe the calculation of the image energy starting 
with the pre-processing of the sensor data.  
 
2.3.1 Pre-processing: The image energy Eimage requires an 
image with radiometric information, a DTM, and extracted 
buildings and bridges as context objects. All the information 
required can be generated from stereo images in several pre-
processing steps. In the first step, 3D points corresponding to 
the DSM are generated by image matching. For DTM 
generation, the 3D points have to be classified as terrain or off-
terrain points. We use a simple method that is based on the 
classification of connected segments of points having a low 
local surface roughness as terrain segments (Niemeyer et al., 
2010). This method has the advantage that it classifies points on 
bridges as ground points, which is necessary to detect bridges 
and to avoid large repulsive forces of the image energy at the 
end points of bridges to the road centre lines. The DTM is 
interpolated from the terrain points by kriging (Cressie, 1990). 

Buildings are detected in the ALS data using the method of 
Rottensteiner et al. (2007). For the definition of the image 
energy, we only need a binary building mask. Bridge detection 
is carried out using the method described in (Göpfert et al., 
2011). The approach requires a DTM including bridges and the 
approximate positions of bridges. The latter information is 
assumed to be contained in the GIS database, be it explicitly, 
e.g., in the form of bridge objects, or implicitly, e.g. by the fact 
that a road segment intersects a river in 2D. The approach is 
able to determine the centre position, direction, width and 
length of the bridge. This information is exploited to design an 
image energy term for snake nodes on and under the bridge. 
 
2.3.2 General image energy: The general image energy Egen is 
composed of the weighted sum of the NDVI and plane 
parameters in the DTM: 
 

(5) 
 
In (5), ENDVI is an energy term derived from the NDVI, EPlane is 
an energy term related to the DTM slopes, and a, b are weights. 
ENDVI exploits the reflectance properties of the visible objects. 
Road surfaces such as asphalt generally have a low NDVI, and 
consequently, the snake should be forced to move to areas with 
small NDVI values. High NDVI values usually highlight active 
vegetation. Thus, trees hanging across the roads may disturb 
this part of the image energy. Furthermore, some other objects 
such as building roofs show properties similar to roads and thus 
influence the optimization process related to ENDVI. The term 
EPlane in (5) exploits the fact that roads are usually situated on 
smooth and flat surfaces. Therefore, a plane is estimated in a 
5 m x 5 m window for every grid point in the DTM, assuming a 
constant value of the minimal road width for the whole scene. 
The term EPlane is defined as the sum of the absolute values of 
the plane slope in x- and y-direction. EPlane thus highlights 
strong slopes in every direction in the image energy. This 
energy part should prevent the snakes representing the roads 
from moving to areas which have invalid height gradients. The 
weights (a, b) of the energy terms in (3) are determined 
empirically, supported by the histograms of the images. 
 
2.3.2 Building Energy: The second energy term in (3), Ebuild, is 
related to buildings. Due to different roof orientations and 
materials, the appearance of buildings in stereo images varies 
considerably, which results in many undesired edges and local 
minima in the energy term derived from the NDVI. In addition, 
buildings cause strong edges in the DSM, and even in the DTM 
some artefacts remain, disturbing a suitable energy definition 
for the adaptation of roads. On the other hand, buildings have 
strong relations to the adjacent road segments: they can be 
treated as forbidden areas and thus act as a repulsion force. We 
generate this repulsion force by a distance transform using the 
outlines of the buildings detected in the pre-processing stage. 
That is, Ebuild is zero outside the building area described by 
Build(x,y), whereas in the interior of a building it is identical to 
the distance to the nearest non-building pixel. The skeletons of 
the building areas act as decision boundaries. If the initialisation 
of the snake is on the correct side of the building skeletons, it 
will slide to the correct urban “valley”. 
 
2.3.3 Bridge energy: Bridges indicate the course of a road with 
high confidence. Thus, the information about bridges should 
guide the evolution of the snake in the corresponding areas. The 
bridge position and direction detected in the pre-processing 
stage are exploited in order to design Ebridge. For the central 
snake node on and under the bridge a distance transform centred 
in the estimated bridge position is used to determine Ebridge, i.e. 
Ebridge increases with the distance from the detected centre of the 
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bridge. This distance transform considers the uncertainty of the 
bridge detection and creates smooth image energies which are 
consistent with the other parts of Eimage. For the other nodes on 
the bridge, Ebridge is shifted along the bridge direction taking 
into account the node distance. 
 
2.4 Internal evaluation 

In general high values of the image energy indicate 
inappropriate image features and probably a wrong position of 
the contour if the image energy is suitably designed for the 
desired object class. Thus, a large image energy is a valuable 
cue for the detection of errors. A comparison of the image 
energies of a particular snake node with Eimage of all nodes of 
the contour reliably indicates outliers. Thus, assuming a normal 
distribution of the image energy values of all nodes the 
parameters of this distribution are calculated. The first detector 
of outliers, d1 (green circles in Fig. 1 right), uses a simple 
threshold determined from the mean and the standard deviation 
of this distribution: 
 
݀ଵ ൌ ൛ݒ௜: ൫ݒ௜ א ௜ሻݒ௜௠௔௚௘ሺܧ൫ ٿ ሻ൯ݏሺܞ ൐ ݉݁ܽ݊ሺܧ௜௠௔௚௘ሻ ൅ 2 ·   ௜௠௔௚௘ሻ൯ൟܧሺܽ݉݃݅ݏ
           (6) 
 
Generally, a high internal energy Eint (2) after the optimisation 
process indicates strong changes of the prior shape of the 
contour, i.e. the geometric object model does not fit well to the 
final shape of the corresponding contour part. There are two 
possible reasons for this situation: Either the incorrect initial 
shape was improved during the optimisation process based on 
Eimage or the new shape is incorrect (wrong contour part). 
 
In the first situation, Eimage should be low (correct position in 
Eimage). As we want to detect the second case, the second 
detector d2 (blue circles in Fig. 1 right) has to consider high 
values for Eint as well as for Eimage. Furthermore, the data 
analysis shows that the gradients of the internal energy (equal to 
the gradients of the image energy) will often be high if the 
contour leaves the object outlines. Therefore, the absolute 
values of the image energy should be low at one side of the 
corresponding nodes and high at the other side. Thus, d2 
searches for nodes with high Eimage and among their two 
neighbouring nodes for high Eint. The two thresholds are again 
determined automatically from the corresponding distributions:  
 

      ݀ଶ ൌ ൞ݒ௜:
ሾݒ௜ א ሻሿݏሺܞ ר  ሾ ܧ௜௠௔௚௘ሺݒ௜ሻ ൐ ݉݁ܽ݊൫ܧ௜௠௔௚௘൯ሿ ר

ר    ൫ൣ ܧ௜௡௧ሺݒ௜ାଵሻ ൐ ݉݁ܽ݊ሺܧ௜௡௧ሻ ൅ 2 · ௜௡௧ሻ൧ܧሺܽ݉݃݅ݏ ש
ש           ௜ିଵሻݒ௜௡௧ሺܧ ൣ ൐ ݉݁ܽ݊ሺܧ௜௡௧ሻ ൅ 2 · ௜௡௧ሻ൧൯ܧሺܽ݉݃݅ݏ

ൢ  (7) 

 

 
 

Figure 1. Optimised road network (detail). Left: blue: 
initialisation; green: reference; red: final solution. 
Centre: green crosses: snake nodes; blue arrows: 
corresponding gradients of the internal energy  
(> twice the standard deviation of the distribution for 
all nodes). Right: crosses: image energy lower 
(green) or higher (red) than the mean value of all 
nodes; green circles: result of the first detector; blue 
circles: result of the second detector. 

The second detector often finds only the two ends of wrong 
contour parts, because the image and the internal energies are 
both relatively high if the contour leaves the object outlines. If 
the contour part in between additionally converges to a wrong 
minimum in the image energy (e.g., a parallel road), the first 
detector does not help either. Unfortunately, these contour parts 
often have the largest distance to the reference. However, the 
beginning and the end of wrong contour parts are usually 
sufficient in order to guide the user during manual post 
processing. It should be noted that the two detectors are 
applicable only if the majority of the contour nodes are located 
inside the object boundaries. This is necessary in order to 
determine suitable parameters of the energy distributions. 
 
 

3. EXPERIMENTS 

3.1 Data 

The experiments were carried out using two different data sets. 
The first data set, covering an area of 1 km2 of the city of 
Hameln (Germany), is characterized by flat terrain. The CIR 
images used for the generation of Eimage were acquired with an 
UltraCamXP camera and have a ground sampling distance 
(GSD) of approximately 0.2 m. The nominal forward and side 
laps of the images are 60% and 30%, respectively. The 3D 
points of the data set were derived with the commercial 
software package MATCH-T DSM (Heuchel et al., 2011). No 
ALS data were available. We test the applicability of our 
method with two different road databases, namely ATKIS (from 
the surveying authority of Lower Saxony, who also provided 
the orthorectified images and the DSM) and OSM (data 
provided by Geofabrik GmbH), and compare the results. 
Whereas ATKIS road centrelines have a homogeneous accuracy 
of 3-5 m, OSM shows an inhomogeneous accuracy due to the 
patchwork characteristic of this data set with local deviations 
that reach more than 20 m. 
 
The second test data set (area: 0.7 km2) is situated close to the 
town of Vaihingen (Germany; Cramer 2010). Some agricultural 
areas and vineyards are located in the surroundings of the town. 
The ALS data set was acquired by the company Leica 
Geosystems using a Leica ALS50 system in 2008 (Haala et al., 
2010). The ALS data has a high point density of 4-6 pts/m2 and 
a vertical and horizontal accuracy of 0.15 m and 0.5 m, 
respectively. The acquisition time in the leaf-on period 
decreases the proportion of ground points in vegetated areas. 
The CIR images were acquired with a DMC camera and have a 
GSD of approximately 0.08 m. The nominal forward and side 
laps of the images are 65% and 60%, respectively. The 3D point 
cloud (CIR images) was generated using the OpenCV 
implementation (OpenCV, 2012) of semiglobal matching 
(Hirschmüller, 2008) with the cost function of (Birchfield & 
Tomasi, 1998). The initialisation for the snakes was taken from 
OSM only. For both data sets reference roads were manually 
digitised in orthophotos, the GSD of the image energy is chosen 
to be 0.5 m. Thus, the relatively high uncertainty of the 3D 
points from matching does not overly affect the energy 
minimization process, because a smoothed version of the DTM 
can be used. 
  
3.2 Results for stereo images with different vector data 

The tests in this section were carried out using the first data set. 
The main parameters for all tests in this paper can be found in 
Tab. 1. The general applicability of the method using stereo 
images is evaluated by two different road data sets with a 
different initial accuracy, namely ATKIS and OSM (cf. Tab. 2, 
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column Init). The results are depicted in Fig. 2 and Tab. 2. For 
both road networks an improvement of the geometric accuracy 
can be observed. Whereas the root mean square (R.M.S.) value 
of the ATKIS roads, having already a high quality before the 
optimisation, only decreases by 0.2 m, an improvement of 1.2 m 
can be noticed for the OSM data set. The analysis of the 
cumulative histogram of the errors shows similar results. Of the 
initial nodes of the ATKIS roads, 57% and 85% are situated 
within a distance of 1 m or 2 m from the reference, respectively. 
These values increase to 62% and 92%. In contrast, for the 
OSM roads these values are increased significantly by 12% and 
20%, respectively. These observations support the statement 
that our image energy derived from stereo images is generally 
significant enough to correct road parts that are situated outside 
the road surface (having larger errors). For contour parts already 
located inside the road surface the improvement is small. The 
largest errors occur in the vicinity of trees hanging across the 
roads. Such trees often disturb the image energy (higher NDVI 
and DTM roughness) and sometimes were also detected as 
(false positive) buildings generating a repulsion force for the 
corresponding road contours. 
 

parameter α β κI Iterations Node distance 
value 2 2 20 100 6 m 

 

Table 1: Snake parameter for all illustrated examples.  
 
Tab. 2 also illustrates that the R.M.S. value of those nodes that 
were highlighted by the two error detectors is significantly 
higher than the values of the other nodes and that the number of 
detected outliers is relatively small (columns d1 and d2, 
respectively). This shows the general feasibility of our strategy 
for an internal evaluation. However, the number of detected 
nodes in these two examples is too small in order to 
considerably influence the general R.M.S. value after 
eliminating the wrong nodes (Tab. 2, last column).  
 

 
 

Figure 2. Cumulative histogram of the orthogonal point-to-
line distances of the snake nodes from the reference 
for the first data set. Left: ATKIS; right: OSM. 

 

R.M.S. 
value 
(m) 

Test site 1 (1576 nodes) 

Init Result 
(before) d1 (nodes) d2 (nodes) Result 

(after) 
ATKIS 1.43 1.23 2.47 (15) 2.25 (35) 1.20 
OSM 3.39 2.17 4.53 (22) 3.60 (54) 2.06 

 

Table 2.  Evaluation of the results for the first data set. 
 
3.3 Comparison of the results with different sensor data 

The tests in this section were carried out using the second data 
set (OSM data only). These tests compare the performance of 
our method achieved with image energies derived from different 
sensor data, namely ALS data and stereo images. The results are 
shown in Fig. 3 and in Tab. 3. The R.M.S. value for both sensor 
data decreases by approximately 1.3 m. The cumulative 
histogram in Fig.3 demonstrates that the ALS data perform 

better in the high-quality sector (up to a distance of 3 m from 
the reference) before eliminating outliers. Only 33% and 55% of 
the initial nodes are situated within a distance of 1 m and 2 m 
from the reference, respectively. These values increase to 52% 
and 82% for stereo images and to 64% and 88% for the ALS 
data. The largest errors occur due to poor initialisation (e.g., up 
to 20 m in Fig. 1) and again to the disturbing effect of vegetated 
areas on the proposed image energy. A few outliers in these 
areas with very large deviations significantly increase the 
R.M.S. value particularly for the ALS data (Tab. 3 third and 
fourth column). However, the two error detectors are able to 
recognise most of the erroneous contour parts for both sensors. 
This also decreases the R.M.S. value by approximately 0.5 m 
after eliminating the wrong nodes (Tab. 3 last column). The 
quality of Eimage and thus also the separability between correct 
and incorrect contour parts is slightly higher for the ALS data. 
As mentioned in Section 2.4, the second detector primarily 
highlights nodes in the transition zone between the road 
surfaces and the neighbouring areas. Therefore, this detector 
performs worse in the statistics in comparison to the first one, 
but nevertheless it is very useful for manual post processing.  
 

 
 

Figure 3. Cumulative histogram of the orthogonal point-to-
line distances of the snake nodes from the reference 
(second data set). 

 

R.M.S. 
value 
(m) 

Test site 2 (1782 nodes) 

Init Result 
(before) d1 (nodes) d2 (nodes) Result 

(after) 
ALS  3.40 2.08 8.15 (58) 2.55 (105) 1.44 

Images 3.40 2.06 5.55 (93) 2.26 (111) 1.63 
 

Table 3.  Evaluation of the results for the second data set. 
 
 

4. CONCLUSION 

This paper is focused on the adaptation of road centrelines to 
stereo images by means of network snakes. The method 
described in (Göpfert et al., 2011) is adapted in order to exploit 
geometric and radiometric information of stereo images in the 
optimisation process replacing the ALS data as primary data 
source. Experiments illustrate that our approach using a new 
definition of the image energy derived from stereo images is 
generally able to correct larger errors in the road database. 
However, due to the currently lower geometric accuracy of the 
height data in comparison to ALS data (especially in vegetated 
areas), which influences the significance of the derived image 
energy, the method performs worse for stereo images in the 
high precision level. More radiometric features have to be 
integrated in the future, in order to increase the quality of Eimage 
and thus of the adaptation results. In addition to buildings and 
bridges, trees also provide valuable context information for the 
adaptation process of roads and rivers, which have not yet been 
considered. In different experiments trees and other vegetated 
areas disturb the design of the image energy. Thus, the explicit 
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consideration of trees in the image energy may further improve 
the quality of the results.  
 
The paper also presented an approach for an internal evaluation 
of the optimisation results. First tests show that the analysis of 
the energy components of the snake provides valuable 
information about the correctness of the optimised contour. Two 
detectors were suggested that are able to highlight erroneous 
snake parts. These parts can be manually corrected in post 
processing or optimised with different parameters. The 
proposed algorithm is only one step in the larger framework 
developed to solve the inconsistencies between the topographic 
vector data and sensor data. All objects in the vector data 
represented by suitable features in the sensor data should be 
adapted. This process provides a dense network of shift vectors 
which can be used in addition to prior accuracy knowledge in 
order to improve the consistency of the vector and sensor data. 
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