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ABSTRACT:

Many industrial applications require dense point clouds of the installations. Acquisition of the rooms, filled with many objects, of an
industrial scene leads to many Terrestrial Laser Scanner (TLS) stations. A precise registration of all the per-station point clouds is crucial
for the required accuracy of 1-2 cm of final data. Targets and tachometry, current best practice for registration, slows down the survey
and limits the number of campaigns. Indoor geolocation system are faster but do not reach the final required accuracy. Otherwise, 3D
primitives can be automatically extracted from the dense point clouds and possibly used for registration. In a four step primitive-based
registration, Acquisition - Reconstruction - Matching - Solving, the matching is crucial. This article presents a probabilistic test for 3D
lines matching using a priori distributions of approximated transformations. The stochastic model of approximated transformations
and resulting uncertain lines is introduced. A test is performed on a real dataset of an industrial scene and the results are analysed.
Improvements of the presented test and matching framework are also discussed.

1 INTRODUCTION

Maintenance and revamping of large industrial installations com-
monly require 3D As-Built models of their geometries. The 3D
reconstruction of these complex scenes can be achieved from an
accurate and dense point cloud. Current laser scanners can de-
liver a high quality point cloud for each station. The correct reg-
istration of this Terrestrial Laser Scanning (TLS) data is crucial
for the accuracy of the global point cloud. Accurate tachometric
measurements based on widely distributed targets can provide the
required accuracy of 1-2 cm. This protocol is now the bottleneck
of wide survey campaign (over 1000 stations).

An alternative approach exploits geometric primitives as “natural
targets”, which are already present in the scene (points, lines and
planes respectively stemmed from spheres, cylinders and walls).
These primitives are automatically, or semi-automatically, recon-
structed from per-station point clouds. The framework presented
in (Hullo et al., 2011) is divided in 4 steps: Acquisition - Recon-
struction - Matching - Solving. It shows a complete process of
registration with the use of these primitives to reach the required
accuracy under specific conditions. One of these conditions con-
cerns the exactness of primitives matching, directly related to the
constraints used to solve the registration problem.

In (Rabbani et al., 2007), the search for corresponding objects is
done by filtering the possible correspondences using constraints
and thresholds. In such an approach, taking the uncertainties of
initial approximate transformations into account is not straight-
forward. Moreover, no information on the probability of a false
positive in the established correspondences is delivered; this is
the key problem that can ruin the whole process.

Our contributions in this paper are the following:

∗Corresponding author: Jean-François Hullo

• the definition of an uncertain 4-parameter transformation of
3D lines, and their representation, corresponding to levelled
stations of TLS, cf. Section 3;

• the description of a probabilistic matching test, using propa-
gation of probability density function resulting of an uncer-
tain transformation, cf. Section 4;

• a test based on a real dataset of an industrial scene: its de-
scription, results and a discussion, cf. Section 5.

2 A STATE OF THE ART

TLS data provides 3D features (points, lines, planes) through au-
tomatic primitive reconstruction (spheres, cylinders, patches) that
can be used for registration: (Rabbani and van den Heuvel, 2005),
(Hullo et al., 2011). The matching of 2D features for registration
is an active field of research in photogrammetry and computer vi-
sion, known as pose estimation problem. Algorithms based on
feature points correspondences might be used with precaution in
the case of non Euclidean features, such as frames, lines or planes
(Pennec, 1999). This assumption is all the more justified when
dealing with uncertain primitives, and uncertain transformations
of the primitives (Förstner, 2010), (Pennec, 1999).

Complete, unique and minimal representation of 3D lines does
not exist. The advances in projective geometry led to a convenient
representation of lines, including lines at infinity, the Plücker co-
ordinates. (Förstner, 2010) presents an approach for dealing with
uncertain 3D lines and rigid 6-parameters transformations. (Mei-
dow et al., 2009) details the importance of propagation of un-
certainties of 2D lines through the entire reasoning chain, from
extraction to decision. The application to 3D lines is though not
straightforward.

Most laser scanners used for the acquisition of industrial scenes
have a bi-axial compensator and can be levelled as well as the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

221



total stations. Since a 3D line only has 4 degrees of freedom,
we can search for a proper representation to deal with uncer-
tain transformations. Minimal representations used in (Roberts,
1988), (Schenk, 2004) and (Bartoli and Sturm, 2005) inspired the
representation proposed in 3.2.

For registration, weighted least square resolution can be carried
out (Rabbani et al., 2007). Another approach uses probability for
solving pose (Chaperon et al., 2011). This approach better taking
into account a priori information (uncertainty and coherence).
For matching too, probabilistic frameworks have been developed
in the past few years, for example (Tal and Spetsakis, 2010) and
(Van Wyk et al., 2004). They pave the way for a better integration
of approximated geolocation systems and their uncertainties.

3 3D LINES, TRANSFORMATIONS AND
UNCERTAINTY

3.1 Levelled TLS and 4-parameters transformations

We introduce the stations Sti with associated Cartesian coordi-
nate system Ri such as i ∈ I . The origin Oi corresponds to the
virtual centre of the laser scanner. R0 is the global, or world,
coordinate system.

Considering a levelled TLS, the only directional degree of free-
dom of the Euclidean transformation τij = τRi→Rj from frame
Ri to frameRj is the rotation around the z-axis, with value κij .
tij is the 3-vector with coordinates [txtytz]ij representing the
translation bringing Oi to Oj . For the frame transformation from
Ri toR0, we use the following notation: κi0 = κi and ti0 = ti.
Using this formulation, the frame coordinate transformation of a
point P from Ri to R0 is : P0 = MκiPi + ti where Mκi is the
rotation matrix around z-axis with value κi.

We use different probability distributions to quantify the uncer-
tainty of these 4 parameters tx, ty , tz and κ. Let t = [txtytz]
be a random 3-vector (the translation vector). We introduce a 3-
dimensional multivariate normal distribution. It can be defined
using two parameters (µ,Σ), respectively the mean 3-vector and
the 3 × 3 covariance matrix. The probability density function is
given by:

fµ,Σ(t) =
1

(2π)3/2|Σ|1/2
e(− 1

2
(t−µ)T Σ−1(t−µ)) (1)

where |Σ| is the determinant of Σ.

Let κ, the orientation of a station, be a random variable. We intro-
duce a von Mises distribution, or circular normal distribution. It
can be defined using two parameters (χ, λ), respectively describ-
ing the location and the concentration of the random variable κ.
The value λ parameter (λ ∈ [0;∞]) is 0 when the distribution
is uniform, and increases as the distribution concentrates about
the angle χ. The probability density function of κ is given in
(Mardia, 1972) by:

gχ,λ(κ) =
1

2πI0(λ)
eλcos(κ−χ) (2)

where I0 is the modified Bessel function of order 0. For an order
j, this function is given, using the Gamma function (Abramowitz

and Stegun, 1964), by:

Ij(λ) =

∞∑
n=0

1

22n+jΓ(n+ j + 1)Γ(n+ 1)
λ2n+j (3)

then (4)

I0(λ) = 1 +
1

4
λ2 +

1

64
λ4 +

1

2304
λ6 + · · · (5)

I1(λ) =
λ

2
+

1

16
λ3 +

1

384
λ5 +

1

18432
λ7 + · · · (6)

We can now introduce A(λ) that allows us to express the usual
linear variance σ2 of κ:

σ2 = −2.ln(A(λ)) with A(λ) =
I1(λ)

I0(λ)
(7)

Figure 1: Circular and linear representation of the probability
density function of a von Mises random variable with parame-
ters (χ = π, λ = 10). σ =

√
−2.ln(A(λ)) = 0.325 rad is

represented in orange.

For indoor scenes, several geolocation systems can approximate
the 4 parameters κ, tx, ty and tz , such as INS or odometer. The
parameters of the a priori distribution of the approximated val-
ues are known through hardware specification or calibration of
the geolocation system. The uncertainty of the approximated po-
sitions and orientation of the stations of our dataset are given in
5.1.

3.2 3D lines: representation and transformation

Several representations exist for 3D lines. Some of them are com-
plete (2 points), unique (Plücker) or minimal (two planes inter-
section, Denavit-Hartenberg). In the case of incomplete represen-
tations, we use several representations, called charts, that overlap
in order to handle all existing lines. We call atlas a set of charts.

The use of one of these representations depends on the compu-
tations and analysis carried out on the lines. In our case, we are
interested in the uncertainty of the line coordinates through an
uncertain transformation. Statistical analysis requires a minimal
representation, as complete as possible. Since we are not deal-
ing with projective geometry, we do not need to take into account
lines at infinity. We thus introduce a representation inspired by
(Roberts, 1988), illustrated in Figure 2. Frame transformation
relations τij = τRi→Rj of the coordinates of a line are also pre-
sented. The following parameters are used in our representation:

• Tilt: 0 ≤ θ ≤ π
2

is the angle between the z-axis of the
frame and the direction vector of the line

• Orientation: 0 ≤ ϕ < 2π is the angle between the x-axis
of the frame and the direction vector of the line
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• Position: (u, v) ∈ R2 are the coordinates of the intersection
of the line to its perpendicular plane passing through the
origin into the local frame (~u,~v, ~w). This intersection point
is also the closest point to origin. The local frame is obtained
from the concatenated rotation of the main frame ( ~X, ~Y , ~Z)
of a z-axis rotation of value ϕ and a y′-axis rotation of value
−θ.

u

M
v

X

Y

v

u

φ

θ

P

O

w
Z

L

Figure 2: A representation for 3D lines. M is the closest point of
the line L to the origin O of the frame.

The frame coordinates transformation from Ri to Rj , with pa-
rameters (κ, tx, ty, tz) is given by:

θj = θi

ϕj = ϕi + κ

uj = ui + tx cos θi cosϕj + ty cos θi sinϕj − tz sin θi

vj = vi − tx sinϕj + ty cosϕj (8)

One can note that almost vertical lines (θ ≈ 0) are a special case
in this representation since ϕ is note defined. Since many lines
are vertical in industrial scenes, we need to complete the atlas
using the following chart for quasi-vertical lines. θ and ϕ are
identical to horizontal chart. For defining the position of a quasi-
vertical line, we use (x, y) as the intersection of the line and the
O ~X~Y plane of the frame.

For the horizontal lines, the sign of u0 is undefined since ϕ is
only determined modulo π. Practically, for matching tests, this
case can easily be handled.

There are two main advantages to use this atlas:

1. influences of the rotation and translation transformation pa-
rameters are isolated

2. the “singularities” reflect in some way the information that
the type of lines delivers for registration:

• Quasi-Vertical lines: ϕ is ill-determined. A matched
pair of quasi-vertical lines do not provide confident
information on the κ or the tz

• Oblique line: a pair of oblique lines provides informa-
tion for both orientation and position parameters,

• Quasi-Horizontal line: a pair of horizontal lines pro-
vides confident information on κ, (±π/2) and on tz ,
though it exists an infinity of tx and ty solutions.

3.3 Propagation of lines through uncertain approximated
transformations

Our dataset is composed of a set Ei of reconstructed lines Liα
for each station Sti and approximations of the transformations
parameters from each station coordinate system Ri to the global
coordinate system R0. The coordinates of lines Liα are consid-
ered as certain in the frame Ri of their original station Sti, cf.
(5.1).

To be able to compare a line L1
A reconstructed in St1 to an-

other line L2
B reconstructed in St2, we have to express them

into a common coordinate system. Let assume that we express
the coordinates of L1

A = (θA1, ϕA1, uA1, vA1) into R2, with
L2
A = (θA2, ϕA2, uA2, vA2), using transformation τ12 from R1

to R2. This transformation is composed of two approximated
transformations τ̃10 and τ̃02 = τ̃−1

20 . Then L̃2
A = τ̃12(L1

A) =
τ̃02(τ̃10(L1

A)). Since τ̃10 and τ̃20 are uncertain and follow a pri-
ori distributions, the resulting line L̃2

A will have uncertain coordi-
nates, following a posteriori distribution. The parameters of the
a posteriori distributions of the lines coordinates resulting of an
uncertain transformation are presented below. Notations of para-
graph 3.1 are used for the distributions parameters.

Tilt θA2: as described in (3.2), θ is invariant to the 4-parameters
transformation. Then θA1 = θA2.

Direction ϕ̃A2 of non vertical lines: follows a von Mises distri-
bution with parameters (χ2, λ2). For the mean direction, we
have: χ2 = ϕA2 = ϕA1 + κ12 = ϕA1 + κ1 − κ2. The λ2

parameter is given by the equation:

A(λκ12) = A(λκ10).A(λκ20) (9)

where A is the ratio of the modified Bessel functions, (cf.3.1).
λκ2 is estimated using an approximationAinv of the inverse
of the A function, given in (Fisher, 1993). Consequently:

λ2 = Ainv(A(λκ12)) (10)

Position (uA2, vA1) or (xA2, yA2): the distribution of the result-
ing 2D-random variable corresponds to a Gaussian random
variable rotated by a von Mises random variable. For both
charts we use as approximation a bi-variate normal distri-
bution with parameters (µ2,Σ2). This approximation is as-
sumed as valid for small variances. The algebraic compu-
tation of these parameters can be done developing the two
first moments of the resulting random variable. However, in
this first implementation, we currently used a Monte-Carlo
estimation of these parameters. Probability density function
of the bi-variate gaussian is given by:

hµ2,Σ2(x) =
1

(2π)|Σ|1/2
e(− 1

2
(x−µ2)T Σ−1

2 (x−µ2)) (11)

where x = (x, y) ∈ R2.
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4 PROBABILISTIC MATCHING OF 3D LINES WITH
APPROXIMATED STATIONS

4.1 A priori probability density functions as matching score

A possible approach for computing a matching score between the
lines L1

A and L2
B is to compute the density of probability of L2

B

using the a posteriori distributions of L2
A. We can reformulate

this idea by the following question:”Knowing the uncertainty of
the transformation τ12, what is the probability for the line L2

B

reconstructed in St2 to be identical to L1
A reconstructed in St1?”.

We can also express this idea by using the following formulation:
d(L2

B = L̃2
A) := d(L2

B = τ̃12(L1
A)), where d is the probability

density value of the transformed coordinates of LA.

One of the advantage of the introduced representation is to sep-
arate the influences of the orientation and translation parameters
of the transformation τ̃12. Using the formulas and the notations
for lines, detailed in 3, we express the probability score for both
direction and position of the lines as follows:

- Non-vertical lines:
d(ϕA2 = ϕB2) = gχ2,λ2(ϕB2) (12)
d((uA2, uA2) = (uB2, uB2)) = hµ2,Σ2(uB2, vB2) (13)
- Vertical lines:
d((xA2, yA2) = (xB2, yB2)) = hµ2,Σ2(xB2, yB2) (14)

where g and f are respectively the von Mises and bi-variate nor-
mal a posteriori probability density functions of L1

A. The higher
these values are, the more probable is the match between LA and
LB .

4.2 Steps of the probabilistic 3D lines matching test

Using the previously described uncertainty propagation and den-
sity values, the authors proposed a matching test for two 3D lines.
They might represent the axes of reconstructed cylinders from
two distinct stations of levelled TLS. The steps of this test are
illustrated in Algorithm 1.

Algorithm 1 Probabilistic 3D lines matching test
if |rA − rB | < ρr and |θA − θB | < ρθ then
s̃1 = gχ2,λ2(ϕB2)
s̃2 = fµ2,Σ2(uB2, vB2) OR s̃2 = fµ2,Σ2(xB2, yB2)
s̃ = s̃1 ∗ s̃2

end if

Two preliminary tests concerns the invariants: radius r and tilt θ.
The radius of the cylinders are invariant to any rigid transforma-
tion of a cylinder. The tilt is invariant to the 4-parameters trans-
formation defined above. TLS point clouds are currently dense
and reconstruction algorithms improved. We can reasonably con-
sidered the radius as certain enough to use a threshold, depend-
ing on the algorithm and the data set used. If more information
is provided on the reconstruction step, one can use a threshold
function.

The orientation test is performed on ϕB2 using the a posteriori
probability density function of ϕA1. The return s̃1 is a density
value.
The second test evaluates the position of the two lines. For the
non-vertical ones, the two tested lines are first made parallel, to
compare values of (u, v). This comparison is carried out using
the probability density functions mentioned above. The return s̃2

is a density value. s̃ is the probabilistic matching score of the two

Figure 3: Probabilistic scores for matching computed with a pos-
teriori distributions of lines coordinates.

tested lines.

One can note that any matching algorithm can produce: (a) cor-
rect matches, (b) false positive (wrong match) and (c) false nega-
tive (missed match). Some registration algorithms will better deal
with wrong matches than other but all need as correct matches
as possible. Error ratios of our implementation tested on a real
dataset will be used to assess the presented approach.

4.3 Application to a multi-station scene

Let a scene be composed of i ∈ I stations Sti with αi recon-
structed cylinders for each station. In each station, the cylinders
are unique, such as any cylinderAi reconstructed in Sti can only
be matched with a unique cylinder Bj reconstructed in Stj . This
leads to choose a best matching candidateBJ forAi, using prob-
abilistic score computed, where s̃J = max(s̃j). A threshold
based on confidence interval of the distributions reject weak max-
ima.

A first remark may be made regarding the multi-station compu-
tation of a probabilistic matching score. For any line, the match
can: not exist in the dataset (cylinder only reconstructed in one
station), be simple (cylinder reconstructed in two stations) or mul-
tiple (cylinder reconstructed in more than two stations). it can
be assumed that the more stations the cylinder is seen from, the
more confident the match should be. This confidence should im-
pact the value of the matching score. Probabilistic scores give
access Bayesian theorem and Shannon-Gibbs entropy maximisa-
tion, a powerful tool for decision making, cf. (Pennec, 1999) and
(Mardia, 1972).

5 STUDIES AND ANALYSIS

5.1 The tested scene

To assess our probabilistic algorithm, we used a real dataset of in-
dustrial installations. The scene is a (11 m × 5 m × 3 m ) room.
4 TLS stations were needed to get enough coverage for 3D re-
construction. This scene was chosen because of the large relative
errors in the lines position caused by approximated position and
orientations of the stations. The other frequently configurations
in industrial installations are corridors and large halls, (Hullo et
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al., 2011). Each per-station point cloud is composed of 25 mil-
lions of points. Cylinders have been reconstructed using a region
growing algorithm. This algorithm returns the following fitting
errors: mean error < 0.002 m , maximum absolute error < 0.01
m. In every stations, we reconstructed 9 up to 16 cylinders, for a
total of 53 cylinders (cf. Figure 4).

Figure 4: Dataset used in our tests. a© Cylinders reconstructed
from 1 over 4 stations b© Axes of cylinders in a common frame
using approximate transformations c© Ground-truth transforma-
tions (total station traverse) are used as reference.

“Real” positions and orientations of the TLS stations have been
acquired with a total station. The approximations of the posi-
tions and orientations of the stations in a global coordinate sys-
tem have been randomly generated using known expected errors
of current indoor geolocation system (Hullo et al., 2011). Since
industrial installations have horizontal grounds and that the in-
strument heights are measurable, the approximation of the tz will
not overcome 10 cm. For tx and ty values, geolocation system
provides maximum errors of 15 cm to 50 cm in our study case.
The maximum expected error of orientation κ ranges from 2 ◦ to
10 ◦.

Given these error intervals, we carried out 3 tests using parame-
ters of the a priori distributions of the approximated transforma-
tions, presented in Table 1.

Case σtx σty σtz λκ (σκ)
1 0.10 m 0.10 m 0.025 m 1500 (1.5 ◦)
2 0.25 m 0.25 m 0.025 m 1500 (1.5 ◦)
3 0.10 m 0.10 m 0.025 m 500 (2.6 ◦)

Table 1: A priori distribution parameters of the estimated 4-
parameters transformation used. σ is the square root of the linear
variance.

As mentioned in 3.3, our implementation currently uses Monte
Carlo samples to estimate the a posteriori bi-variate normal dis-
tributions. We also used the Monte Carlo method to confirm that
the bi-variate normal approximation of the resulting random vari-
able was valid. Once matching test is performed on every possi-
ble match, our implementation searches for a maximal matching
score for each line. In our dataset, we have 1031 score to compute
for a maximum of 65 theoretically possible matches.

All the tests have been implemented using R, (R Development
Core Team, 2011).

5.2 Results

Reference matches have been created by using “real” positions
and orientations of the stations. 34 matches exists in the scene,
27 non vertical and 7 vertical. A visual inspection of each one as
also been carried out. Results of our algorithm are given in Table
2.

Case number Correct False negative False positive
1 32 2 3

V=5 Hz=27 V=2 Hz=0 V=2 Hz=1
2 28 5 7

V=3 Hz=25 V=4 Hz=1 V=4 Hz=3
3 31 3 6

V=4 Hz=27 V=3 Hz=1 V=4 Hz=2

Table 2: Comparison of the results for the 3 tests performed and
the ground truth. For each number, vertical (V) and non ver-
tical (Hz) lines are specified. False negative values indicates
missed matches. False positive values indicates wrongly detected
matches.

These first results shows that our implementation, with our dataset
and confidence intervals, correctly detect most of the matches.
However, vertical lines are not as correctly handled as horizontal
ones. More tests using other dataset will be performed to evalu-
ate this trend. As expected, small variances return more correct
matches than larger.

5.3 Discussion

The existence of false positive and false negative is mainly due
to the decision step, currently implemented as a simple maximal
score detection. With our dataset, even a small change of the po-
sition and orientation of the stations heavily impact the relative
distance between lines. In this situation, to properly handle the
matching task, one need to take into account the whole structure
of the scenes using Bayesian theorem. As mentioned in 4.3, the
probabilistic score presented in this article offers such possible
process. However, the detected matches and corresponding prob-
abilistic scores computed using the current algorithm could be
used as the input for a refinement stage.

The representation of the lines, presented in 2, is close enough
to the representation of 4-parameters transformation to allow the
distinct analysis of an uncertain one. Regarding the handling of
vertical lines, the representation used shows the singularities of
these lines when using 4-parameters transformations. The more
they approach verticality, the more sensitive they are to a recon-
struction error. The Fisher-Snedecor distribution conveys the in-
fluence of the value of tilt θ on the determination of ϕ and could
be used for quasi-vertical lines, instead of the von Mises distribu-
tion.

Otherwise, one of the advantage of the presented probabilistic
score is to take into account any a priori knowledge of the uncer-
tainty of the transformation parameters. Then, this score might
not be use only with a priori uncertainty of geolocation systems,
but can be used during an iterative registration process to check
the existing matches.

5.4 Considered improvements

Regarding the current implementation, some improvements have
been mentioned:

• the algebra computation of two first moments of the result-
ing random variable, presented in 3 is planned,
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• the use of a F-distribution for quasi-vertical lines might help
to handle the direction sensitivity when θ is close to 0,

• probabilistic description of the contextual information , for
example the probability of intervisibilities using a priori
CAD models and integration in a global score,

• Bayesian approach, with a priori distributions, for better in-
tegration the global structure of the scene by maximising the
coherency of the network.

6 CONCLUSIONS AND FURTHER WORK

In this article, we have presented a probabilistic matching test
using propagation of a priori distributions. This test has been ap-
plied to 4-parameters uncertain transformation of 3D lines. This
configuration corresponds to the matching of the axes of cylin-
ders reconstructed from levelled TLS data, with a priori distribu-
tion of transformation parameters provided by indoor geolocation
systems.

We introduced a representation of the 3D lines allowing statistical
analysis of the influence of an uncertain transformation. Direc-
tional and Euclidean statistics were used to model the uncertainty
of the transformation parameters and line coordinates. An algo-
rithm using this matching test as been carried out on a real indus-
trial dataset. Experimental parameters of the a priori distributions
were chosen to reflect levels of uncertainty of current geolocation
systems. First results indicates the validity of the method.

Algebra computations will be carried out to complete the stochas-
tic model. The use of a specific distribution, known as Fisher-
Snedecor, is one of the lead considered by the authors is to handle
the tilt of the lines and its influence. Information theory and prob-
abilistic graphs are studied for the implementation of a structure-
awareness algorithm.

Once the presented probabilistic approach is completed, we plan
to compare it to other approaches used to match primitives, such
as (Rabbani and van den Heuvel, 2005).

Further work is to integrate this matching algorithm in a prob-
abilistic registration solver. The idea is to use the probabilities
returned by the matching step to guide the registration and vice-
versa. Longer-term objective is to shorten on-site time of acqui-
sition by keeping at the same time the required accuracy of 1-2
cm of the final point cloud.

REFERENCES

Abramowitz, M. and Stegun, I. A., 1964. Handbook of Mathe-
matical Functions with Formulas, Graphs, and Mathematical Ta-
bles. ninth dover printing, tenth gpo printing edn, Dover, New
York. ISBN 0486612724.

Bartoli, A. and Sturm, P., 2005. Structure-from-motion us-
ing lines: Representation, triangulation, and bundle adjustment.
Computer Vision and Image Understanding 100(3), pp. 416–441.

Chaperon, T., Droulez, J. and Thibault, G., 2011. Reliable cam-
era pose and calibration from a small set of point and line cor-
respondences: A probabilistic approach. Computer Vision and
Image Understanding 115(5), pp. 576 – 585. Special issue on 3D
Imaging and Modelling.

Fisher, N. I., 1993. Statistical Analysis of Circular Data. Cam-
bridge, New York. ISBN 0521568900.

Förstner, W., 2010. Minimal representations for uncertainty and
estimation in projective spaces. In: Proc. of Asian Conference on
Computer Vision, Springer, pp. 619–632.

Hullo, J.-F., Grussenmeyer, P., Landes, T. and Thibault, G., 2011.
Georeferencing of tls data for industrial indoor complex scenes:
beyond current solutions. In: ISPRS Workshop Laser scanning
2011, Calgary, Canada, Vol. 38.

Mardia, K. V., 1972. Statistics of directional data. Academic
Press, New York. pp. 41-45 of 357, ISBN 0124711502.

Meidow, J., Beder, C. and Förstner, W., 2009. Reasoning with
uncertain points, straight lines, and straight line segments in 2d.
ISPRS Journal of Photogrammetry and Remote Sensing 64(2),
pp. 125–139.

Pennec, X., 1999. Probabilities and statistics on riemannian man-
ifolds: Basic tools for geometric measurements. In: Proceedings
of the IEEE-EURASIP Workshop on Non-Linear Signal and Im-
age Processing (NSIP99), Vol. 4, Citeseer, pp. 194–198.

R Development Core Team, 2011. R: A Language and Envi-
ronment for Statistical Computing. R Foundation for Statisti-
cal Computing, Vienna, Austria. ISBN 3-900051-07-0. http:
//www.R-project.org.

Rabbani, T. and van den Heuvel, F., 2005. Automatic point cloud
registration using constrained search for corresponding objects.
In: H. Kahmen and A. Gruen (eds), Proceedings of 7th Confer-
ence on Optical, Vol. 1, Vienna, Austria, pp. 3–5.

Rabbani, T., Dijkman, S. T., Van Den Heuvel, F. and Vosselman,
G., 2007. An integrated approach for modelling and global reg-
istration of point clouds. ISPRS Journal of Photogrammetry and
Remote Sensing 61(6), pp. 355–370.

Roberts, K. S., 1988. A new representation for a line. In: IEEE
Proceedings of Computer Vision and Pattern Recognition, Ann
Arbor, MI, pp. 635–640.

Schenk, T., 2004. From point-based to feature-based aerial trian-
gulation. ISPRS Journal of Photogrammetry and Remote Sensing
58(5-6), pp. 315–329.

Tal, R. and Spetsakis, M. E., 2010. Probabilistic framework
for feature-point matching. In: Proceedings of the 2010 Cana-
dian Conference on Computer and Robot Vision, CRV ’10, IEEE
Computer Society, Washington, DC, USA, pp. 1–8.

Van Wyk, B., Van Wyk, M. and Botha, J., 2004. A Matching
Framework Based on Joint Probabilities. In: Proc. 14th Ann.
Symp. Pattern Recognition Assoc. of South Africa, pp. 125–130.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

226


