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ABSTRACT:

3D reconstruction of trees is of great interest in large-scale 3D city modelling. Laser scanners provide geometrically accurate 3D point
clouds that are very useful for object recognition in complex urban scenes. Trees often cause important occlusions on building façades.
Their recognition can lead to occlusion maps that are useful for many façade oriented applications such as visual based localisation
and automatic image tagging. This paper proposes a pipeline to detect trees in point clouds acquired in dense urban areas with only
laser informations (x,y, z coordinates and intensity). It is based on local geometric descriptors computed on each laser point using a
determined neighbourhood. These descriptors describe the local shape of objects around every 3D laser point. A projection of these
values on a 2D horizontal accumulation space followed by a combination of morphological filters provides individual tree clusters. The
pipeline is evaluated and the results are presented on a set of one million laser points using a man made ground truth.

1 INTRODUCTION

Vegetation detection is a topic which has received significant in-
terest from the remote sensing community over the past decade.
This detection is mostly done based on data (image and/or li-
dar) acquired from an aerial (Iovan et al., 2008) or spatial (Dali-
akopoulos et al., 2009) point of view. This detection is often
integrated in a broader classification where vegetation is one of
the classes searched for. Conversely, few work have focused on
vegetation detection based on terrestrial data. With the advent of
mobile mapping, huge amounts of data can be rapidly acquired
in urban areas, which raises the problem of vegetation detection
from this very different type of data: details are finer, scenes are
more complex, which calls for specific methods. Such a detection
may prove very helpful for numerous applications:

• Realistic 3D reconstruction for fine city visualization: trees
are needed to build realistic models of the anthropic areas
but also to take into account the occlusions that they induce
on the objects behind.

• Autonomous navigation for robotics applications: trees in-
duce important perturbations in both GNSS and visual based
localisation, but a trunk can also be a meaningful visual
landmark for positioning.

• City planning and inventory.

The main goal of the work presented in this paper is to detect
trees from mobile mapping point clouds. We aim at classifying
points belonging to trees, but also at merging them into individual
tree objects.

1.1 DATA

In this work, our datasets are point clouds acquired by a mobile
mapping system equipped with two "RIEGL" laser scanners that
can acquire up to 10 000 points per second. The laser acquires a
slice from the horizontal (0◦) up to (70◦) in a plane orthogonal to
the trajectory, and the third dimension is obtained by the move-
ment of the vehicle. An integrated system composed of GPS/INS
and an odometer ensures a good localisation of the vehicle dur-
ing acquisition with sub-metric absolute accuracy and centimetric

relative accuracy. Our dataset was acquired in a dense European
urban area over a 300 meters trajectory with a vehicle speed en-
suring a distance between scanlines around 4cm (cf fig.1).

Figure 1: RIEGL laser point cloud acquired on a European urban
area.

1.2 Related work

In the past few years, an increasing number of methods have been
proposed to detect trees or vegetation based on the high level of
details offered terrestrial laser scanning. Discerning different ob-
ject categories based only on the geometry of a terrestrial 3D
point cloud is a hard task as many various objects with various
geometries and spatial relationships are sought for. To solve this
problem, (Bienert et al., 2007) and (Bucksch et al., 2009) perform
detection by combining region approaches and clustering in a 2D
projection. These methods are well suited to individualize trees
in a scene containing only trees but are not adapted to the urban
context where various types of objects are mixed in the scene. An
other work (Strom and Olson, 2010) uses a graph-based segmen-
tation on coloured laser point clouds to cluster the different ele-
ments of the scene. This method uses laser point cloud coupled
by camera images, which is not adapted to our context. In the
work of (Brenner, 2010), vertical scan lines are compared to their
neighbouring scan lines to detect depth jumps representing posts
(traffic signs, lamp post, traffic lights, poles) and trunks objects
to localize vehicle in urban city. However, only vertical linear
primitives are extracted. In contrast, (Pfeifer et al., 2004) work
in the forest context and recover the tree structure by extracting
cylinders of different radii corresponding to trunks and branches.
Finally, (Lalonde et al., 2005), (Lalonde et al., 2006) define ge-
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ometric descriptors on the spatial arrangement of the neighbour-
hood of each point by geometric primitives. However, their work
only applies to forests and not urban environments.

In this work, our contribution is to propose several advances in the
use of such descriptors, and in particular the use of a probabilis-
tic relaxation to exploit neighbourhood homogeneity and vertical
accumulation to exploit the inherent vertical redundancy of urban
scenes.

1.3 Method overview

Our objective is to design a generic yet simple tree detection
method that performs well on data acquired in complex urban en-
vironments. This paper aims at proposing a simple methodology
to perform this detection by solving a double problem: separate
the points corresponding to trees from the other scanned objects,
then separate individual trees within these points. In our work, we
will base tree detection on geometric characteristics of trunks and
foliage such as defined in (Demantké et al., 2011) and (Lalonde et
al., 2006). These descriptors tell us if the points locally describe
a linear, planar, spherical or cylindrical object(cf Section 2).

However, these descriptors alone will not prove sufficient for ef-
ficient detection, so we will also exploit the different geometric
relationships between the main elements present in urban scenes
in sections 2 and 2.2. We will explain in section 3 how this is
done by morphological operations on accumulation maps of the
descriptors. Our approach will be evaluated and discussed in sec-
tion 4 and a conclusion on our work will be drawn in section 5.

Figure 2: Overview of our tree detection method.

2 GEOMETRIC DESCRIPTORS

2.1 Principle

The first step of our method is to classify the points of our laser
scan according to the geometrical shape of their neighbourhood.
Thus the classification will be based on local geometrical descrip-
tors. This is done by the method described in (Demantké et al.,
2011) which starts by performing a principal component analysis
(PCA) for a varying neighbourhood sizes. PCA approximates the
spatial distribution of points in the neighbourhood by an ellipsoid
with axis Vi and axis lengths σi =

√
λi. There are three extreme

cases:

• σ1 ≫ σ2 > σ3: One main direction: linear neighbour-
hood.

• σ1 ' σ2 ≫ σ3: Two main directions: planar neighbour-
hood.

• σ1 ' σ2 ' σ3: Isotropy: volumetric neighbourhood.

Three dimensionality descriptors are then defined to characterize
how close the shape of the neighbourhood is to one of these ex-
treme configurations:

• Linear descriptor : D1 = (σ1 − σ2)/σ1

• Planar descriptor : D2 = (σ2 − σ3)/σ1

• Volumetric descriptor : D3 = σ3/σ1

The Di and their entropy are computed for each neighbourhood
size and the size for which the entropy is minimal is then selected.
As their sum equals 1, these dimensionality descriptors can be
seen as a probability that the shape of the neighbourhood is in
one of the three extreme cases.

(a) Linear descriptor

(b) Planar descriptor

(c) Volumetric descriptor

Figure 3: Response of the different geometrical descriptors.

The results shown in figure 3 show that these descriptors perform
well qualitatively:
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• 1D: the linear descriptor responds on linear object such as
small trunks or post.

• 2D: the planar descriptor responds on (planar) building façades

• 3D: the volumetric descriptor responds on tree foliage and
certain complex façade structures such as balconies.

However, these descriptors are quite noisy, in the sense that neigh-
bouring points might have very different descriptors. Hence, we
chose to perform a probabilistic relaxation to ensure more regu-
larity.

2.2 Probabilistic Relaxation

Probabilistic Relaxation (Rosenfeld et al., 1976) aims at homoge-
nizing probability values defined on points considering the prob-
abilities of their near neighbours. The relaxation algorithm is an
iterative algorithm in which the probability values at each point
are updated at each iteration to make them closer to the probabil-
ities at their neighbours. The update of the probability P tk(i) at
a point Pi at time t is defined by a factor δP tk(i) which depends
on:

• The distance between the point Pi and its neighbours Pj
weighted by a Gaussian Wij = Gσ(d(Pi, Pj)).

• A compatibility matrix Ck/` defining a priori correlations
between the probabilities of neighbouring points. The com-
patibility matrix that we chose is given in Table.1. The diag-
onal coefficient corresponding to the planar descriptors has
a higher value than the other two because our data contain
large planar surfaces (façades), implying that most planar
points have planar neighbours.

Compatibility Ck/` Linear D1 Planar D2 Volumetric D3
Linear D1 0.8 0.01 0.19
Planar D2 0.01 0.98 0.01

Volumetric D3 0.19 0.01 0.8

Table 1: Compatibility Matrix

The update factor can then be defined as

δP tk(i) =
∑
j

Wij

3∑
`=1

Ck`(ij)× P t` (j) (1)

As the probabilities should remain normalized, the update can
finally be defined in two steps:

Qt+1
k (i) = (P tk(i))× (1 + δP tk) (2)

P t+1
k (i) =

Qt+1
k (i)∑3

`=1Q
t+1
` (i)

(3)

whereQ is the unnormalized version of P . The results are shown
in figure 4.
As we can see, the relaxation increases the homogeneity within
the scene objects and the contrast between the three dimensional-
ity descriptors. For instance, foliage and façades are emphasized
respectively in the 3D and 2D descriptors.

(a) Linear descriptor

(b) Planar descriptor

(c) Volumetric descriptor

Figure 4: Response of the different geometrical descriptors after
probabilistic relaxation.

2.3 Results

Probabilistic relaxation homogenizes the probability values within
the point cloud, which means that minor structures vanish while
larger structures are preserved and smoothed. Because some rather
large façade areas respond well to 1D (edges) or 3D (windows,
balcony and floral ornament) the corresponding structures are
preserved by the relaxation as shown in figure 5. Because we
will extract the foliage and trunks as areas with high 3D and 1D
response (respectively), we will filter out these remaining struc-
tures by exploiting the spatial relationships between the structures
of the scene, which will be explained in Section 3.

Moreover, detecting trunks is essential to our work if we want in-
dividualize vegetation, and for this task the 1D descriptor alone is
not robust because some trunks are large enough to respond in 2D
(cf. figure 6). Thus we will define another geometric descriptor
to discriminate planes from cylinders: the cylindricity descriptor.

(a) Response of the volumetric descriptor on façades

(b) Response of the linear descriptor on façades

Figure 5: Large façade areas with large 1D or 3D structures not
removed by the relaxation.
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(a) Linear (b) Planar

Figure 6: Descriptor confusions: linear and planar descriptors
have the same response over posts and trunks.

2.4 Cylindrical Descriptor

In this section, we will define a cylindricity descriptor Dcyl(i).
As trunk surfaces can be approximated by vertical cylinders, we
will restrict to detecting circles in projection on the (x, y) plane.
Descriptor Dcyl defines the probability that point Pi belongs to
such a vertical cylinder. For each point Pi, a vertical cylinder (2D
circle) is fitted to the k nearest neighbours of Pi using a simple
RANSAC approach. This estimated cylinder gives us two indica-
tors: the quality of the approximation (number of RANSAC in-
lier’sNI(i)) and the radius of the cylinderR(i). To define a prob-
ability from these indicators, we face the problem that a plane is a
special cylinder with infinite radius, so a threshold Rmax should
be chosen to discriminate planes from cylinders. A surface with
cylindrical radius above this threshold will be considered planar
(null cylindrical descriptor) while for radii below, the threshold
quality of the cylinder will be given by the ratio of inliers:

Dcyl(i) =

{
0 if R(i) > Rmax,

NI(i)/k if R(i) ≤ Rmax.
(4)

The parameters are:

• Neighbourhood size k that we set to 50.

• Maximum cylinder radius Rmax set to 50 cm.

• RANSAC distance threshold for inliers set to 5 cm.

The results on figure 7 show that this descriptor responds well on
the trunks of the scene, which will make it useful to discriminate
large trunks (not responding in 1D) from façades.

The cylindrical descriptor shows a good response on trunks, but
also on some other parts of the scene and particularly on parts of
the façades. This is easily explained by the fact that most façades
present locally cylindrical surface shapes. In the same way, the
cylindrical descriptor does not distinguish between trunks and
large post. For theses reasons, the next section aims at propos-
ing a method combining the information given by the different
geometric descriptors defined in this section as well as the verti-
cal redundancy in order to detect trunks and foliage alone.

3 TREES DETECTION

In this section, we use the geometric descriptors to detect indi-
vidual trees in the dataset. This will be done in 4 steps:

1. Vertical accumulation of each descriptors into a regular (hor-
izontal) grid.

Figure 7: Visualization of the cylindrical descriptor Dcyl(i).

2. Spatial filtering in 2D to obtain various masks

3. Combination of the masks to retrieve individual trunks

4. Tree foliage individualization to finally retrieve one trunk
and one foliage for each individual tree

3.1 Accumulation maps

In a first step, vertical information redundancy is exploited by
creating accumulation maps for each descriptor. The underly-
ing idea is that most urban structures are roughly vertical (trunks,
façades,...) such that the vertical accumulation of descriptors will
amplify their response on such structures. For this projection,
we chose a discretization step of 0.2 meter corresponding to ap-
proximately 5 acquisition lines. The resulting accumulation maps
(2194× 2504 pixels) are visible on figure 8.

(a) Linear (b) Planar

(c) Volumetric (d) Cylindrical

Figure 8: Accumulation maps descriptors.

The complex structures (windows, balcony, flowers ornament)
within the façades which respond in 1D or 3D (cf section 2.3)
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usually have small vertical extension, so they tend to vanish in the
accumulation compared to the large flat façade areas responding
in 2D. As can be seen in figure 8, the accumulation maps can be
rather sparse. This is why we will perform some spatial filtering
to cluster the pixels belonging to object by introducing some a
priori on the expected sizes of the objects of interest.

3.2 Spatial filtering

The goal of this step is to cluster neighbouring pixels with high
accumulated descriptor value into individual objects. This re-
quires some filtering steps to take into account both the spatial
proximity and accumulation values. Each map will be filtered by
same method but the parameters will be adapted for each type of
descriptor: (1) Smoothing by Gaussian Kernel : connects neigh-
bouring pixels with high accumulation values. (2) Hysteresis
Thresholding : removes pixels with low response without cre-
ating holes in larger objects. (3) Connected Component compu-
tation: the remaining pixels are clustered in connected compo-
nents. (4) Size filtering: components are filtered according to
their sizes. (5) Morphological dilatation : allow to remove the re-
maining holes and to provide a margin of error (tolerance band).

The various parameters for these filters allow us to introduce a
priori on the geometry of the expected objects for each dimen-
sionality. Only one parameter has a significant impact on the
quality of the results: the high threshold value in the hysteresis
filtering. If it is too low, too many objects will be detected, and if
it is too high, meaningful objects will be missed. The results of
this filtering are displayed on figure 9:

(a) Planar (b) Volumetric

(c) Cylindrical

Figure 9: Accumulation maps descriptors after different filters.

3.3 Trunk Detection

We now have the necessary tools to extract individual trunks in
the laser point cloud: the cylindrical layer contains trunks, posts
(traffic signs, lamp post, traffic lights, poles) and various parts of
façades. As we are only interested in trunks, we will exploit the
other information to remove the posts and façades parts: trunks
will be defined as the objects of the cylindrical layer that are in-
side an object of the 3D layer (trunks are surrounded by a foliage)
and outside an object of the 2D layer (trunks do not belong to
façades). The result (figure 10) show that most trunks are recov-
ered (10c) while most posts and façade objects are removed (10b
and 10c) compared to the figures (9b and 9c).

(a) Planar (b) Volumetric

(c) Cylindrical

Figure 10: Final accumulation maps descriptors.

However, this method does not allow to distinguish trunks from
posts surrounded by foliage. It is therefore useful to use the laser
intensity to be able to differentiate between them. The laser in-
tensity on metallic objects is much lower than on non-metallic
objects, which can be used to remove some ambiguous posts.
The last step of our tree detection will be to associate an unique
foliage to each detected trunk.

3.4 Foliage Individualization

As in the previous step, objects in the 3D layer does not only
correspond to our object of interest (foliage) but also to various
complex structures along the façade. Hence we will define the fo-
liage as the objects of the 3D layer that do not belong to an object
of the 2D layer. The last problem to solve is that most trees in
urban areas are close enough to have their foliage mixing. Hence
our spatial filtering may have clustered neighbouring foliage to-
gether. This is done by splitting the foliage object by associating
each pixel of the foliage to the nearest trunk. The result of this
2D individualisation is shown in Figure 11.

Figure 11: Individualization trees in 2D image.

Each individualized foliage object can finally be used to label in-
dividual trees in the 3D laser point cloud by assigning each 3D
point to the foliage it projects in. The result of this 3D individu-
alization is shown on Figure 12.

4 EVALUATION AND DISCUSSION

4.1 EVALUATION

To evaluate the relevance of our algorithm, we used an open
database of urban objects measured by surveying techniques con-
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Figure 12: Individualized trees in the 3D point cloud.

taining trunk positions. This was used to compute the number
TP (True Positives) of trees detected by our algorithm that are
present in the database (with a tolerance of 1 meter on the trunk
position). Noting NAlgo and NRef the number of trees detected
by our algorithm and in the reference database respectively, we
can define:

• False Positives (wrongly detected trees) FP = NAlgo−TP

• False Negatives (undetected trees) FN = NRef − TP

• Correct Detection Rate CDR = TP/NRef

• False Detection Rate FDR = FP/NAlgo

• Dice = 2TP/(TP + FP +NRef ).

A good detection algorithm should maximize both of the Dice
(quality value) and the CDR values, which means to detect as
many trees as possible without generating too many false detec-
tions. An illustration of this detection evaluation is shown in fig-
ure 13.

Figure 13: Centres of the trunks detected by our algorithm (red)
and trunk centres from the reference database (green).

NbAlgo NbRef TP FP FN CDR FDR Dice
49 41 33 6 8 80% 12% 83%

Table 2: Result obtained in our scene.

The results of this evaluation displayed in table 2 indicate that our
use of a cylindrical descriptor to detect tree trunks is a promising
approach: 80% of the trunks in the reference database are de-
tected by our algorithm with a Dice value near 85%, for a rather
low false detection rate of 12%.

4.2 DISCUSSION

The main limitation for obtaining better results is the quality of
the data and the scene complexity. Undetected trees are mainly
due to a poor sampling (too few laser points on the trunk) which

happen if the tree is too far from the trajectory, occluded, or on
the exterior of a turn. We also missed the smallest trees as our
laser only scans above horizontal such that no points beneath 2.5
meter is acquired. However, this is a small price to pay to avoid
handling the possible complexity of the sideways. Finally, false
alarms are mainly due to posts lying beneath foliage. For these
cases, the use of the laser intensity allowed us to reduce the false
detections from 30% to 12% without impairing the correct detec-
tion rate. Our tree detection method entirely relies on trunk de-
tection as it is almost impossible to separate the foliage of neigh-
bouring trees. The drawback of this approach is that trunks are
much smaller than foliage, thus easier to miss in degraded con-
figurations.

5 CONCLUSIONS AND FUTURE WORKS

The objective of this work was to design a simple method to de-
tect trees in heterogeneous and complex 3D point clouds acquired
in dense urban environments. This method couples 2D and 3D
methods: the local geometrical shape of the point cloud is repre-
sented by 3D descriptors, while individual objects are retrieved
by clustering similar points based on 2D morphological opera-
tions on the descriptors accumulation maps. The evaluation of
our method against a reference dataset attests the good detection
performance of our algorithm. Our work demonstrates the rele-
vance of exploiting local geometric descriptors to analyse com-
plex scenes. Further works will focus on defining new local geo-
metric descriptors adapted to various types of objects, and study
how these descriptors may be combined to enhance the detection
performance.
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