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ABSTRACT:

In this paper we present an approach for detailed and precise automatic dense 3D reconstruction using images from consumer cameras.
The major difference between our approach and many others is that we focus on wide-baseline image sets. We have combined and
improved several methods, particularly, least squares matching, RANSAC, scale-space maxima and bundle adjustment, for robust
matching and parameter estimation. Point correspondences and the five-point algorithm lead to relative orientation. Due to our robust
matching method it is possible to orient images under much more unfavorable conditions, for instance concerning illumination changes
or scale differences, than for often used operators such as SIFT. For dense reconstruction, we use our orientation as input for Semiglobal
Matching (SGM) resulting into dense depth images. The latter can be fused into a 2.5D model for eliminating the redundancy of the
highly overlapping depth images. However, some applications require full 3D models. A solution to this problem is part of our current
work, for which preliminary results are presented in this paper. With very small unmanned aerial systems (Micro UAS) it is possible
to acquire images which have a perspective similar to terrestrial images and can thus be combined with them. Such a combination is
useful for an almost complete 3D reconstruction of urban scenes. We have applied our approach to several hundred aerial and terrestrial
images and have generated detailed 2.5D and 3D models of urban areas.

1 INTRODUCTION

Already (Pollefeys et al., 2000) have demonstrated, that sets of
images from consumer cameras in combination with dense 3D
reconstruction form a good basis for photo realistic visualiza-
tion. (Pollefeys et al., 2002) presented one of the first approaches
for relative orientation for a larger number of images in a general
configuration, i.e., without known approximate values such as for
aerial images. It employed uncalibrated images. This makes the
approach very flexible, yet, on the other hand, reliant on sufficient
3D structure in the scene for the determination of calibration pa-
rameters.

While for the above work the overlap of the images is either
known implicitly in the form of the order in a sequence, or ex-
plicitly, e.g., from an aerial flight plan. In (Schaffalitzky and Zis-
serman, 2002) one of the first methods which can automatically
determine the overlap of images in image sets was presented.

(Pollefeys et al., 2008) have built a system that has been used to
reconstruct 3D structure from sequences with more than one hun-
dred thousand images. (Agarwal et al., 2009) and (Frahm et al.,
2010) have presented approaches which can deal with hundred
thousands or even millions of images from Community Photo
Collections from the Internet to model urban areas. A major dif-
ference between these two approaches is, that the former runs on
a cloud, the latter on just one multi-GPU PC system. While both
approaches are impressive, one has to note that they are based
on certain characteristics of the data and a couple of assumptions
which make them tractable:

• Images at tourist attractions are often taken from nearly the
same spot and thus look alike. I.e., many similar images
can be found even for extremely down scaled versions of
the images.

• The goal is to reconstruct the obvious 3D structure, leading
to impressive 3D reconstructions of highlights, such as the
Colosseum in Rome. Yet, there might be images, possibly
with wider baselines, that could be used to extend the geo-
metrical coverage or even link the tourist attractions. This is
not done, as it would mean a detailed comparison of many
more images.

Opposed to the above approaches, our goal is the detailed 3D
modeling of urban areas from high resolution wide-baseline im-
age sets.

In Section 2 we present the methods for point detection, match-
ing and robust parameter estimation, that we have improved and
combined for orientation of possibly unordered image sets.

For dense reconstruction, the results of our orientation procedure
are used as input for Semiglobal Matching – SGM (Hirschmüller,
2008), which we are about to extend to 3D (Section 3). Although
SGM has been developed for short baseline image sets, we found
that due to our precise relative orientation, very good depth esti-
mates were also possible for wider baselines.

Results are presented in Section 4. We have processed several
hundred images acquired from (micro) Unmanned Aircraft Sys-
tems (UASs) and obtained a detailed 2.5D model from aerial im-
ages of an urban area. For a combination of aerial images with
terrestrial images we have generated a preliminary dense 3D re-
construction of a building comprising the roof as well as the fa-
cades. In addition, we present a preliminary result for dense 3D
surface reconstruction from terrestrial images only. Finally, in
Section 5 conclusions are given and future work is discussed.

2 ORIENTATION OF UNORDERED IMAGE SETS

Albeit (Lowe, 2004) presents with SIFT a powerful solution
for the estimation of point correspondences for short-baselines,
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reliable point-matching for wide-baseline images can be much
harder. Therefore, there is a strong need for improved matching
methods. In the following we describe our approach which is
based on scale invariant point matching, least squares matching
and robust bundle adjustment (Figure 1).

Triplet matching using epipolar constraint

Determination of relative pose and n−fold points

Addition of new 3D points

Pair matching

algorithm and a strategy similar to the EM algorithm

Point detection (Difference of Gaussians)

and a strategy similar to the EM algorithm

Linking of triplets to image set
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Relative orientation of triplets based on 5−point

Figure 1: Image orientation based on scale invariant point match-
ing, least squares matching and robust bundle adjustment.

Our approach for point matching produces reliable results even
for major scale differences and illumination changes. It is based
on normalized cross correlation (NCC), which is highly invariant
against the latter, but only weakly against the former. To deal
with scale differences, we use the concept of (Lindeberg, 1994)
and determine points as scale space maxima based on Differ-
ences of Gaussians (DOG). NCC is weak against scale changes,
because in this case image patches with the same size around
conjugate points contain different scene parts. With the informa-
tion obtained from scale space maxima, down-sampling of im-
age patches with higher resolution is possible, so that they match
to the same scene part. Potential point-matches obtained by
scale-invariant NCC are refined by least squares matching (Grün,
1985) using an affine geometric model. This results into relative
sub-pixel point positions including covariance information. The
points and their covariance information are employed for relative
orientation of pairs and triplets.

With the five point algorithm (Nistér, 2004) it became feasible
to directly compute the relative orientation from calibrated image
pairs. We have embedded a version of it into RANdom SAm-
ple Consensus – RANSAC (Fischler and Bolles, 1981) using the
Geometric Robust Information Criterion – GRIC (Torr and Zis-
serman, 1997). Additionally, a strategy similar to the Expectation
Maximization (EM) algorithm is used to extend partial solutions.

Triplets and associated calibrated trifocal tensors are the basic
geometric building block of our approach due to the following
reasons:

• Opposed to pairs, where points can only be checked in one
dimension by means of their distance from their respective
epipolar lines, triplets allow for an unambiguous geometric
checking of points. This does not only lead to much more
reliable points, but also to improved, more reliable informa-
tion for the cameras.

• Triplets can be directly linked into larger sets by determining
their relative pose (translation, rotation and scale) from two
common images.

Based on the highly reliable relative orientation, we are able to
calculate the absolute orientation from unreliable and imprecise

GPS data of low cost sensors, e.g., in a GPS camera, also in areas
with strong occlusions, such as cities, similar to (Strecha et al.,
2010).

To deal with unordered image sets, we employ an approach for
automatic overlap detection consisting of the following steps:

• Determination of correspondences between the images

• Construction of two-view image matching graph

• Construction of three-view image matching graph

We use a fast GPU implementation (Wu, 2007) of SIFT to detect
points and then match images pairwise, determining correspon-
dences and hence the similarity between images. Available GPS
information in the Exif tags of the images is used to derive the
distance between images and thus to sort out unlikely pairs. This
is employed to reduce the complexity. The resulting matching
graph consists of images as nodes and edges which connect sim-
ilar images. The weight of an edge is given by the number of
correspondences between the two images, which is assumed to
correspond to image similarity. Image pairs with the number of
correspondences below a threshold will be considered as dissim-
ilar and no edge is inserted.

Once the similarities between the images have been derived, we
obtain a connected image set by constructing the maximum span-
ning tree (MST) of the matching graph using the modified algo-
rithm of (Prim, 1957).

Finally, we determine triplets by iterating through the MST using
the depth-first traversal algorithm. We discard triplets for which
the images have a number of correspondences or a normalized
overlap area below a threshold. For the determination of the over-
lap area between the images, we calculate the convex hull of the
conjugate points of the triplet using the algorithm of (Sklansky,
1982). The area inside the convex hull is normalized by division
through the total image area.

Our state concerning unordered image sets is still preliminary.
Many image pairs, which can be oriented by our robust match-
ing method, are not found due to the limited capability of the
employed fast matching method (Wu, 2007). Therefore, while a
combination of aerial and ground images is possible, the detec-
tion of overlapping images has to be conducted manually until
a fast implementation of the robust point-matching method for
wide-baseline images is available.

3 DENSE RECONSTRUCTION

For dense reconstruction we employ the original implementation
of Semiglobal Matching – SGM (Hirschmüller, 2008). It is based
on

• mutual information (MI) or the Census filter for cost com-
putation and

• the substitution of a 2D smoothness term by a combination
of 1D constraints (semiglobal).

MI presents the conditional probability distribution for the in-
tensities in the matching image given an intensity in the refer-
ence image without resorting to a parametric model. Thus, MI
can compensate a large class of global radiometric differences.
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Though, one has to note that the conditional probability is com-
puted for the whole image. This can be a problem for local ra-
diometric changes, e.g., if materials with very different reflection
characteristics exist in the scene or lighting conditions change.

The Census filter was found to be the most robust variant for
matching cost computation (Hirschmüller and Scharstein, 2009).
It defines a bit string with each bit corresponding to a pixel in the
local neighborhood of a given pixel. A bit is set if the intensity
is lower than that of the given pixel. Census thus encodes the
spatial neighborhood structure. A 7× 9 neighborhood can be en-
coded in a 64 bit integer. Matching is conducted via computing
the Hamming distance between corresponding bit strings.

The smoothness term of SGM punishes changes of neighboring
disparities (operator T [] is 1 if its argument is true and 0 other-
wise):

E(D) =
∑
p

(
C(p, Dp) +

∑
q∈Np

P1T [|Dp −Dq| = 1]

+
∑

q∈Np

P2T [|Dp −Dq| > 1]

)
(1)

• The first term consists of pixel matching costs for all dispar-
ities of D.

• The second term adds a constant penalty P1 for all pixels
q from the neighborhood Np of p, for which the disparity
changes only slightly (1 pixel).

• The third term adds a larger constant penalty P2 for bigger
changes of the disparities. Because it is independent of the
size of the disparities, it preserves discontinuities.

• As discontinuities in disparity are often visible as intensity
changes, P2 is calculated depending on the intensity gradi-
ent in the reference image (with P2 ≥ P1).

In 2D, global minimization is NP hard for many discontinuity
preserving energies E(D). In 1D, minimization can be done in
polynomial time via dynamical programing, which is usually ap-
plied within image lines. Unfortunately, because the solutions
for neighboring lines are computed independently, this can lead
to streaking. For the semiglobal solution, 1D matching costs are
computed in different (practically 8) directions which are aggre-
gated without weighting. In the reference image, straight lines
are employed, which are deformed in the matching image.

By computing the disparity images D for exchanged reference
and matching image one can infer occlusions or matching errors
by means of a consistency check. If more than one pair with
the same reference image is matched, the consistency check is
conducted for all pairs only once.

With the above methodology, very dense disparities can be com-
puted. Using the camera calibration, all points can be projected
into 3D space leading to dense 3D point clouds. While the origi-
nal work of (Hirschmüller, 2008) has shown how to derive 2.5D
surface models, work on the derivation of 3D surfaces by means
of triangulation of the 3D points dealing also with outliers has
been started only recently.

To model large-scale scenes in full 3D, which can produce bil-
lions of 3D points, efficient processing with regard to the compu-
tational and memory costs is a must. For this, octrees were found

Figure 2: Local update of triangulation by adding a new vertex
to temporary mesh. Left: New vertex v and projected neighbor-
hood. Right (circle): New candidate edges (dashed lines). Green
lines were accepted and red lines were removed, because of in-
tersection with shorter edges.

to be very suitable. Hence, we use for meshing a triangulation
based on balanced octrees introduced in (Bodenmüller, 2009).
Besides removing redundancy, octrees are particularly useful for
visibility-checks in multiple-view geometry.

Previous to mesh generation, points are eliminated depending on
the angle of their normal vectors to the normal vectors of neigh-
boring points. The triangle mesh is built incrementally. Iterating
through all remaining points, the temporary mesh is projected on
the tangent plane in a neighborhood of a new point (Figure 2).
The new point is connected with all vertices within the neighbor-
hood. If a new edge intersects an old edge in the plane, the longer
one is removed.

After sketching our approach for dense 3D reconstruction, we
present results for 2.5D and 3D surface reconstruction in the next
section.

4 RESULTS AND DISCUSSION

We have applied our approach for orientation and dense recon-
struction to several wide baseline image sets. For SGM in all
cases the Census filter (Section 3) was used for cost computation.

The result in Figure 3 is based on 166 aerial images, acquired by
a micro Unmanned Aircraft System (UAS). Although the flight
was controlled automatically, the obtained image set is not very
well structured. Because of too small overlap, many triplets can-
not be matched. For this image set, we have qualitatively com-
pared our approach with Bundler (Snavely, 2010). Particularly,
we found that the relative orientation produced by Bundler is
not very precise and the 3D point cloud contains many obviously
false points. Thus, SGM could only be applied meaningfully after
down-sampling the images to half the original resolution. In con-
trast, the relative orientation obtained by our approach is much
more precise and could be used as basis for SGM on the original
resolution images, leading to a much more detailed and realistic
2.5D model.

In Figure 4 we present a 2.5D model of an urban area obtained
from aerial images acquired by a micro UAS from about 50 me-
ters above the ground. The area with a size of about 600 × 100
meters was modeled from 262 images. Although the flight alti-
tude was quite low, a detailed facade reconstruction was barely
possible, because of the image configuration in combination with
only 2.5D modeling. The roof overhang and the windows behind
the facade render a realistic facade reconstruction not feasible in
this case. For a complete and detailed 3D reconstruction of urban
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Figure 3: Top: Two relative orientations of a set of 166 images of a large Building in Wessling (Germany). Left: Relative orientation
estimated by Bundler (Snavely, 2010) . Right: Relative orientation derived by our approach. Bottom: Resulting 2.5D models. Left:
Result based on the orientation of Bundler. Right: Result using our orientation. The more precise relative orientation results in a much
more detailed scene reconstruction.

areas there is, thus, a need for full, high resolution 3D reconstruc-
tion, that maintains the details and can deal with a combination
of aerial and terrestrial images.

Figure 5 presents a preliminary result for our new approach for
3D surface reconstruction based on a combination of aerial and
terrestrial images. The set of 205 images contains three different
sequences:

• The flight sequence, which was taken from about 20 meters
above the ground. It starts at the border of the village and
covers buildings and terrain over several hundred meters.

• The terrestrial image-sequence acquired around one build-
ing, visible in the flight sequence.

• The “ascending” sequence connects aerial and terrestrial im-
ages. The images change in small steps from the ground to
the bird’s eye perspective. This image configuration is only
feasible for micro UAS, which can be flown very close to
facades and roofs.

The combination of the flight and the “ascending” sequence is
quite difficult, because of major scale differences in combina-
tion with small overlap and perspective distortion. The dense
3D point cloud from SGM (Figure 5, second image) was gener-
ated with images from the terrestrial and the flight sequence and
gives an almost complete result for the building. It illustrates,
that roof and walls exactly fit to each other and, thus, that our rel-
ative orientation is very precise (please particularly note the roof
overhang). The textured 3D result (Figure 5, bottom) shows the
roof textured with different colors. This is caused by the different
lighting conditions during the acquisition of the ground and the
flight sequences.

Figure 6 shows another preliminary result of our work for full
dense 3D surface reconstruction. We have applied our approach
to the image sets “fountain-R25” and “castle-R20” of (Strecha et
al., 2008). Due to our robust matching approach, a combination
of both sets was possible.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach for automatic ori-
entation and dense reconstruction from wide baseline image sets.
As key characteristics it aims at a high precision in every step of
the approach from least squares matching to robust bundle ad-
justment. Currently, our approach for full, high resolution 3D
reconstruction does not maintain all the details that are available
in the depth images of Semiglobal Matching. An optimal com-
bination of depth estimation and smoothness priors has still to
be investigated, but from our point of view the ability for precise
relative orientation is fundamental.

Although our point matching approach is pretty robust against
scale and illumination changes, it is not robust enough concern-
ing viewpoint changes. Currently, arguably the best known con-
cept for matching robust concerning viewpoint changes is the ap-
proach of (Morel and Yu, 2009). It simulates off-image-plane
rotations, but has not been integrated into an approach for 3D
reconstruction. The improvement of our approach by a similar
procedure is part of future work.
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Figure 6: Top: Preliminary result for 3D reconstruction of a (textured) facade for Ettlingen Castle (Germany). Bottom: Left: Dense
3D point cloud. Right: Shaded 3D surface with wire-frames. The results are based on the image-sets “fountain-R25” and “castle-R20”
of (Strecha et al., 2008).
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