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ABSTRACT: 
 

Image based three dimensional modelling of small scale scenes sees an increased demand in recent years due to algorithmic 
advances, and growing awareness of users to the value of scene documentation in three dimensions. Nonetheless, most of the 
reported image-based reconstruction methods are either point driven, relying on matching large set of automatically sampled points 
(e.g., SIFT, SURF), or integral approaches. The latter are commonly based on generating an entire map of matching. For many such 
stereo-correspondence methods, however, images which are acquired from a narrow baseline and similar orientations are usually 
needed, in order to ensure satisfying results. We present in this paper a reconstruction approach, assuming both visibility and 
Lambertian reflectance, which is intended to be less affected by image difference. The proposed method performs a surface evolution 
which is implemented by an iterative scheme, applying a gradient flow which minimizes a reprojection-error cost function. The 

algorithm is applied on scenes of complex topography and varied terrain. Our results show applicability of the method, along with its 
satisfactory performance for some difficult imagery configurations. 
 
 

1. INTRODUCTION 

Detailed three dimensional mapping of small scale scenes sees 
an increased demand in recent years. This trend can be 
attributed to increasing computing power, graphic hardware, 
and technological and algorithmic advances. It has also been 
thriving by growing awareness of users to the value of scene 
documentation in three dimensions, such as visualization, scene 
analysis, and more.  

Among the various data acquisition techniques, the most 
effective ones for geographical scenes reconstruction are based 
on laser scanning technology and images. Although laser based 
point-clouds provide a dense set of data for scene description, 
limited availability of scanners and their prohibitive cost makes 
them not as widely applied as may be anticipated. In contrast, 
low cost cameras are far more available, and enable 3D 
modelling which is less costly, and in many cases generate data 
that are more detailed. Consequently, image-based 3D 

modelling is still relevant nowadays (Remondino and Menna, 
2008). Image based methods for three-dimensional 
reconstruction, are often motivated by photo-consistency 
criteria. Most of the reported approaches for environmental and 
geographical scenes are point driven,  and rely in many cases on 
the detection and matching or a large set of points (e.g., using 
the SIFT or SURF operators) (Remondino and El-Hakim, 2006; 
Barazzetti et al. 2010). Traditional methods for integral scene 

reconstruction are stereo-vision based and generate disparity-
maps which match each image pixel to a counterpart in the 
other image (Figure 1a). Generation of such maps is often 
subjected to an optimization scheme of some energy function, 
e.g., graph-cuts, belief-propagation and so forth (Scharstein and 
Szeliski, 2002; Brown et al., 2003). Notwithstanding, 
implementation is usually carried out in image-space, and is 
subjected to its resolution and precision, whereas the final 

reconstruction model is given in three-dimensional space. 
Moreover, these methods seem ineffective for wide baselines or 
significant orientation differences. Therefore, they may turn less 

applicable in complex natural environments which contain 
varied topography along with discontinuity and unsmooth 
features therein (Mor and Filin, 2009). 
A somewhat different approach for 3D modelling is surface 

evolution (Faugeras and Keriven, 1998, Gargallo et al, 2007, 
Delaunoy and Prados, 2011) which often generates a model 
which minimizes the images reprojection-error objective 
function (also known as energy or cost function) (Seitz et al., 
2006). This minimization is based on the assumption that the 
intensity image values of the same object-space point should 
share similar values; more realistically, have a minimal intensity 
difference between them. The process begins with an initial 

coarse approximated surface, and in each iteration the surface 
should change or "evolve" by some criteria until convergence to 
the optimal solution (by minimizing an objective function) is 
reached. 
Following such approaches, this paper proposes a methodology 
for three-dimensional surface reconstruction of a textured scene, 
which is motivated by photo-consistency, assuming visibility 
and Labertian reflectance. Our objective is to generate an 
explicit digital surface model (DSM) based on minimization of 

the integral reprojection-error generated by an image-set over 
the surface. An initial coarse surface is evolved iteratively using 
the gradient of a reprojection-error energy function (gradient-
descent method). Contrary to traditional reconstruction 
methods, our approach is surface-based (Figure 1b) and 
advancement is computed in three-dimensional model-space. 
The advantages of the proposed approach over traditional ones 
lie in the fact that the surface reconstruction is generated in a 

three-dimensional model space which makes it less subjected to 
image resolution. Moreover, since no point- or pixel-direct 
matching is required, the use of image sets with wide baselines 
and significant difference in their orientations becomes possible 
and in a more effective manner. The paper presents a theoretical 
scheme, along with an implementation for a triangular mesh 
model. Modification to other explicit surface representations is, 
however, straightforward. 
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The organization of this paper is as follows: we first introduce 

the main concept of the surface reconstruction as casted by an 
energy minimization. Section 2.1 develops expressions for the 
energy function gradient which enables to evolve the surface. 
Section 2.2 elaborates on computational aspects which enable 
us to implement our method for digital images. Section 3 
demonstrates the application of the method on an archaeological 
site that offers complex topography including varied terrain, 
discontinuities and unsmooth features therein. The results show 

applicability of the method, along with its satisfactory 
performance for difficult imagery configurations. The paper 
concludes with summary and discussion. 
 

 
Figure 1. Illustration of 3D point determination by a one-
dimensional search, a) an image-space search along the epipolar 
line using the radiometric information directly, b) the search is 
along the vertical locus, and the radiometric values are obtained 
by projection to image-space. The positioning in both cases is 

motivated by requiring minimal values for the intensity 
differences. 
 

2. SURFACE RECONSTRUCTION 

Our surface reconstruction approach is based on minimizing the 
reprojection-error in the three-dimensional object space. In 
order to do so we first describe the reprojection-error as a scalar 
field over the 3 Euclidean domain. For simplicity we focus in 
first on an image pair alone, but the expansion to multiview 
configuration is relatively straightforward by adding terms for 
all image pairs. 
Consider two images of a specific scene: a reference image I 
and a target image I'.  Every object-space point x|=|[x,y,z]T can 

be projected into each one of the images, and retrieve the 
intensity value Ȋ(x) and Ȋ'(x). Notice that here Ȋ: 3→  is a 
function over a point in the three-dimensional object-space (as 
opposed to I(u,v) which is the intensity function for a two-
dimensional image-space point). The relation between the two 
is Ȋ(x) = I(P(x)), where P: 3→ 2 is the projection of the object-
space coordinate onto the image. We can now define the 
reprojection-error scalar field as the square difference of 

intensity values as given in Eq. (1) 
 

 
2

( )  ( ) ( )D I I  x x x
 

(1) 

 
This scalar field may be calculated for any point in the field-of-
view of both images. Figure 2 provides a graphic illustration of 
such a field. 
We would like to find a surface Γ which represents the scene 
optimally, i.e., a surface that would maintain photo-consistency, 
or minimize the reprojection-error. As our interest is in an 

integral solution for the entire surface, our objective would be 
minimizing the cost function given in Eq. (2): 
 

 
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where dσ is the differential surface area element. This is an 
integration of the reprojection-error field D(x) over the surface 
Γ. Using continuous surface representation the optimization can 
be formulized as a variational problem. However, we can also 
use a discrete surface representation, such as Triangular 
Irregular Network (TIN) mesh or Digital Terrain Model (DTM) 
grid. In such a case, the surface would be represented by a set of 
piecewise functions (planes for TIN, bilinear or bi-cubic for grid 
etc.) where each of them depends on some finite number of 

parameters: 
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The choice here is of a triangle-mesh representation, and so, the 

integration is over a set of triangles {Tk, k = 1,2,…,nT}, and the 
solution is of a finite vector of np z-ordinate [t1,t2,…,tnp]. 

 
 
Figure 2. Illustration of the reprojection-error field. Region A is 
of low reprojection-error as its projection color in both images 
is red. On the other hand, the reprojection-error of region B is 

high due to the collision between red and green colors of its 
image projection. 
 
Our choice of solving this optimization problem is by using the 
gradient-descent method. Using it we should calculate the 
gradient of the objective function given in Eq. (3), i.e., its vector 
of derivatives with respect to the z-ordinate [t1,…,tnp] of each of 
the vertices (Figure 3). The update for each iteration q should be 

tj
(q+1)#=#tj

(q)#–#α
j

E
t

   for some scalar step of size α . 

 

  
Figure 3.  A surface (left) and the gradient of its vertices (right) 
visualized by the arrows. 

 
2.1 Gradient of the Energy function 

The objective energy function introduced in Eq. (3) is in fact an 
integral over the entire surface, and therefore depends on the 

parameters ti. As these parameters change, the surface evolves. 
Notice that the domain of integration changes as well as the 
energy function value. This concept of a surface flow according 
to some direction, which is the gradient in our case, is 

A 
A 

A 
B 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

252



 

sometimes related as gradient flow (Delaunoy and Prados, 

2011). 
To illustrate the flow, consider a surface that depends on a 
single parameter, t, termed in the following as time, for 
traditional reasons. For simplification of the mathematical 
derivation, we restrict our surface to a single triangle. Our 
energy function is an integration of some scalar field over the 
surface.  
 

2.1.1 Time Derivative for a Single Triangle 

Consider a triangle T in 3D-space, defined by its three vertices 
xi|=|[xi,yi,zi]

T, i=1,2,3. Let D: 3→  be some scalar field, then 
its integration over T may be expressed as a surface integral E. 
In order to introduce surface evolution or flow, we consider the 
triangle surface as moving in time in such a way that its three 
vertices move along some time dependent curves (Figure 4a). 
Consequently, the domain of integration also depends on time, 
and thus can be written as: 

 

 
( )

( )  

t

E t D d  x 

T

 
(4) 

 
Since the domain of integration in Eq. (4) is also time 
dependent, computing the derivative dE/dt  is not a trivial task. 
Thus we should use the Leibniz integral rule for differentiation 
under the integral sign (Flanders, 1973). To overcome this 
difficulty we may transform the domain of integration into a 2D 
coordinate system for which it has no time dependency. This is 
done by changing the surface domain to the unit triangle in 2 

which is defined by {|(r,s)[0,1]2|||r+s|=|1|}.  The integral may 
now be written as: 
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where any triangle points x(r,s)|=|x1+|(x2–x1)r|+|(x3–x1)s, 
determined by r and s, is a convex combination of the three 

vertices. The vector g|=[  
  

|×|  
  

]=|(x2–x1)×(x3–x1)  is also defined 

here in such a way that dσ|=|||g|||dr|ds enables us to compute a 
surface integral over the 2D domain space (r,s) as shown in Eq. 
(5). Since now the domain of integration is not time dependent, 

we may derive it and obtain the expression in Eq. (6). 
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where we use the 3D gradient D|=|[|  
  

,|  
  

,|  
  

|]T and the time 

derivative ẋ|=|  
  

|=[|  
  

,|  
  

,|  
  

|]T, so that the transition  

dD/dt|=|D·ẋ  becomes a result of applying the chain rule. We 

have also used the notation ġ|=|∂g/∂t. Moreover, since g is 
computed only using the triangle vertices it does not depend on 
the integration parameters r and s, and therefore can be taken 
outside of the integral, which leads to the following expression 
for the derivative 
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(7) 

We can further show that the vector derivative ẋ and the 

expression ġ·g can be expressed as a linear function of the 
vertices derivative ẋ1, ẋ2, and ẋ3, as given in Eqs. (8) and (9).  
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where the value g0 is the triple product of the three vertices 
g0|=|(x1×x2)·x3; g|=|||g|| is the norm of vector g and equals to 
twice the area of the triangle; and the vector n|=|g/||g|| is the unit 
normal vector of the triangle. 

 

 
Figure 4.  a) a general time dependent triangle surface model, b) 
an explicit triangle surface model . 
 
2.1.2 The Derivative for an explicit TIN model  

As we have chosen to use an explicit triangular mesh for a 
surface representation, the shape of the surface is determined by 
the z-ordinates of the triangles vertices (Figure 4b). For a single 

triangle Tk, the energy Ek which is integrated over it, depends 
only on a limited (three) set of parameters, tj, which correspond 
to its three vertices. The gradient of our energy function, is 
therefore a vector containing the derivatives of the energy 
E(t1,..,tnp) with respect to the values tj of each vertex 
j|=|1,2,…,np, where np is the number of vertices. Using Eq. (7) 
the j-th component of the gradient may be expressed by 
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where ejk|=|1 if the j-th vertex belonging to the k-th triangle Tk, 
and ejk|=|0 if not. Here, ẋ and ġ are vector derivatives with 
respect to tj. 
For a single triangle Tk, and without any loss of generality, we 
name these three parameters t1,t2,t3, which correspond to the 
triangle vertices xi, i=1,2,3, respectively. The 3D derivative 
values of the vertices can either be [0,0,0]T or [0,0,1]T (each 

vertex is defined as xi|=|[xi,yi,zi]
T and derivatives are with 

respect to the z-ordinate of all vertices ti, i=1,2,3). By 
substituting the derivatives into Eqs. (8) and (9) we get the 
following expressions: 
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Continuing with an expression for D, the reprojection-error 

field is D(x)|=|(Ȋ(x)–Ȋ'(x))2  as defined in Eq. (1), and therefore 

its 3D gradient is 
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where Ȋ and Ȋ' are the aforementioned 3D color fields generated 

by the reference and target image respectively. Deriving this 
color field function in 3D space is not as obvious, and so we use 
the 2D image function which generates it by the relation 

Ȋ(x)|=|I(P(x)). The 3D gradient Ȋ may therefore be expressed 

as 
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where here u and v are the 2D image coordinates and 

u|=|[|  
  

,|  
  

,|  
  

|]T. Therefore, to complete the expression for the 

gradient we also need to find the derivatives of the 2D image-
space coordinates u|=|[u,v]T with respect to the object-space 3D 
coordinates x|=|[x,y,z]T. We assume a pinhole model and 

therefore use the co-linearity principle, which can be written 
using the projection matrix P3×4: 
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The partial derivative of (u,v) with respect to (x,y,z) may be 
expressed by the Jacobian matrix 
 

11 31 12 32 13 33

21 31 22 32 23 33

( , )
      

( , , )

p p u p p u p p u

w w w

p p v p p v p p v

w w w

u u u
x y z

v v v
x y z

u v

x y z

  

  

   
   
 
   
   

 
  

    
   

 

u

x

 
(16) 

 
where w|=|p31x|+|p32y|+|p33z|+|p34. This provides us with the 
required expressions, since the first row of the matrix in Eq. 

(16) is uT and the second row is vT. 

 
We can now write explicit expressions for the derivatives of E. 
Prior to that we note that the vectors we obtained for ẋ in Eq. 

(11) have zero value for their first two components, namely, 
ẋ|=|[|0,|0,|∂z/∂ti|]

T for i=1,2,3. This is an expected result, since 
the parameters tj affect the surface only on the z-direction. 

Consequently, in order to compute the expression D·ẋ, we 

may consider only the derivative Dz|=|∂D/∂z and ignore the 
derivatives with respect to x and y. Therefore, combining Eqs. 
(13), (14), and (16), we have 
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we use the tag sign ('|) to relate to the target image. 
As a result and using Eqs. (7), (11), and (12), we obtain the 
necessary derivatives of E. 
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2.2 Computation 

Computing the integral in Eq. (3) in 3D object space is a 
challenging task. Although the 3D function Ȋ(x) is theoretically 
well defined, it is difficult to implement it practically. 
Moreover, our basic units for color data are image pixels, and 
therefore it is reasonable to compute this integral in the 2D 
image-space (u,v). We may therefore write Eq. (3) in the 

following form 
 

    

2

( )

  ( ) ( )

P

u v
E I I dudv 

 
    x xu u 

T

 
(19) 

 
where u|=|[u,v]T is the 2D reference image coordinates. The 
function P(x) in the domain of integration is the projection 
function from 3D object-space into 2D image-space: u=P(x). 
Eq. (19) would be entirely computable in the reference image-
space (u,v) had it not included the term I'(u') which is the actual 
target image-space. Therefore, in order for the integrand to be a 
function of single image-space domain (u,v), we have to 

reproject the target image coordinates (u',v') onto the reference 
image. Since the two projection functions are defined by u=P(x) 
and u'=P'(x), we may determine that u'|=|P'(P-1(u)). This 
composite function may seem indefinite, since we cannot 
trivially transform image coordinates from one to the other (by 
inverting P). However reprojection may be computed using the 
surface data. Taking the surface into consideration we can 
intersect a reference image ray generated by an image point, 

leading to a 3D object-space point, which can be then projected 
to the target image. A geometric illustration of such reprojection 
is given in Figure 5. 
We now define the reprojected image function 
Ĩ(u)|=|I'(u')|=|I'(|P'(P-1(u))|), which may be constructed by the 
original target image I', the two perspective projection matrices 
of both images, and the surface. Notice that the reprojected 
image is a synthetic one created by first inversely-projecting the 

target image onto the surface, and then projecting it from the 
surface to the reference image-space. Using the above notations 
we may now write Eqs. (3) or (19) as: 
 

    

2

( )

  ( ) ( )

P

E I I J dudv  u u 

T

 
(20) 

where 
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 
  
  
 
 

   x x P P
n P  

 
(21) 

 
is the coefficient of the surface area element in the image-space, 
which is developed in the Appendix. As Eq. (21) shows, J 
depends on the image-space point u|=|[u,v]T, its inversely 
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projected 3D object-space coordinates x|=|[x,y,z]T, the image 

perspective projection matrix P and the surface normal vector n 
at this point. The value w|is p31x|+|p32y|+|p33z|+|p34. 
 

 
Figure 5.  Illustration of an image-pair reprojection. 

 
Applying the reprojection approach we can now write the 

following expression for integration of Dz. Using Eqs. (17) and 
(20) we may write 
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T T

T

 
(22) 

 
which transforms the domain of integration from the 3D surface 
in object-space into both the reference and target image-spaces. 

Here Ĩ' is the inverse reprojected image from the reference to 
the target one, and J' is the coefficient for the target image. This 
enables us to compute the gradient of our energy function, and 
therefore perform a surface evolution in that direction. We 
detail here the algorithm for evolving an initial course surface 
based on minimization of the reprojection-error accumulated of 
an image pair of the scene. 
 

#1 input: 

#2 two images  I and I' 

#3 set of triangles Ti, i = 1,2, …, nT 

#4 initial set of vertices  xi, yi, zi = ti,   i = 1,2, …, np 

#5 output: 

#6 final values for the z-ordinates  ti,   i = 1,2, …, np  

#7 routine: 

#8 assign  E = 0  /* energy */ 

#9 define the gradient vector E of np elements and assign them to 0 

#10 for each triangle Tk, k = 1,2,…,nT 

#11       compute the values g1,g2,g3,g0 for the triangle 

#12       compute the triangle normal n1,n2,n3  

#13 project all the triangle vertices coordinate on the image I 

#14 for each pixel (u,v) in the image I 

#15      find the triangle Tk containing the pixel (u,v)  

#16      assign t1,t2,t3 to be the indices of the vertices of Tk 

#17      compute the surface point x,y,z (by intersection) 

#18      compute J using Eq. (21) 

#19      compute uz and vz using Eq. (16) 

#20      compute the numerical derivatives Iu and Iv of image I at (u,v) 

#21      compute u',v' by projecting x,y,z on image I' 

#22      assign  D  =  ½[ I(u,v) – I'(u',v') ]2 

#23      assign  Dz  = [ I(u,v) – I'(u',v') ] [ Iu uz + Iv vz ]
 

#24      assign  E0 = DJ ,     E1 = xDzJ ,     E2 = yDzJ ,    E3 = zDzJ 

#25      assign  E = E + E0 

#26      compute additions to the three gradient components ∂E/∂t1, ∂E/∂t2, ∂E/∂t3 

      using Eq.(18) 

#27 repeat the actions in rows #13-#26 while swapping I and I'  

#28 for each vertex i = 1 to np 

#29       assign ti = ti + α ∂E/∂ti    /* for some step-size α */ 

The computation of the surface point (x,y,z) in line #17 of the 

algorithm can be done by intersection of the ray line, generated 
by the image pixel and the camera exposure point, and the 
triangle plane. Moreover, the image derivative Iu and Iv in line 
#20 has to be computed numerically by using, for example, a 
gradient kernel. This can be done as a preliminary stage since 
the images do not change between iterations. 

 
3. RESULTS 

The proposed surface reconstruction method has been applied 
for scenes within an archaeological excavation site. It is 
demonstrated on a documentation project in Oren cave in the 
Carmel mountain ridge, as part of on-going research studying 
the origins and use of Manmade-bedrock-holes (MBH) in those 

sites. An excavation campaign performed in June 2011 serves as 
the case study here. Images were acquired during the excavation 
with a Nikon D70 camera, with 48mm Nikkon lens. 
We focus here on the reconstruction of a 3D surface model of 
MBH embedded within rough topographic settings. The input 
images were taken from a distance of approximately 1.5m from 
the MBH, such that the baseline is ~80cm, with a large 
orientation difference (Figure 6). The computation is generated 

by a few manually sampled points for producing the initial 
coarse surface (Figure 6). The initial surface can be seen in 
Figure 7a. 
 

   
 (a)           (b) 

Figure 6. Images used for the reconstruction, along with 
sampled points for generating the initial coarse surface. 
 

 
 
 
 
 
 
 
 

 
(a)       

 
 
 
 
 
 
 
 

 
(b) 

 
 
 
 
 
 
 

 
(c) 

 
 
 
 
 
 
 

 
(d) 

Figure 7. Stages of the surface evolution process, with the initial 
coarse surface in (a). 
 
As noted the surface evolution is implemented by an iterative 
scheme, applying gradient flow on the z-ordinates of the 

vertices. Selected stages of the evolution are presented in    
Figure 7, and the final resulted surface is presented Figure 8a. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

255



 

Results show a complete and successful reconstruction of the 

surface enabling also to depict fine details that reflect its 
formation. Application of the proposed model to other MBHs 
has proven successful as well. 
The reconstruction has been compared to existing methods as 
well. Use of the same images for reconstruction using the 
graph-cuts method has failed in the reconstruction completely 
(Mor and Filin, 2009). It seems that these methods which are 
based on disparity map in image-space tend to give inadequate 

results for poorly textured scenes, and seem to fail when the 
imaging configuration is of wide-baselines and is characterized 
by significant orientation difference. Furthermore, applying the 
SIFT algorithm on the images has yielded a sparse set of points, 
most of them are on the outer surface of the MBH and are 
insufficient to reconstruct the object successfully (Figure 8b). 
Here again, texture, and the wide baseline and orientations have 
a significant effect on the outcome. 
 

  
 (a)           (b) 

Figure 8. The reconstructed surface with texture in (a), whereas 
for comparison, a set of match points generated by the SIFT 
algorithm is presented in (b). 
 

4. CONCLUSION AND DISCUSSION 

This paper has presented a method for 3D reconstruction by 
surface evolution based on an image-pair, by employing a 
gradient flow for minimization of the reprojection-error. 

Additionally, an implementation scheme on a TIN mesh has 
been presented, and applied for complex topographic scenes. 
The results have shown applicability of the method, along with 
its satisfactory performance for some difficult imaging 
configurations. Future work may deal with expanding the 
method for several images, and evolving surfaces of non-
explicit representation. 
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APPENDIX 

The appendix presents an expression for J, the coefficient 
transforming the area element form the surface to the image-
space. This is the expression given in Eq. (21). The relation 
between the image-space coordinates (u,v) and the object-space 
3D coordinates (x,y,z) can be stated by the following three 
equations: 

 

 

11 12 13 14 31 32 33 34

21 22 23 24 31 32 33 34

1 2 3 0

  

  

  

p x p y p z p p x p y p z p u
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g x g y g z g
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where the first two equation are variation of the co-linear law of 
Eq. (15), and the third one is the triangle plane equation in the 
3D object-space. Deriving these three equations with respect to 
u and v gives 
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These two sets of equations may be written as  
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Using the identity  (Ab)×(Ac)  =  det(A) A-T (b×c) 
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and since the determinant of Q is  gT|(det(P3)P3
-1)|[|u|v|1]T, we 

get the expression of Eq. (21). 
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