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ABSTRACT: 

The extraction of geometric and semantic information from image and range data is one of the main research topics. Between the 

different geomatics products, 3D city models have shown to be a valid instrument for several applications. As a consequence, the 

interest for automated solutions able to speed up and reduce the costs for 3D model generation is greatly increased. Image matching 

techniques can nowadays provide for dense and reliable point clouds, practically comparable to LiDAR ones in terms of accuracy 

and completeness. In this paper a methodology for the geometric reconstruction of roof outlines (eaves, ridges and pitches) from 

aerial images is presented. The approach keeps in count the fact the usually photogrammetrically derived point clouds and DSMs are 

more noisy with respect to LiDAR data. A data driven approach is used in order to keep the maximum flexibility and to achieve 

satisfying reconstructions with different typologies of buildings. Some tests and examples are reported showing the suitability of 

photogrammetric DSM for this topic and the performances of the developed algorithm in different operative conditions.  

 

 

1. INTRODUCTION 

The extraction of geometric and semantic information from 

image and range data is one of the main research topics in the 

geomatics community. Between the different products, 3D city 

models have shown to be a valid instrument for several 

applications such as solar radiation potential assessment, urban 

management and planning, land monitoring, pollutant diffusion, 

virtual tour, navigation, gaming, etc. As a consequence, the 

interest for automated solutions able to speed up and reduce the 

costs for 3D model generation is greatly increased (Haala and 

Kada, 2011).  

In typical mapping and modelling applications, once a point 

cloud (usually several millions of points) has been extracted, 

only the first (and shortest) part of the work has been 

completed. It is afterward required to process them in order to 

extract metric information (such as shapes, surface normal 

vectors, dimensions, polylines, etc.) necessary to achieve the 

final product (3D model, drawing, etc.). In some way, the 

classification, segmentation, modelling and in general the 

“understanding” of an unstructured point cloud is the main 

challenge to be faced nowadays. In literature, several papers 

dealing with these topics, in particular with the 3D building 

modelling, have been already presented. Some years ago, only 

few automated procedures considered the possibility to use 

images (Paparoditis et al., 2001; Zhang, 2005; Paparoditis et al., 

2006; Zebelin et al., 2006) as the information achieved by 

image matching were considered insufficient to obtain reliable 

results. Most of the researches were oriented towards LiDAR 

data (Rottensteiner and Briese, 2002; Habib et al., 2009; 

Sampath and Shan, 2009; Oude Elberink and Vosselman, 

2011). Nowadays a growing number of research works relies on 

the integration of different data sources (Demir et al., 2009; 

Vallet et al. 2011) and in particular on the integration of range 

and image data, exploiting the complementary nature of LiDAR 

and images (Awrangjeb, et al. 2010; Habib et al., 2010; Nex 

and Remondino, 2011).  But the actual availability of redundant 

multi-image information with and the improvement of 

automated image matching methods (Hirshmüller, 2008; 

Lemarie, 2008; Haala, 2009; Hiep et al., 2009; Wolff, 2009; 

Gehrke et al., 2010; Leberl et al., 2010), allow the generation of 

3D point clouds and 2.5D raster representations which in the 

past were only feasible with LiDAR techniques. Several 

commercial and open source solutions are also available for the 

production of very satisfactory geometric results (Fig. 1) 

exploiting the very high radiometric quality, the potentialities of 

GPU programming and the largely overlapping image blocks.  

 

   
                             (a)                                    (b)                        

Figure 1: Examples of image matching results with open-source 

packages. 

 

The paper presents an automated methodology for the geometric 

reconstruction of the main roof outlines (eaves, ridges and 

pitches) from dense point clouds automatically extracted from 

aerial images. Point clouds generated from image matching can 

be denser than LiDAR data. In theory, an image block with a 

GSD (Ground Sampling Distance) of 10 cm would allow the 

derivation of a point cloud with 100 points/m2. A typical 

LiDAR flight for city-modeling applications is in the order of 

15-20 points/m2. The extraction of an higher number of object 

points allows discontinuities to be better defined and it is 

directly connected to the Level of Detail (LoD) that can be 
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achieved in the geometric modeling (Oude Elberink and 

Vosselman, 2011). However, photogrammetric point clouds and 

DSM are usually noisier than LiDAR data as they suffers from 

the radiometric image quality, image overlap,  presence of 

shadows and object texture, as also underlined in (Vallet et al., 

2011). The large image overlap can only partly improve the 

internal accuracy and the reliability of the results but several 

blunders can be still present in shadowed or almost occluded 

areas. But the higher number of details that can be detected (i.e. 

roof tiles) allows to better model surfaces (that are flat in lower 

resolution point clouds) even if this higher degree of detail is 

often interpreted as noise during the modelling.  

In the literature, many approaches focusing on roof shapes 

extraction from elevation data have been presented, mainly 

based on prismatic shapes, point cloud segmentation, feature 

recognition or DSM simplification (Haala and Kada, 2011). 

Several commercial software devoted to man-made  feature 

extraction and 3D reconstruction have been developed too.  

These approaches have been originally implemented based on 

LiDAR as input data, but several problems arise when 

photogrammetric DSM are used. Indeed only geometric 

information can be used in the modelling without any multi-

echo pulses or intensity information. Thus the presence of 

blunders/noise and some gaps in the point cloud can lead to 

incorrect reconstructions (Fig. 2). 

 

 
Figure 2: Example of automated 3D roof reconstruction using a 

commercial software and a photogrammetric point cloud. Some 

problems are visible on the reconstructed roofs. 

 

The proposed algorithm works on photogrammetric DSMs and 

it fits in the segmentation methods keeping into consideration 

the aforementioned problems. The suitability of  image-based 

data for automated building outlines reconstruction is thus 

reported, considering not only the eave detection but also the 

ridge, hips and valley extraction. Several iterative steps are 

performed in order to extract only reliable information for the 

roof reconstruction. On the other hand, the algorithm maintains 

the maximum flexibility in order to correctly reconstruct roof 

building components (Fig. 3) in a big variety of operative 

conditions. A data driven approach is implemented without any 

geometrical constraint (parallelism, orthogonality, etc.) in order 

to define a building model.  

 

 
Figure 3: Roof components which should be reconstructed for 

the highest roof LODs. 

In the next sections, the workflow will be described more in 

detail with examples over different test areas. Finally, 

conclusions and future developments will be discussed.  

 

 

2. ALGORITHM OVERVIEW 

The proposed algorithm processes image-based point clouds in 

order to extract geometric primitives useful for a more complete 

and detailed reconstruction of roof buildings. The entire 

methodology (Fig. 4) is divided in blocks with concatenated 

processing steps. 

 

 
Figure 4. Workflow overview for automated roof shapes 

extraction from photogrammetric elevation data. 

 

- DSM generation. The DSM generation is a fundamental step 

for the following results as the whole process depends on the 

quality of the point cloud. The open-source MicMac method 

(Paparoditis et al., 2006) is applied as, from our experience and 

after the comparison with other packages, it  provides dense and 

accurate point clouds over urban areas without smoothing 

effects in proximity of building outlines. A very dense point 

cloud is strictly recommended (even 1 object point per pixel) in 

order to have a complete information all over the area (Fig. 5b). 

Large image overlaps are recommended to reduce occlusions 

and increase the reliability of the reconstruction while 16-bit 

resolution images only partially reduce the lack of texture and 

shadows problems.  

 

  
(a)                                       (b) 

Figure 5: RGB image (a) and corresponding depth map (b). 

 

- Normal vector estimation. Man-made objects on urban areas 

are usually characterized by local flat areas (roofs, roads, etc.) 

with reduced slopes (maximum 45°). Blunders are usually 

characterized by chaotic and rough depth variations: this is 

usually true for the results provided by several matching 

algorithms. Thus normal vectors on these areas should be 

almost vertical and regular when matching results are reliable. 
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On the other hand they suddenly vary in direction and they are 

almost horizontal on noisy areas. According to this, the normal 

vector, normally computed using 5x5 pixel patches, can give an 

indication of the local shape of the DSM. Fig. 6a shows the 

computed normal vector image on the same area of Fig. 5a: 

light grey areas indicates almost vertical normal vector 

directions whereas dark areas describes almost horizontal 

directions.  Horizontal directions are only in correspondence of 

blunders and rough variations of the buildings (outlines and 

chimneys). 

 

 
(a)                                       (b) 

Figure 6: Normal vector image (a) and off-ground area (b). 

 

- Off-ground extraction. The automatic off-ground extraction 

procedure  assumes that the height of the ground is lower than 

the neighbouring non-ground points. The ground filtering is 

performed with an iterative regular grid filtering. This process 

considers three different problems: (i) the ground height 

variations over a big region patch, (ii) the presence of big 

dimensions buildings that can avoid to determine the correct 

ground height when too small DSM patches are considered and 

(iii) the presence of blunders or local noise can influence the 

determination of ground height value. For these reasons, the 

ground height is iteratively computed on different DSM patch 

dimensions, evaluating only almost vertical normal vector areas. 

In this way, the most representative value of the ground height 

is determined considering the minimum height value on the 

different DSM patches. Off-ground points are defined 

considering points higher than a defined threshold (2-4 m) with 

respect to the ground height value (Fig. 6b).  

- Vegetation removal. The off-ground points comprehend 

buildings, trees and noisy data. The vegetation can be easily 

removed when NIR images are available, simply using  the 

NDVI value. When only RGB images are available, a 

combination of height variations and colour information is 

considered. The achievable results are usually incomplete as 

some areas are not deleted and thus a morphological filter to 

remove little areas with irregular shapes is afterwards applied.  

- Noise and blunder filtering. The roof shapes are usually 

correctly and completely described by the photogrammetric 

DSM but some noisy points are still visible around it (as shown 

in Fig. 7a) approximately at the same height of the buildings.  

Height differences between adjacent points and normal vector 

variations (black arrows in Fig. 7) of points in correspondence 

of building boundaries are kept in count in a cost function. In 

this way blunders close to building outlines are iteratively 

eroded (red points in Fig. 7b). This process sometimes exceeds 

in the points removal and an iterative dilation step is then 

performed. Points located in proximity of building borders are 

used as seed points (blue points in Fig. 7).  For each point, both 

height variations and local planarity of seed points are 

considered in a cost function in order to evaluate its suitability 

to belong to the roof. 

 
            (a)                             (b)                          (c) 

Figure 7: Iterative erosion and dilation process. 

 

At each iteration new points are aggregated on the roof until 

they cannot be considered suitable (Fig. 7c). The process 

usually stops to add points in 2-3 iterations. Finally, regions 

with surface lower than a threshold and with very irregular 

shape are removed in order to delete not still removed 

vegetation areas. The filtered DSM achieved by this process is 

shown in Fig. 8a. Deleted points are replaced by their 

correspondent ground height, i.e. a mean ground value over a 

region of few meters.  

- Eaves detection.  Each building can be composed by different 

roofs with different heights that must be partitioned in order to 

better reconstruct the entire roof area. The building is thus 

divided in different volumetric elements (sub-footprint) only 

when big height variations occurs and completely separated 

volumes can be defined. Regions of the roof that are connected 

by a side with other faces (i.e. dormers) are not considered 

separate sub-footprints. Little separate regions, such as 

chimneys, are grouped to the roof as they are difficult to be 

correctly modelled on noisy areas as they could be seen as 

blunders: for this reason, it was decided to ignore them. Each 

building’s eave is initially stored considering the boundary 

pixel coordinates of each sub-footprint (Fig. 8b). A first 

decimation of boundary is performed in order to reduce the 

number of points and simplify the following smoothing process.  

 

  
(a)                                       (b) 

Figure 8: Filtered depth map (a) and corresponding sub-

footprints of the buildings (b). 

 

- Roof face intersection detection. After the building’s eave 

determination, the ridge, hips and valleys positions has to be 

defined. The different faces of the roof have to be determined in 

order to complete the roof shapes reconstruction. Several 

algorithms already presented (Haala and Kada, 2011) can be 

adopted: the plane fitting (RANSAC, etc.), region growing 

algorithms, 3D Hough transform, curvature estimation, etc. In 

this work a region growing approach was adopted, as it is more 

robust to noisy data. In particular, this algorithm keeps in count 

the local maximum gradient on the roof (8 direction are 

considered), the presence of rough depth variations and the 

normal vector direction in order to perform a first classification 

of points. As data are noisy, an over-segmentation of the area is 

usually determined (Fig. 9a). To solve this problem, the main 

gradients of the buildings are estimated over each area and the 

process is repeated. The main gradients of the roof are chosen 

considering the number of pixels (their area) and their extension 

on the roof: points with the same orientation spread over the 

whole roof are usually due to noise and they cannot be 
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considered a main representative orientation. On the other hand, 

frequent orientation on a defined area of the building indicates a 

representative orientation of one roof face. When the principal 

orientations are defined, pixel values are constrained to belong 

to the closer principal orientation in the second iteration (Fig. 

9b). This process is still a critical aspect but it provides 

satisfying results when the roof faces are sufficiently wide to be 

well modelled by the DSM. The roof face intersections are then 

defined selecting the boundary of each face. As in the eave 

detection step, chimneys on the roof are ignored and ridges are 

constrained to be regular and linear when chimneys are close to 

the rooftop. 

 

  
(a)                                       (b) 

Figure 9. Roof faces determination: aggregation procedure. 

 

- Outline smoothing and footprint generation. Points 

provided by image matching algorithms can be randomly noisy. 

Thus the extracted outlines can also affected by some noise and 

they cannot be directly used in the roof modelling production. 

For this reason, a smoothing is needed in order to define a 

regular shape of the object, easing the roof outlines in set of 

lines and curves. The great majority of roof outlines can be 

mainly classified in sets of lines and (more rarely) in second 

order curves. Therefore, each edge must be split in different 

basic entities that describe its linear or curved parts separately. 

Each separate basic entity is then simplified in lines and curves 

fitting the dominant point information with a robust least square 

(LS) approach (Nex, 2010). These lines are finally merged 

together in hierarchical way to reconstruct the geometry of the 

roof in a whole dataset. The reliability of the fitted lines is 

defined by residuals of the LS which control the outline 

displacement to have the extremes coincident. Then, the borders 

of the hips are moved in order to coincide to the eave corners 

when the displacement is lower than a threshold. 

- Edge exporting. The automatically extracted roof edges are 

exported in CAD as a set of 3D polylines/shapes in order to 

give a good preliminary idea of the achieved results (Fig. 10).   

 

  

(a)                                                (b) 

Figure 10. Example of exported the 3D shapes seen from above  

(a) and in an oblique view (b). 

3. TEST RESULTS 

In the following, some results of the developed methodology 

are reported. The tests were performed on dense urban areas 

over the city of Vaihingen (Germany) and Torino (Italy).  

 

3.1 Vaihingen  

 

  
(a)                                       (b) 

Figure 11. One image of the Vaihingen block (a) and the 

generated DSM shown as depth map (b). 

 

This dataset belongs to the test area project of ISPRS WG III/4 

“Urban Classification and 3D Building Reconstruction” 

(http://www.commission3.isprs.org/wg4/). 

 

  
(a)                                       (b) 

Figure 12. DSM after the filtering process (a) and the detected 

roof shapes and faces (b). 

 

Images, provided as pan-sharpened colour infrared images, 

were acquired with a DMC camera over the city of Vaihingen 

(Germany) with 80/70% overlap. They feature 8 cm GSD and a 

radiometric resolution of 11 bits.  

 

 

Figure 13. 3D shapes of the test area exported in CAD. 
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Unfortunately the images were acquired in the early morning (8 

a.m.) and very long shadows influenced the quality of the 

extracted DSM (Fig. 11b). Noisy areas in correspondence of 

shadows had to be removed with some filtering, followed by the 

off-ground area identification (based on the NDVI index) and 

the detection of the correct building outlines (Fig. 12a). Finally 

the buildings were classified in sub-footprints and the ridges 

extracted as shown in Fig. 12b where each colour represents a 

different face orientation, whereas white areas refers to flat 

roofs. 

The extracted outlines were finally smoothed in set of polylines 

and exported as 3D shapes in CAD format for their final 

visualization (Fig. 13). The results are quite satisfactory also 

due to the availability of the NIR band which allows the use of 

NDVI index to filter out the vegetation.  

 

3.2  Torino 

The dataset contains 6 aerial RGB images (DMC camera, 

GSD=12 cm) over a urban area of Torino (Italy). The test area 

(ca 0.5x0.5 km) is characterized by several high buildings, trees 

and variation of the ground height. Some blunders are present 

in the generated DSM (Fig. 14) around several buildings, but 

the developed methodology could face these problems.  

After the filtering process (normal vectors are shown in Fig. 14 

bottom-left), the DSM was improved by deleting the residual 

noise and the roof faces were correctly detected: the achieved 

result is shown in Fig. 14 bottom-right.  

 

 

Anyway, some buildings regions are missing: this problem is 

usually concentrated on noisy areas, especially on buildings  

lower than surrounding ones. The roof face were correctly 

detected and the building outline extraction allowed to evaluate 

more in detail the reliability of the results. Big and higher 

building roofs were correctly reconstructed, while smaller man-

made entities were partially missing.   

Finally, the outlines and the ridges were smoothed and exported 

in CAD format as shown in Fig. 15. 

  

 

Figure 15. 3D shapes of the test area exported in CAD. Small 

polylines associated to small man-made structures are also 

present. 

    
 

    

Figure 14: Original DMC image over Torino (top-left), derived DSM shown in shaded mode (top-right), normal vector (bottom-left) 

and roof shapes detection results (bottom-right). 
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4. CONCLUSIONS AND FUTURE DEVELOPMENTS 

In this paper an algorithm for the automated extraction of roof 

building shapes from photogrammetric DSM was presented. 

The presented algorithm keeps in count the difference between 

LiDAR and photogrammetric DSM, showing the suitability of 

the latter data for roof shapes extraction too. Photogrammetric 

DSM could became a valid alternative to LiDAR data in the 

building extraction, thanks to their higher density.  

The proposed method is data driven: the approach is able to 

process different typologies of buildings, but the results are 

strongly influenced by DSM quality which directly depends on 

the image quality. In general, very high overlap image blocks 

with reduced shadows are strictly recommended to extract very 

accurate and dense point clouds. The performed tests have 

demonstrated how different can be the quality of the achieved 

results as a function of the image quality and available bands. 

The algorithm produces the correct reconstruction in most of 

the cases, when the input data is smooth and complete. Anyway, 

some problems can be found when very complicated building 

geometries have to be reconstructed (i.e. industrial sheds or old 

city centres). Moreover the noise and blunder filtering step can 

delete wrong points, in particular when they are limited to small 

areas. On the other hand, some holes in the DSM can be 

generated when very noisy areas are analysed. 

Further investigations will be performed in order to increase the 

performances of the algorithm in these areas too. Then, 

symmetries, parallel walls and regular shapes in general are very 

difficult to be directly achieved from data: several constraints 

should be imposed in order to achieve a more effective solution. 

In particular the possibility to integrate image information to the 

DSM information will be investigated in order to improve the 

completeness and reliability of the approach. Several tests over 

new areas will be performed in order to evaluate the 

performances of the developed methodology and evaluate the 

geometrical accuracy of this technique. For sure the potentiality 

of photogrammetrically derived DSMs is enormous and such 

data are getting a reliable alternative to LiDAR point clouds. 
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