
DIAGNOSTIC-ROBUST STATISTICAL ANALYSIS  
FOR LOCAL SURFACE FITTING IN 3D POINT CLOUD DATA 

 
 

Abdul Nurunnabi a, *, David Belton b, Geoff West b 

 
a, bDepartment of Spatial Sciences, Curtin University, Western Australia, Australia 

aabdul.nurunnabi@postgrad.curtin.edu.au, b{D.Belton, G.West}@curtin.edu.au 
a,bCooperative Research Centre for Spatial Information 

 
Commission III/4 

 
 
KEY WORDS: 3D Modeling, Feature Extraction, Geometric Primitives, Laser Scanning, Local Normal Estimation, 

Photogrammetry, Plane Fitting, Surface Reconstruction 
 
 
ABSTRACT: 
 
This paper investigates the problem of local surface reconstruction and best fitting for planar surfaces from unorganized 3D point 
cloud data. Least Squares (LS), its equivalent Principal Component Analysis (PCA) and RANSAC are the three most popular 
techniques for fitting planar surfaces to 3D data. LS and PCA are sensitive to outliers and do not give reliable and robust 
parameter estimation. The RANSAC algorithm is robust but it is not completely free from the effect of outliers and is slow for 
large datasets. In this paper, we propose a diagnostic-robust statistical algorithm that uses both diagnostics and robust approaches 
in combination for fitting planar surfaces in the presence of outliers.  Recently introduced high breakdown and fast Minimum 
Covariance Determinant (MCD) based location and scatter estimates are used for robust distance to identify outliers and a MCD 
based robust PCA approach is used as an outlier resistant technique for plane fitting. The benefits of the new diagnostic-robust 
algorithm are demonstrated with artificial and real laser scanning point cloud datasets. Results show that the proposed method is 
significantly better and more efficient than the other three methods for planar surface fitting. This method also has great potential 
for robust local normal estimation and for other surface shape fitting applications.  
 
 

                                                             
*  Corresponding author. 

1.     INTRODUCTION 

In many fields such as photogrammetry, reverse engineering 
and computational geometry, surface reconstruction and fitting 
for geometric primitives is a fundamental task with point cloud 
data. Much use is made of accurate local surface fitting and 
local normal estimation and the fact that these are related to 
each other. “In surface reconstruction, the quality of the 
approximation of the output surface depends on how well the 
estimated normals approximate the true normals of the 
sampled surface” (Tamal et al., 2005). Most man-made objects 
contain planar surfaces. Fitting a planar surface is closely 
related to local normal estimation for surface reconstruction, 
point cloud segmentation, classification and rendering 
(Schnabel et al., 2007; Pu et al., 2011). In fact, plane detection 
can be regarded as the first step in segmentation. In point cloud 
data analysis local normal estimation from a fitted local plane 
is used frequently (Hoppe et al., 1992; Wang et al., 2001). The 
Least Squares (LS) method, Principal Component Analysis 
(PCA) and RANdom Sample and Consensus (RANSAC) are 
the three most popular techniques for fitting planar surfaces to 
3D data (Hoppe et al., 1992; Schnabel et al., 2007). Tarsha-
Kurdi et al., (2007) show that the RANSAC is more efficient 
than the well-known Hough transform and note that the Hough-
transform is very sensitive to the segmentation parameters 
values. Hence we compare RANSAC with our technique.  
 
The majority of point cloud data is acquired by various 
measurement processes using a number of instruments 

(sensors). The physical limitations of the sensors, boundaries 
between 3D features, occlusions, multiple reflectance and 
noise can produce off-surface points that appear to be outliers 
(Sotoodeh, 2006). Robust statistical approaches are regarded as 
one of the most effective solutions to the problems of outliers. 
Stewart (1999) states in his review paper: “It is important for 
the reader to note that robust estimators are not necessarily the 
only or even the best technique that can be used to solve the 
problems caused by outliers and multiple populations 
(structures) in all contexts”. The necessity of robust methods 
has been well described in the literature (e.g. Hampel et al., 
1986). The goal of robust multivariate methods should be 
twofold: to identify outliers and to provide an analysis that has 
greatly reduced sensitivity to outliers. It is well-known that the 
LS and PCA methods are very sensitive to outliers and fail to 
reliably fit planes (Mitra and Nguyen, 2003). The RANSAC 
algorithm is not completely free from the effect of outliers and 
requires more processing time for large datasets. Moreover, 
“RANSAC is very efficient in detecting large planes in noisy 
point clouds but very slow to detect small planes in large point 
clouds” (Deschaud and Goulette, 2010). In this paper, we 
concentrate on planar surface fitting and local normal 
estimation of the fitted plane. Robust PCA often gives an 
accurate portrayal of the underlying data, but even so, it does 
not identify particular outliers that may be significant in their 
own right. To get more effective results, along with a robust 
version of PCA, it is important to have a complementary outlier 
identification method. We propose a new diagnostic-robust 
statistical technique for planar surface fitting in 3D point cloud
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data, which is able to find outliers and robust estimates at the 
same time. We compare the new method with LS, PCA and 
RANSAC. The robustness of the methods is compared with 
respect to size of the data, outlier percentage and point density. 
 
The remainder of the paper is arranged as follows: Section 2 
briefly discusses the three related methods. In Section 3, we 
propose our technique for fitting planes and for local normal 
estimation from the best fitted plane. Section 4 contains 
results, and analyses the performance of the proposed 
technique through comparison with the other methods using 
simulated and real (mobile mapping laser scanning) datasets. 
Section 5 concludes the paper. 
 
 

2.  RELATED WORKS AND PRINCIPLES 

In this section, we briefly discuss the basic notions of the 
related methods used in this paper.  
 
2.1 Least Squares 

The same basic principle of the LS method has been used in 
different ways for plane fitting. The principle is to minimize 
the sum of the squared residuals. Assume a sample of data 
points {pi (xi,  yi , zi); ni ,...,2,1 } belong in a 3D point cloud 
and used to fit a plane. The plane equation is: 
                                                  

                              ,0 dczbyax                    (1) 

 
where a, b, c and d are the parameters. The LS method is used 
to express the data points in the form ( zyxfyx ),(,, ) and to 
minimize the sum of squared residuals (r2), 
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where r is the distance between points and the fitted plane. 
The ith residual is a vertical distance and considered only in 
one (vertical) direction (z here) (Kwon et al., 2004). To 
overcome the bias to one direction, the approach of Total Least 
Squares (TLS) is proposed that minimizes the squared sum of 
the orthogonal distances between the points and the plane. In 
TLS, if the position (centre) of the plane is defined as c and n  
is the unit normal to the plane, the parameters of the plane can 
be determined by solving: 
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where ncp T

i

 )(  is the orthogonal distance between a plane 

and a point pi of the data. Hoppe et al., (1992) and later many 
use this idea for fitting a plane. The other way of parameter 
estimation is minimizing the orthogonal distance using the 
Singular Value Decomposition (SVD) of the data matrix.  
 
2.2  Principal Component Analysis 

PCA is a statistical technique that is typically used to identify a 
small set of mutually orthogonal variables which explain most 
of the underlying covariance structure of a dataset. Principal 
Components (PCs) are the linear combination of the original 
variables that rank the variability in the data through the 
variances, and produce the corresponding directions using the 

eigenvectors of the covariance matrix. So, the first PC 
corresponds to the direction in which the projected 
observations have the largest variance, the second PC 
corresponds to the next direction and so on. Every PC 
describes a part of the data variance not explained by those 
with larger variances. Using only the top ranked PCs enable a 
reduced representation of the data. PCA minimizes the 
variance from the data by subtracting the mean from the 
corresponding variables and then performs SVD on that 
covariance matrix. This way PCA finds the required number of 
PCs. In the case of plane estimation, the first two PCs form a 
basis for the plane and the third PC is orthogonal to the first 
two and defines the normal of the fitted plane. Since the first 
two PCs explain the variability as much as possible with two 
dimensions, the fitted plane is the best 2D linear 
approximation to the data. Since the third PC expresses the 
least amount of variation, it can be used as the estimate of the 
coefficients of fitted plane. Hoppe et al., (1992) use the third 
PC as the normal of the plane. Later, many others use the PCA 
approach in different ways (Pauly et al., 2002) as an equivalent 
to LS. Although PCA is a powerful tool, it is well-known that 
the results are affected by anomalous observations.  
 
2.3 RANSAC  

The RANSAC algorithm, introduced by Fischler and Bolles 
(1981), extracts shapes and estimates the parameters of a 
model by randomly drawing a subset of data from the dataset. 
It is an iterative process consisting of two steps: hypothesize 
and test. First, a minimal subset (three points for a plane) is 
randomly selected and the required parameter estimation 
computed based on the subset. In the second step, the estimates 
are tested against all the data points to determine how many of 
them are consistent with the estimates. RANSAC divides data 
into inliers and outliers and yields parameters computed from 
the minimal set of inliers by using LS estimation with 
maximum support. It is conceptually simple, very general and 
can robustly deal with data containing more than 50% of 
outliers (Schnabel et al., 2007). Many authors use RANSAC 
for planar and local surface fitting (e.g., Schnabel et al., 2007). 
Since its inception, many versions of RANSAC (e.g., Torr and 
Zisserman, 2000; Michaelsen and Stilla, 2003) have been 
proposed. Torr and Zisserman (2000) point out that RANSAC 
can be sensitive to the choice of the correct noise threshold and 
when multiple model instances are present (see Zuliani, 2011). 
Schnabel et al., (2007) state that lack of efficiency and high 
memory consumption remain its major drawbacks.  
 
 

3. PROPOSED ALGORITHM  

The proposed Diagnostic-Robust PCA (DRPCA) algorithm is a 
combination of diagnostics and robust statistical techniques. 
First, we find candidate outliers using Robust Distance (RD). 
This reduces some outlier effects and makes the data more 
homogeneous. Second, we use robust PCA to find more 
candidate outliers, if any, and fit the plane in a robust way. The 
steps of the algorithm are: 
i.   calculate RD for the 3D point cloud, 
ii.  classify regular observations and outliers based on the RD, 
iii. perform robust PCA by using the regular observations from    

step (ii),   
iv.  calculate orthogonal and score distances from step (iii), and  

classify the observations as outliers and regular 
observations by using orthogonal distance, 
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v. find the first three robust PCs based on the regular 
observations  from step (iv), and 

vi.  fit a plane using the first two PCs from step (v) and find 
the third PC as the normal.  

 
3.1  Robust Distance 

In multivariate data, the distance of an observation from the 
centre of the data is not sufficient for outlier detection as the 
shape of the data has to be considered. The shape of 
multivariate data is quantified by the covariance structure of 
the data. The Mahalanobis Distance (MD) (Mahalanobis, 
1936) is probably the most well-known distance measure that 
considers covariance in the variables. For a m-dimensional 
multivariate sample xi, MD is defined as: 
 

                       nicxcxMD i
T

ii ,...,2,1,)()( 1             (4) 
 
where c is the estimated arithmetic mean and ∑ is the 
covariance matrix of the sample data.  “Although it is still 
quite easy to detect a single outlier by means of MD, this 
approach no longer suffices for multiple outliers because of the 
masking effect” (Rousseeuw and Driessen, 1999). Masking 
occurs when an outlying subset goes undetected because of the 
presence of another, usually adjacent, subset (Hadi and 
Simonoff, 1993). Hampel et al., (1986) point out that the MD 
is not robust because of the sensitivity of the mean and 
covariance matrix to outliers. It is necessary to use a distance 
that is based on robust estimators of multivariate location and 
scatter (Rousseeuw and Leroy, 2003). Many robust estimators 
have been introduced in the literature (see Maronna and Yohai, 
1998). Minimum Covariance Determinant (MCD) is one of the 
most popular ones because it is computationally fast 
(Rousseeuw and Drissen, 1999). The MCD finds a subset of h 
(  n/2) observations (out of n, the total number of 
observations) whose covariance matrix has the lowest 
determinant. The MCD estimate of location (cMCD) is then the 
average of the h points, and the MCD estimate of scatter 
(∑MCD) is the covariance matrix of the h points. The Robust 
Distance (RD) based on MCD is defined as: 
 

    nicxcxRD MCDiMCD
T

MCDii ,...,2,1,)()( 1   .        (5) 
 
Rousseeuw and van Zomeren (1990) show that RD follows a 
Chi-square (χ2) distribution with m (number of variables) 
degrees of freedom and the observations that exceed √(χ2

m,0.975) 
are identified as outliers.  
 
3.2 Robust Principal Component Analysis 

Generally, robust PCA is performed by computing the 
eigenvalues and eigenvectors of a robust estimator of the 
covariance or correlation matrix. A number of robust centre 
and covariance estimators have been introduced in the 
literature (e.g., M-estimators: see Maronna and Yohai, 1998; 
S-estimators: Rousseeuw and Leroy, 2003). Recently, Hubert 
and Rousseeuw (2005) introduce a new approach to robust 
PCA. The authors combine the idea of Projection Pursuit (PP) 
(Friedmann and Tukey, 1974) with the fast-MCD (Rousseeuw 
and Driessen, 1999). The PP is used to preprocess the data so 
that the transformed data are lying in a subspace whose 
dimension is at most n-1, and then the fast-MCD estimator is 
used to get the robust centre and covariance matrix. Reducing 

the data space to the affine subspace spanned by the n 
observations is especially useful when m  n, but even when 
m n, the observations may span less than the whole m- 
dimensional space (Hubert and Rousseeuw, 2005).  Since, “PP 
uses trimmed global measures; it has the advantage of 
robustness against outliers” (Friedman and Tukey, 1974). The 
fast-MCD contains time saving techniques; when n is large it 
fixes a lower number (500) of random subsets. Reduction of 
subsets has no effect because the algorithm uses outlyingness 
measure to use fewer subsets. In computation, first the data is 
compressed to the principal components defining potential 
directions. Then, each ith direction is scored by its 
corresponding value of outlyingness: 
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where the maximum is overall directions, v is a univariate 
direction and xivT denotes a projection of the ith observation on 
the direction v. On every direction a robust centre (cMCD) and 
scale (∑MCD) of the projected data points (xivT) is computed. 
Second, a fraction h (h should be greater than n/2; in this paper 
we use h=0.75n) of observations with the smallest values of wi 
are used to construct a robust covariance matrix ∑. Finally, 
robust PCA projects the data points onto the k-dimensional 
subspace spanned by the k (k=2 for plane fitting) largest 
eigenvectors (i.e., PCs) of the ∑ and computes their centre and 
shape by the re-weighted MCD. The eigenvectors of ∑ then 
determine the robust PCs.  
 
While computing the robust PCA, we can flag outliers in a 
diagnostic way. Outliers can be two types: orthogonal outlier 
that lies away from the subspace spanned by the k principal 
components and is identified by a large Orthogonal Distance 
(OD), which is the distance between the observation (xi) and 
its projection ( ix ) onto the k-dimensional PCA subspace. The 
other type of outlier is identified by the Score Distance (SD), 
which is measured within the PCA subspace. The cut-off value 
for the score distance is √(χ2

k,0.975), and for the orthogonal 
distance is a scaled version of χ2 (see Hubert and Rousseeuw, 
2005). We consider only the orthogonal outlier here because 
the points that are far away in terms of score should not be 
influential for plane fitting.  
 

 
Figure 1. Fitted plane, green points are distant in terms of 

score and red points are orthogonal outliers 
 
In Figure 1, we see that the points 28, 29 and 30 (red points) 
are orthogonal outliers because they are away from the plane 
and distant by OD. Note that point 30 has low SD (projection 
is in the cluster) so would not be identified as an outlier 
without OD. Figure 1 shows clearly that points 25, 26 and 27 
are in the plane although far from the main cluster of points, 
hence they are not considered as outliers. We use the 
remaining regular observations to get the final three PCs. The 
first two PCs are used for fitting the required plane and the 
third PC is considered as the estimated normal.  
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4. EXPERIMENTAL RESULTS  

We analyse LS, PCA, RANSAC and DRPCA using artificial 
and real mobile mapping laser scanning 3D point cloud data. 
We also consider Diagnostics PCA (DPCA), which uses the 
RD for outlier detection and fit the plane using PCA without 
outliers, and MSAC from the RANSAC family. MSAC (Torr 
and Zisserman, 2000) is an M-estimator based statistically 
robust version of RANSAC. We fit the planar surface and find 
normal and eigenvalues respective to the fitted plane. We 
calculate the bias angle (θ) (Figure 2 (a)) between the planes 
fitted to the data with and without outliers, defined by Wang et 
al., (2001) as: 
 

    )(arccos 21 nnT  ,                                (7) 
 

where 1n  and  2n  are the two unit normals from the planes 
with and without outliers respectively.  

                  
                   (a)                                                   (b)  

Figure 2. (a) Bias angles (θ)  between the fitted planes with 
and without outliers by different methods (b) variation along 

the normal to the sample points 
 
To compare results, we use the covariance technique and 
calculate the variation along the plane normal and the surface 
variation (see Pauly et al, 2002). Variation along the normal is 
defined by the corresponding eigenvalue (λ0) of the plane 
normal, and the surface variation at the point pi is defined as:  
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where σ(pi) measures the surface variation along the direction 
of the corresponding eigenvectors, and λi is the ith eigenvalue.  
 
4.1 Artificial Data  

Random 3D datasets are generated from a multivariate 
Gaussian distribution. Regular points have means in 3D of 
(2.0, 8.0, 6.0) and variances (5.0, 5.0, 0.01). Outliers have 
means (15.0, 15.0, 10.0) and variances (10.0, 2.0, 1.0). We 
simulate the datasets for various sample sizes (n = 20, 50, 100 
and 200) and outlier percentages (5, 10, 15, 20 and 25). We 
perform 1000 runs (for statistically representative results) for 
each and every sample size and outlier percentage. We 
compute the θ, λ0 and σp as the performance measures.   
 
4.1.1 Bias angle: Figure 3 shows the average bias angles (in 
radians) for different sample sizes and outlier percentages. It 
shows the large difference between robust (RANSAC, MSAC, 
DPCA, DRPCA) and non-robust (LS, PCA) methods. LS is 
less consistent than PCA, and DRPCA has a lower bias angle 
than LS, PCA, DPCA, MSAC and RANSAC in most cases. 
Figure 3 (a), for sample size 20, shows that MSAC and 
RANSAC give inconsistent results for different percentages of 
outliers.   
 
To show the effect of point density variation on bias angle, we 
create variations in surface directions (i.e., in x-y axes). We 
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Figure 3. Average bias angle versus outlier percentage for 

different sample sizes and outlier percentages 
 

Variance I II III IV V 
X  (R,O) 3, 8 5, 10 7, 12 10, 15 15, 20 
Y  (R,O) 3, 0 5, 2 7, 4 10, 7 15, 12 

 

Table 1. Variances for regular (R) and outlier (O) data 
 

simulate 1000 sets of sample with 50 points in which 20% are 
outliers for different combinations of x, y variances. The rows 
of Table 1 show the variance combinations for regular (R) and 
outlier (O) data. Other criteria are the same as for the previous 
datasets. The results presented in Figure 4(a) show that robust 
methods are better than non-robust methods. Again the average 
bias angle for DRPCA is significantly less than for LS and 
PCA, and also better (less) than DPCA, MSAC and RANSAC.  
 
It is known that surface thickness (roughness) influences 
surface fitting methods. To see the effect of roughness, we 
change the variance along the z (elevation) axis.  Again we 
simulate 1000 datasets of 50 points with 20% outliers. The z 
variances for regular observations are 0.001, 0.01, 0.02, 0.05, 
0.1 and 0.2. The parameters for outliers (mean, variances for x, 
y and z) are the same as for previous simulated datasets. Figure 
4(b) shows that MSAC and RANSAC get worse compared to 
others with increasing z -variance. 
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Figure 4. Average bias angle w.r.t.  (a) point density variation 

(b) z variation   
The above results in bias angle show that RANSAC performs 
better than MSAC in most of the cases, and DRPCA out 
performs DPCA. In the interests of brevity we do not consider 
DPCA and MSAC in the rest of the paper.  
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4.1.2 Surface variation: We simulate 1000 samples of 50 
points with 20% outliers using the same input parameters as 
for previous experiments. Table 2 shows the calculated 
descriptive measures of λ0 and σp for all the samples.  
 

Measures LS PCA RANSAC DRPCA 
Mean 4.87782 0.49445 0.00009 0.00006 
Median 4.85758 0.48155 0.00009 0.00006 λ0 Outliers 8 18 10 3 
Mean 0.07405 0.01030 0.00001 0.00001 
Median 0.07375 0.00992 0.00001 0.00001 σp 
Outliers 10 19 15 13 

 
Table 2. Measures based on λ0 and σp from 1000 runs  
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Figure 5. Box-plots for (a) λ0 (b) σp from 1000 runs  

 
All the measures in Table 2 have larger values for non-robust 
methods. Every measure for DRPCA is better than for LS, PCA 
and the overall results are better than for RANSAC. In Figure 
5, both the Box-plots show that DRPCA is better than classical 
PCA and competitive with RANSAC.  
 
4.1.3 Performance time: Although DRPCA takes more time 
than LS and PCA to run, its computation time is still 
significantly less than for RANSAC. Table 3 shows the mean 
CPU time (in seconds) for various sample sizes (with 20% 
outliers) based on 1000 runs.  
 

Sample size LS PCA RANSAC DRPCA 
50 0.00005 0.0016 0.5288 1.2982 
100 0.00006 0.0016 1.0359 1.3199 
200 0.00006 0.0022 2.0932 1.3647 
1000 0.00015 0.0035 7.8356 1.6339 
10000 0.00103 0.0909 73.056 1.9134 

 
Table 3. Mean computation time  

 
4.2 Real Point Cloud Data 

We use laser scanner 3D data (Figure 6(a)) with 1,875 points. 
This dataset represents a saddle-back roof of a road side house; 
we consider it as a planar surface. Figures 6 (b) and 6 (c) show 
the points fitted by planes using LS and PCA showing that 
many outliers are taken as regular points in the plane. 
RANSAC finds 278 (14.8%) outliers (red points in Figure 
6(d)) and Figure 6(e) shows that the RANSAC fitted plane is 
still not completely free from outliers. DRPCA finds 225 
(12%) outliers marked as red points by RD and 73 (3.9 %) 
outliers marked as blue points by OD (Figure 6(f)). In total 
15.9% outliers are detected by DRPCA and with the remaining 
regular points we fit the plane using robust PCA. Figure 6(g) 
shows there is no indication of outliers on that DRPCA plane.  

  
Figure 6. (a) Real point cloud data (b) LS plane (c) PCA plane 

(d) outliers (red points) detected by RANSAC (e) RANSAC 
plane (f) red and blue points (outliers) detected by RD and OD 

respectively (g) DRPCA plane  
 
Considering the real dataset as a population, we take 1000 
random samples of 50 points. We compute λ0 and σp values for 
LS, PCA, RANSAC and DRPCA. To illustrate the robustness 
of the methods, we draw Box-plots for λ0 and σp from the 1000 
sampling results. Descriptive measures in Table 4 and Figure 7 
show that non-robust techniques always perform worse than 
robust ones, and between the robust techniques DRPCA is 
better than RANSAC. For both λ0 and σp, DRPCA has the least 
number of outlying results. In the case of λ0, RANSAC fails 54 
times whereas DRPCA fails only 7 times for 1000 runs. 
 

Measures LS PCA RANSAC DRPCA 
Mean 0.16525 0.00142 0.00019 0.00016 
Median 0.10334 0.00022 0.00019 0.00014 λ0 Outliers 125 154 54 07 
Mean 0.03252 0.00381 0.00091 0.00073 
Median 0.02304 0.00110 0.00088 0.00068 σp 
Outliers 121 146 33 16 

 
Table 4. Measures based on λ0 and σp from 1000 samples  

 
Figure 7. Box-plots of (a) λ0 (b) σp 
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Figure 8. Log average (a) λ0, and (b) σp ; w.r.t. sample size  
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To evaluate the impact of sample (neighborhood) size variation 
on λ0 and σp , we take 1000 random samples for each of 20, 30, 
40, 50, 100 and 200 points. We take log values on the average 
of λ0 and σp to emphasise the difference among different 
methods. Figure 8 shows that DRPCA performs the best for all 
sample sizes with all the values for the measures, and gives 
more accurate results (less values) for both λ0 and σp. 
 

5. CONCLUSION AND FUTURE WORK 

This paper proposes a diagnostic-robust PCA algorithm for 
fitting planar surfaces. Experiments based on artificial and real 
laser scanning datasets show that the proposed technique 
outperforms classical methods and is competitive with 
RANSAC. It has more accurate and robust results than the 
other methods. It gives the lowest bias angle and least amount 
of surface variation from the best fitted plane. It is also faster 
than RANSAC. Apart from accurately fitting planes in the 
presence of outliers, DRPCA can also generate accurate local 
surface normals. The technique has great potential for local 
surface estimation and geometric primitives fitting. Similar to 
many other robust techniques, it is not suitable for more than 
50% of outliers. Future research will investigate its potential 
use for different feature extraction, estimation and fitting tasks. 
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