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ABSTRACT: 
 

For more than two decades, many efforts have been made to develop methods for extracting urban objects from data acquired by 
airborne sensors. In order to make the results of such algorithms more comparable, benchmarking data sets are of paramount 
importance. Such a data set, consisting of airborne image and laserscanner data, has been made available to the scientific 
community. Researchers were encouraged to submit results of urban object detection and 3D building reconstruction, which were 
evaluated based on reference data. This paper presents the outcomes of the evaluation for building detection, tree detection, and 3D 
building reconstruction. The results achieved by different methods are compared and analysed to identify promising strategies for 
automatic urban object extraction from current airborne sensor data, but also common problems of state-of-the-art methods.  
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

The automated extraction of urban objects from data acquired 
by airborne sensors has been an important topic of research in 
photogrammetry for at least two decades (Mayer, 2008). Urban 
object extraction is still an active field of research, with the 
focus shifting to detailed representations of objects, to using 
data from new sensors, or to advanced processing techniques. 
The success of the Middlebury Stereo Vision test (Scharstein & 
Szeliski, 2002) has shown the importance of providing common 
data sets with ground truth for comparing different approaches 
to problems in computer vision. Such a comparison can trigger 
progress by giving indications about the most promising 
strategies for the solution of a given task and by identifying 
common problems of existing approaches, thus showing new 
directions of research. There have been attempts in the past to 
distribute data sets for benchmarking object extraction methods, 
e.g. the OEEPE/EuroSDR data sets for building (Kaartinen et 
al., 2005) and road extraction (Mayer et al., 2006) and for 
automated updating of maps (Champion et al., 2009). As far as 
data from aerial sensors are concerned, these data sets are 
outdated; there is a need for new standard test sites for urban 
object extraction making use of the benefits of modern airborne 
sensors such as multiple-overlap geometry, increased spectral 
and radiometric resolution of images and, in case of airborne 
laserscanner (ALS) data, the recording of multiple echoes. 
 

These considerations led to the establishment of a benchmark 
on urban object extraction. A modern data set consisting of 
digital aerial image and ALS data along with reference data was 
generated and made available to the research community via the 
ISPRS web site (ISPRS, 2012). Unlike previous benchmark 
data sets on urban object detection, the reference data included 
2D outlines of multiple object types. It also contains different 

types of urban development. Researchers were given access to 
the sensor data and encouraged to carry out one or more of 
several urban object extraction tasks. The goal of Task 1, 
urban object detection, was to determine the 2D outlines of 
urban objects in the input data. The focus of the evaluation is on 
the thematic and geometrical accuracy of the results. The goal 
of Task 2, 3D building reconstruction, was to reconstruct 
detailed 3D roof structures in the test areas. The focus of 
evaluation is on the quality of the roof plane segmentation and 
on the geometrical accuracy of the roof polygons. This paper 
gives a report about the evaluation of the results submitted by 
the test participants. As far as object detection is concerned, it is 
restricted to the object classes most frequently submitted by the 
participants, namely buildings and trees.  
 

2. DATA AND TEST SETUP 

Data Set 1 – Vaihingen (Germany): This is a subset of the 
data used for the test of digital aerial cameras carried out by the 
German Association of Photogrammetry, Remote Sensing, and 
Geoinformation (DGPF) (Cramer, 2010). It consists of 20 
images of the high-resolution DMC block and subsets of 5 of 
the ALS strips used in that test. The images are 16 bit pan-
sharpened colour infrared (CIR) images with a ground sampling 
distance (GSD) of 8 cm (flying height above ground: 800 m, 
focal length: 120 mm, 65% forward lap, 60% side lap), taken 
with an Intergraph/ZI DMC. A fourfold overlap is ensured for 
the entire test site. Orientation data are distributed with the 
images (georeferencing accuracy: 1 pixel). The ALS data were 
acquired using a Leica ALS50 system with 45° field of view 
and a mean flying height above ground of 500 m. The average 
strip overlap is 30% and the point density varies between 4 and 
7 points/m2. Multiple pulses were recorded. The point cloud 
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was pre-processed to compensate for systematic offsets between 
the strips and between the ALS and image data. A digital 
surface model (DSM) with a grid width of 25 cm was 
interpolated from the ALS points corresponding to the last echo 
of each pulse.  
 

Three test sites were selected: Area 1 is characterized by dense 
development consisting of historic buildings having rather 
complex shapes, roads and trees. Area 2 is characterized by a 
few high-rising residential buildings that are surrounded by 
trees. Area 3 is a purely residential area with detached houses 
and many surrounding trees. In these test areas, reference data 
were generated by manual stereo plotting. The reference for 
building detection consists of roof outline polygons. The 
planimetric accuracy of well-defined corner points is 10 cm. 
The reference for tree detection consists of circles 
approximating the crown outlines of all trees higher than 1.5 m. 
The circle centres give approximate positions of the tree stems 
with a geometrical accuracy of about 0.5-1.5 m. The reference 
for building reconstruction consists of 3D building models 
corresponding to the level of detail LoD2 according to the 
CityGML standard (Gröger et al., 2008). They are detailed roof 
models without roof overhangs or façade details. The accuracy 
is about 10 cm in planimetry and height.  
 

Data Set 2 – Toronto (Canada): This data set also consists of 
image and ALS data. There are 13 RGB colour images (8 bit) 
taken with a Microsoft Vexcel UltraCam-D and having a GSD 
of 15 cm. The images are arranged in a block of 3 strips (flying 
height above ground: 1600 m, focal length: 101.4 mm, 60% 
forward lap, 30% side lap). Orientation data were also 
distributed with the images (georeferencing accuracy: 1 pixel). 
Optech’s ALTM-ORION M was used to acquire the ALS data 
at a flying height of 650 m. The sensor operates at a wavelength 
of 1064 nm and scans the underlying topography with a scan 
width of 20°. The data set consists of 6 strips and the point 
density is about 6 points/m2. A DSM with a grid width of 25 cm 
was interpolated from the ALS points corresponding to the last 
echo of each pulse.  
 

Two test sites were selected: Area 4 contains a mixture of low 
and high-storey buildings, showing various degrees of shape 
complexity in rooftop structure. The scene also contains trees 
and other urban objects. Area 5 represents a cluster of high-rise 
buildings typical for American cities. The scene contains 
shadows cast by high buildings and various types of urban 
objects. The reference for building reconstruction (LoD2) was 
generated by stereo plotting. The accuracy of well-defined 
points is 20 cm in planimetry and 15 cm in height.  
 

Task 1- Urban object detection: The goal of the first task was 
the detection of objects in the test areas. The participants could 
deliver outline polygons of the objects or binary object masks. 
Results could be submitted for any of the object types for which 
reference data were available, but most of the participants only 
submitted results for buildings and trees.  
 

The results submitted by the participants were compared to the 
reference data. For the evaluation of the thematic accuracy, the 
method described in (Rutzinger et al., 2009) was used. After a 
topological clarification, the completeness and the correctness 
of the results were determined on a per-area level (Cmar / Crar) 
and on a per-object level (Cmob / Crob). We also report per-
object completeness only for objects larger than 50 m2 (Cm50 / 
Cr50), corresponding to the most relevant buildings and to trees 
having crown diameters larger than 8.4 m, to analyse the 
dependency of per-object quality metrics on the object size. For 
the object-based metrics, we required a minimum overlap of 
50% for an object with the reference to be counted as a true 

positive. We also evaluated the geometrical quality of the 
detected objects (RMS). For buildings, this is the RMS error of 
the planimetric distances of the extracted boundary points to 
their nearest neighbours on the corresponding reference 
boundaries; for trees, it is the RMS error of the planimetric 
distances between the centres of gravity of corresponding 
objects. Only distances shorter than 3 m are considered. 
 

Task 2- Building reconstruction: The goal of the second task 
was the generation of detailed (LoD2) 3D models of the 
building roofs in the test areas. The results should be submitted 
as closed 3D roof polygons.  
 

The evaluation focused on an analysis of the segmentation 
quality and on the geometrical errors of the submitted models. 
The analysis of the quality of the segmentation was based on a 
comparison of roof plane label images carried out similarly to 
the overlap analysis for the evaluation of object detection, but 
without topological clarification. The completeness and the 
correctness of the extracted roof planes are reported on a per-
plane basis (Cmob / Crob). These numbers refer to the number of 
roof planes in one data set having at least 50% overlap with 
planes in the other data set. Per-roof-plane completeness and 
correctness are also reported for planes covering an area of at 
least 10 m2 (Cm10 / Cr10), again to analyse the dependency of 
these indicators from the object size. The correspondence 
analysis provides the numbers of instances where 1:M, N:1, and 
N:M relations between roof planes in the reference and planes 
in the reconstruction results occur (N1:M  / NN:1 / NN:M). N1:M is an 
indicator for oversegmentation, NN:1 for undersegmentation. 
NN:M indicates clusters of planes that are both over- and 
undersegmented. These numbers also reflect the quality of the 
roof plane segmentation. The geometrical error in planimetry 
was evaluated in a similar way as for object detection. We 
determined the RMS errors of the planimetric distances of the 
extracted roof plane boundary points to their nearest neighbours 
on the corresponding reference boundaries (RMS). The RMS 
errors of the height differences RMSZ were derived by 
comparing two synthetic DSMs generated from the 3D building 
models. RMSZ is based on the height differences between the 
reference planes and all corresponding extracted planes. Thus, it 
also includes a component due to segmentation errors.   
 

3. METHODS 

3.1 Task 1: Urban Object Detection 

For the urban object detection task, results were submitted for 
eight different methods. Five are mainly rule-/knowledge based, 
whereas three pursue a supervised classification methodology. 
 

A. Moussa, University of Calgary, Canada (CAL): In this 
approach, the ALS point cloud is used in combination with an 
ortho-rectified CIR image. The method starts with a rule-based 
segmentation and classification of the ALS data into building, 
tree and ground segments. Spectral information obtained from 
the image is used to refine the classification, and morphologic 
operations are applied to smooth the resulting label image 
(Moussa & El-Sheimy, 2012). 
 

D. Bulatov, Fraunhofer Institute Ettlingen, Germany (FIE):  
Here only the images are used. After image matching and the 
generation of a digital terrain model (DTM), a rule-based 
classification of buildings and vegetation is carried out, and the 
boundary polygons of the buildings are extracted. Optionally, 
the polygons can be regularised (Bulatov et al., 2011).   
 

J. Niemeyer, University of Hannover, Germany (HAN): This 
approach uses a supervised classification of the ALS points 
based on Conditional Random Fields, which incorporates a 
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statistical model of context (Niemeyer et al., 2011). The 
resulting point clusters of each class are projected into a label 
image, which finally is smoothed by morphological operations.   
 

P. Dorninger, Vermessung Schmid, Klosterneuburg, 
Austria (VSK): This approach solely relies on the ALS point 
cloud to detect buildings. After detecting planar surface patches 
in the point cloud, the detection result is refined by a model-
based classification and by the combination of patches. The 
geometry is enhanced using morphological operations. Finally, 
the borders of the regions are delineated, which results in 
polygonal building outlines (Dorninger & Pfeifer, 2008). 
 

D. Grigillo and U. Kanjir, University of Ljubljana, Slovenia 
(LJU): The ALS data are used to derive a DSM, a DTM and a 
normalised DSM (nDSM) of the area. Using the nDSM, a mask 
of objects above ground is computed, and vegetation is 
separated from buildings using the NDVI derived from a CIR 
orthoimage. The remaining regions are morphologically 
filtered, and the outline of buildings is approximated by a 
method based on Hough transformation (Grigillo et al. 2011). 
 

Q. Zhan, Wuhan University, China (WHU): After ortho-
rectifying the images using the ALS DTM, colour and height 
information is used to detect the different land cover classes by 
a supervised classification approach. Then, spectrally similar 
classes like building/road and tree/low vegetation are separated 
using a method based on an analysis of the elevation histogram.  
 

C. Liu, Tongji University, China (TON): A LEGION (locally 
excitatory globally inhibitory oscillator network) segmentation 
(Liu & Wang, 1999) is applied to the ALS point cloud. After 
that, texture features are used in a classifier based on neuronal 
networks. All the parameters for the method are pre-set by the 
authors. The outlines of the clusters are refined and regularized 
in order to have rectangular outlines using a least squares 
estimation method (Liu et al., 2012). 
 

W. Yao, TU Munich, Germany (TUM): A supervised 
classification approach employing both height and image data is 
applied in this method. For each cell of a grid defined in object 
space, 6 colour and height features as well as 7 features 
encoding local context are determined. These features are fed 
into an AdaBoost classifier. In order to obtain training data, 
ground truth was digitized manually in 10% of each area. 
 

3.2 Task 2: 3D Building Reconstruction 

For this task, results obtained by seven different methods were 
submitted. Whereas five methods work fully automatically, two 
rely on some human intervention. 
 

P. Dorninger, Vermessung Schmid, Klosterneuburg, 
Austria (VSK): Starting from the detected building outlines (cf. 
Section 3.1), wall hypotheses are generated. The planar 
segmentation already employed in building detection is used to 
find and combine roof planes (Dorninger & Pfeifer, 2008). 
 

J.-Y. Rau, National Cheng-Kung University Taiwan (CKU): 
This approach uses the original images together with a building 
map. After manually measuring roof structure lines, a Delaunay 
triangulation of the roof points constrained on the 3D structure 
lines is performed. The triangles and, thus, the roof planes are 
refined and merged based on an analysis of the projection of the 
outlines into individual images (Rau & Lin, 2011).   

S. Oude Elberink, University of Twente, The Netherlands 
(ITCE1/ITCE2): A coarse building map is used to identify 
building points in an ALS point cloud. The building points are 
segmented using a plane-based approach. An adjacency graph 
representing the roof plane topology is matched against a 
library of predefined roof primitives to eliminate wrong 

extractions and to find possibly missing planes. Two different 
results were submitted: ITCE1 is based on a more model-driven 
parameter setting, whereas ITCE2 was obtained by a more data-
driven approach (Oude Elberink & Vosselman 2009, 2011).  
 

B. Xiong, University of Twente, The Netherlands (ITCX): 
This is an extension of the approach by Oude Elberink (see 
above). Graph matching is carried out using an extended 
primitive library to identify general buildings, even buildings 
with highly complex structures. In an interactive step, a human 
operator is asked to identify data errors, e.g. false and missed 
intersection lines or roof segments. The algorithm uses this 
additional knowledge to update the library and tries to refine 
other buildings as well. 
 

D. Bulatov, Fraunhofer Institute Ettlingen, Germany (FIE):  
After building detection (cf. Section 3.1) a detailed roof 
analysis is performed, using a RANSAC based approach for the 
initial clustering of normal vectors (Bulatov et al., 2011).   
 

W. Zhang, Beijing Normal University, China (BNU): This is 
a model-based building reconstruction method using images 
and ALS points. The initial geometric parameters of each 
building roof are retrieved from the ALS point cloud. The 
selected building prototype is then re-projected into the images 
and its geometry is refined (Zhang et al., 2011).  
 

G. Sohn, York University, Canada (YOR): This method is 
based on the integration of two approaches described in (Sohn 
et al., 2008) and (Jwa et al., 2008). After detecting buildings, a 
Binary Space Partitioning tree produces initial approximations 
of roof polygons. A regularization operator based on the 
Minimum Description Length principle removes topological 
errors by implicitly adapting the roof polygons for achieving 
maximal geometrical regularity.  
 

4. RESULTS AND DISCUSSION 

4.1 Task 1: Urban Object Extraction 

The evaluation of the building and tree detection results is 
summarized in Tables 1 and 2, respectively. For each quality 
measure and area the best result is shown in bold font style. No 
tree extraction results were submitted for Toronto. The area-
based quality metrics and the RMS errors for tree detection 
must be interpreted with caution because they are affected by 
the generalization errors of the reference.  
 

Area 1: Except for TON and WHU, all methods for building 
detection achieve an area-based completeness between 85% and 
93% and a correctness between 90% and 98%. The values for 
Cmar are lower than Crar for most methods due to a large flat 
building part (missed by all methods except LJU). All methods 
perform much better for larger buildings than for smaller ones. 
CAL achieves Cm50 = Cr50 = 100%. HAN confused some large 
trees with buildings, resulting in 12% false positive detections 
larger than 50 m2. This is also one of the reasons for the poor 
performance of HAN in detecting trees. However, all tree 
detection methods have problems in this area; only TUM and 
LJU detect more than 50% of the trees, and only for TUM and 
CAL more than 50% of the detected trees are correct. The only 
methods achieving completeness and correctness higher than 
80% for larger trees (Cm50 / Cr50) are TUM and LJU. The main 
problem is a row of trees in the shadow of a multi-storey 
building and along a road having a lower elevation than the 
surrounding terrain. It is missed by all methods except TUM.  
 

Area 2: Nearly all methods perform better in this area than in 
area 1. The per-building metrics show that except for TON and 
WHU, all methods can detect 100% of the buildings larger than 
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50 m2. Except for WHU and HAN, all detected buildings are 
correct. LJU produces a few large false positives buildings in 
areas with terrain discontinuities. All methods except LJU 
achieve completeness and correctness values larger than 85% 
for trees larger than 50 m2. TUM is the only method achieving 
100% for both values. The per-object quality metrics for all 
trees are generally better than in area 1, but all approaches 
either deliver many false positives or many false negatives. 
 

Name Cmar / Crar [%] Cmob / Crob [%] Cm50 / Cr50 [%] RMSe [m]
Area 1 (37 buildings; 125 m x 200 m) 

CAL 89.1  /  94.7 83.8  /  100.0 100.0  / 100.0 0.77 
HAN 87.0  /  90.1 83.8  / 72.1 100.0  /  87.9 1.09 
LJU 93.2  /  94.1 81.1  /  100.0 96.7  /  100.0 0.74  
TON 76.7  /  95.7 75.7  /  93.5 93.3  /  96.7 1.18 
TUM 89.8  /  90.1 89.2  /  91.7 96.7  /  93.5 0.71 
VSK 85.7  /  98.1 78.4  /  100.0 96.7  /  100.0 0.99 
WHU 84.4  /  83.9 78.4  /  43.5 86.7  /  96.3 1.01 

Area 2 (14 buildings; 170 m x 190 m) 
CAL 93.2  /  95.4 78.6  /  100.0 100.0  / 100.0 0.73 
HAN 93.8  /  91.4 78.6  /  52.4 100.0  /  84.6 0.71 
LJU 95.1  /  94.3 85.7  /  100.0 100.0  / 100.0 0.77 
TON 88.5  /  98.9 71.4  /  100.0 90.9  /  100.0 0.71 
TUM 92.5  /  93.9 78.6  /  100.0 100.0  / 100.0 0.64 
VSK 85.4  /  98.4 85.7  /  100.0 100.0  / 100.0 1.17 
WHU 79.6  /  91.9 57.1  /  42.3 72.7  /  90.9 0.87 

Area 3 (56 buildings; 150 m x 220 m) 
CAL 87.0  /  95.2 66.1  /  100.0 87.5  /  100.0 0.54  
FIE 89.0  /  86.9 78.6 / 100.0 97.5  /  100.0 0.99 

HAN 93.8  /  93.7 82.1  /  90.2 97.5  /  100.0 0.65  
LJU 94.4  /  95.4 82.1  /  100.0 97.5  /  100.0 0.52  
TON 67.8  /  98.4 55.4  /  100.0 77.5  /  100.0 1.17 
TUM 86.8  /  92.5 75.0  /  100.0 97.5  /  100.0 0.70 
VSK 86.3  /  98.7 75.0  /  100.0 95.0  /  100.0 0.81 
WHU 76.9  /  92.6 64.3  /  79.2 77.5  /  100.0 0.73 

Area 4 (58 buildings; 530 m x 600 m) 
TUM 85.1  /  80.0 86.2  /  92.3 87.7  /  94.1 1.42 

Area 5 (38 buildings; 530 m x 600 m) 
TUM 85.0  /  81.1 81.6  /  88.2 88.6  /  90.9 1.55 

 

Table 1. Evaluation of the building detection results. The 
column headings are explained in Section 2.  

 

Area 3: This area shows a similar distribution of the area-based 
quality metrics for buildings as area 1. The object-based metrics 
show a correctness of 100% for all methods except HAN and 
WHU. Most of the missed buildings larger than 50 m2 have 
very complex roof shapes. Except for TON, WHU, and CAL, 
all methods achieve a correctness Cm50 higher than 95% for 
buildings. The results for trees show similar trends as in area 2, 
except that the per-tree completeness and correctness values for 
all trees (Cmob / Crob) are generally lower. This is due to the fact 
that there are more small trees and low vegetation. HAN is 
particularly weak in detecting small trees. All methods detect 
more than 88% of the trees larger than 50 m2; TUM is the only 
method achieving 100% for both Cm50 and Cr50. 
 

Toronto: For this test area, results were only submitted for 
building detection by TUM. Comparing these results to the ones 
achieved by TUM in Vaihingen, there are much more false 
positives. They mainly occur at building outlines where high-
rise buildings occlude other objects or cause shadows.  
 

Discussion: A comparison of the results for the Vaihingen test 
sites shows that area 1 offers the least favourable conditions for 
automated object extraction. A combination of trees close to 
multi-storey buildings casting shadows on them, terrain 
discontinuities, and complex roof shapes including small and 
low appendices at different height levels causes problems for all 
approaches. Buildings can nevertheless be detected reasonably 

well, but tree detection breaks down for most methods. The 
most favourable conditions for automation are found in area 2, 
characterised by few high-rise buildings. The problem of trees 
in the shadow cast by buildings is alleviated by the fact that this 
occurs on nearly horizontal terrain. In area 3, trees close to 
buildings do not affect the results because they are at the same 
height level. In this area, the main problems are complex roof 
shapes and a large amount of low vegetation, the latter causing 
problems for tree detection. The difference in the performance 
of TUM for Vaihingen and Toronto indicates the limitations of 
a traditional stereo configuration in the presence of high-rise 
buildings causing large occluded areas.  
 

Name Cmar / Crar [%] Cmob / Crob [%] Cm50 / Cr50 [%] RMS [m]
Area 1 (105 trees) 

CAL 37.2  /  80.1 30.5  /  53.9 60.0  /  100.0 1.51 
HAN 41.4  /  69.2 27.6  /  46.1 44.4  /  40.0 1.58 
LJU 59.3  /  61.8 63.8  /  47.2 80.0  /  90.9 1.65 
TUM 69.3  /  71.2 61.0  /  58.3 90.0  /  90.9 1.12 
WHU 43.9  /  63.1 43.8  /  46.5 50.0  /  90.0 1.15 

Area 2 (162 trees) 
CAL 91.4  /  60.7 91.4  /  45.8 100.0  /  85.0 1.12 
HAN 74.0  /  73.1 58.0  /  86.6 91.7  /  93.3 1.30 
LJU 88.9  /  59.2 79.0  /  55.2 100.0  /  77.0 1.18 
TUM 72.0  /  78.5 63.0  /  82.4 100.0  /  100.0 1.47 
WHU 64.2  /  71.5 48.8  /  70.9 91.7  /  94.7 1.34 

Area 3 (155 trees) 
CAL 83.8  /  58.6 81.3  /  28.1 100.0  /  87.0 1.23 
HAN 55.9  /  77.0 29.0  /  68.9 89.5  /  100.0 1.10 
LJU 76.7  /  58.7 70.3  /  39.1 100.0  /  81.0 1.25 
TUM 69.5  /  80.1 53.5  /  76.4 100.0  / 100.0 1.10 
WHU 50.3  /  67.6 32.9  /  55.1 88.9  /  76.5 1.10 

 

Table 2. Evaluation of the tree detection results. The column 
headings are explained in Section 2.  

 

The RMS errors for buildings are in the range of 1-2 times the 
average point distance of the ALS data (used by all methods 
except FIE). Of the methods using special techniques for 
approximating the building outlines (FIE, LJU, TON, VSK), 
only LJU is consistently among the best performers, but some 
approaches just relying on morphological operators for 
smoothing the classification results are in a similar range. The 
full accuracy potential given by the image data has obviously 
not been exploited by any of the compared methods. The RMS 
errors for trees are in the order of magnitude of the reference. 
 

Comparing the methods based on their processing strategies, no 
general trend can be observed. The data may indicate that one 
drawback of the supervised methods used in the test is their lack 
of incorporating a global view of the data. The best model-
based approaches for building detection apply segmentation, 
thus using larger entities as the basis for classification. TUM 
(supervised) has problems at building boundaries because each 
pixel is classified independently. HAN models local context by 
CRF, but no long-range interactions are considered. On the 
other hand, VSK shows the problems of a segment-based 
approach when segmentation fails due to small roof structures.   
 

Of the methods only using ALS points (HAN, VSK, TON), 
HAN achieves the lowest per-object correctness for buildings 
and a poor performance in detecting trees, partly due to a 
confusion of buildings with trees having smooth canopies. This 
may be interpreted as an indicator for the importance of the 
radiometric data for vegetation extraction. VSK achieves a 
slightly lower completeness in building detection than other 
methods. This may be caused by a failure to find small roof 
planes. TON performs well in area 2, but has problems in more 
complex environments. The only building detection method 
entirely based on images (FIE) achieves a slightly worse area-
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based correctness and RMS value than most of the other 
approaches, though its performance on a per-building basis is 
quite good. All the other approaches (CAL, LJU, TUM, WHU) 
combine ALS and image data. Of these methods, LJU performs 
consistently well in building detection in all areas, achieving 
the best area-based correctness and good RMS values in all 
cases. For trees, it produces a few more false positives in areas 
2 and 3 than TUM. The building detection results for TUM are 
similar to LJU on a per-object level, but a bit worse in the per-
area metrics. TUM is consistently the best performing algorithm 
for tree detection if both completeness and correctness are taken 
into account. CAL is in a similar range as TUM for buildings 
and slightly better than LJU for large trees. WHU performs 
worse in building detection than most of the other approaches, 
but achieves a similar quality in detecting trees.  
 

In the context of road extraction, Mayer et al. (2006) state that a 
completeness of 70% and a correctness of 85% are required for 
real practical importance. By these standards, all the compared 
methods are practically relevant for extracting buildings larger 
than 50 m2. All methods except WHU, TON, and HAN are also 
relevant if smaller buildings are considered. Only LJU and 
TUM consistently achieve these standards for trees larger than 
50 m2. All methods fail if smaller trees are also considered.  
 

4.2 Task 2: 3D Building Reconstruction 

The evaluation of the building reconstruction results is 
summarized in Table 3.  
 

Area 1: The correctness of the roof planes is better than 94% 
for all methods, but there are large variations in completeness. 
ITCE misses more than 34% of the planes in both variants. The 
best results are achieved for CKU and YOR, who detect more 
than 85% of the planes. Undersegmentation is the dominant 
type of error, occurring in 36-42 cases (NN:1). The quality 
metrics hardly change if only roof planes larger than 10 m2 are 
considered. This indicates that the presence of small building 
structures does not simply result in more generalized building 
models, but may prevent the detection of the dominant planes. 
The best RMS value (66 cm) is achieved by CKU, which relies 
on manual measurement. The other RMS values (75-94 cm) 
have to be seen in relation to the ALS point spacing. Not 
surprisingly, the height errors (RMSZ) are smaller than the 
planimetric ones for methods based on ALS (all except CKU).  
 

Area 2: In this area, there is a clear difference between the 
quality metrics for all planes and for roof planes larger than 
10 m2. It would seem that except for ITCE1, most roof planes 
can be detected and nearly all of them are correct. There are 
fewer instances of undersegmentation (NN:1 values between 3 
and 7). However, for both variants of ITCE, this includes all 
high-rise buildings, which are reconstructed by single planes. 
This is reflected by the very poor RMSZ values achieved by that 
method. The other methods produce quite good reconstructions 
of the main roof structures; ITCX produces a few larger false 
positive planes with one of the few smaller residential buildings 
in this area. In general, both the planimetric and the height 
accuracy are slightly worse than in area 1.  
 

Area 3: This area shows a similar distribution of completeness 
and correctness as area 1. There is also a rather small difference 
between the values for all roof planes and those for roof planes 
larger than 10 m2. Undersegmentation occurs more frequently 
than in area 1, which may be explained by a large number of 
small attachments to the houses merged with neighbouring roof 
planes. Again, YOR and CKU achieve the best results. Two 
groups only submitted results for this area. Of these groups, 
BNU shows quite low completeness values, missing even some 

large dormers. FIE does a good job in detecting planes, but 
produces the highest number of false positives. The geometrical 
metrics (RMS, RMSZ) are also in the same range as in area 1.  
 

Name Cmob / Crob 
[%] 

Cm10 / Cr10 
[%] 

N1:M  / NN:1 / 
NN:M 

RMS [m] RMSZ 
[m] 

Area 1 (288 roof planes) 
CKU 86.7 / 98.9 86.7 / 99.3 10 / 36 / 3 0.66 0.70 

ITCE1 60.8 / 94.6 58.5 / 94.0 16 / 26 / 17 0.91 0.55 
ITCE2 65.3 / 97.3 63.3 / 97.3 0 / 38 / 3 0.94 0.55 
ITCX 76.0 / 94.5 72.9 / 95.1 2 / 40 / 2 0.84 0.53
VSK 72.2 / 96.7 77.7 / 96.5 7 / 42 / 6 0.79 0.65 
YOR 88.2 / 98.5 89.9 / 98.2 5 / 36 / 14 0.75 0.58 

Area 2 (69 roof planes) 
CKU 78.3 / 93.10 90.0 / 93.7 8 / 4 / 0 0.85 1.02 

ITCE1 79.7 / 73.7 94.0 / 73.7 0 / 7 / 0 1.11 3.33 
ITCE2 79.7 / 95.0 94.0 / 100 0 / 7 / 0 1.16 3.31 
ITCX 62.3 / 92.9 74.0 / 92.7 2 / 4 / 0 0.79 0.44
VSK 73.9 / 100 88.0 / 100 3 / 5 / 1 1.03 0.88 
YOR 73.9 / 100 90.0 / 100 5 / 3 / 0 0.77 1.04 

Area 3 (235 roof planes) 
BNU 54.0 / 88.1 46.2 / 100 1 / 39 / 2 0.89 0.63 
CKU 81.3 / 98.4 82.2 / 98.3 4 / 48 / 2 0.76 0.65 
FIE 82.6 / 83.1 81.4 / 91.2 7 / 44 / 5 0.99 0.62 

ITCE1 67.7 / 100 62.8 / 100 0 / 47 / 2 0.96 0.29
ITCE2 64.3 / 100 55.9 / 100 0 / 46 / 0 1.04 0.42 
ITCX 70.2 / 100 62.8 / 100 1 / 48 / 0 0.87 0.30 
VSK 76.6 / 99.1 74.5 / 99.1 3 / 50 / 0 0.84 0.38 
YOR 84.7 / 100 89.0 / 100 2 / 51 / 1 0.77 0.35 

Area 4 (967 roof planes) 
CKU 68.8 / 80.2 72.8 / 79.5 42 / 74 / 86 1.62 N/A 
YOR 75.5 / 97.5 83.5 / 97.5 27 / 109/ 19 1.00 2.88  

Area 5 (640 roof planes) 
CKU 70.2 / 83.3 85.2 / 84.3 11 / 44 / 43 1.68 N/A  
YOR 64.4 / 85.8 86.1 / 85.7 4 / 58 / 24 1.07 27.22 

 

Table 3. Evaluation of the building reconstruction results. 
The column headings are explained in Section 2.  

 

Toronto: For areas 4 and 5 we only received two results. As 
area 3, these areas mostly consist of flat roofs, but with a larger 
height variation and shape complexity. For both methods, 
completeness and correctness are worse than in Vaihingen. 
Undersegmentation, but also clusters of N:M relations are the 
dominant error source for segmentation. The varying, hardly 
symmetric shapes are the main reason for this and also for the 
higher values of RMS. The relatively high RMSZ values for 
YOR reflect segmentation errors; the extreme value in area 5 is 
caused by wrong segmentation of the roofs of several high-rise 
buildings. For CKU, no RMSZ values are presented because 
their heights were based on wrong orientation parameters.  
 

Discussion: Comparing the five test areas, it would again seem 
that area 2 offers the most favourable conditions for automatic 
roof reconstruction. In the other areas, complex roof structures 
cause a considerable amount of segmentation errors. The main 
roof structures are represented well (and certainly good enough 
for visualisation) if the basic roof shape is relatively simple and 
if there are no dormers or only dormers that are small compared 
to the dominant roof planes. Otherwise, the algorithms 
compared in this test frequently produce incorrect and 
inaccurate results. This fact and an analysis of the geometrical 
errors shows that methods for roof plane detection still have 
room for improvement, independently from the data source 
used. Only CKU, FIE, VSK and YOR achieve the standards 
required for practical relevance according to Mayer et al. (2006) 
in all areas. Comparing results from semi-automatic approaches 
(ITCEX, CKU) to the others we cannot observe any significant 
difference, neither in roof plane extraction nor in accuracy.  
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5. CONCLUSION 

In this paper, several methods from current research in urban 
object extraction were compared based on a benchmark data 
set. The results achieved by the methods for building detection 
show that this task can be satisfactorily solved for buildings 
larger than 50 m2 by methods relying on different processing 
strategies and different sensor data, but there is still room for 
improvement in detecting small building structures and in 
precise delineation of the building boundaries. Most of the 
methods for tree detection were successful in detecting large 
trees under favourable conditions, but failed to do so in very 
complex inner city environments. Small trees could not be 
detected reliably by any of the methods, either; this seems to 
indicate a field requiring further research. The results achieved 
for 3D building reconstruction showed the potential, but also 
the limitations of state-of-the-art methods. While the problem 
may be considered to be solved for visualisation purposes, the 
production of high-quality LoD2 building models still poses 
challenges in difficult urban environments. In particular, no 
method seems to be able to fully exploit the accuracy potential 
inherent in the sensor data. It would be desirable to receive 
more results solely based on images to obtain a more realistic 
assessment of the potential inherent in that data source. 
 

The test data sets will remain available beyond the ISPRS 
Congress in Melbourne. Results are continuously received and 
evaluated. It is the goal of these efforts to provide a reference 
data set as a basis for making current and future developments 
in urban object extraction more comparable.  
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