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ABSTRACT: 

 

This paper proposes a new algorithm to generalize noisy polylines comprising a rooftop model by maximizing a shape regularity 

(orthogonality, symmetricity and directional simplications). The nature of remotely sensed data including airborne LiDAR often 

produce errors in localizing salient features (corners, lines and planes) due to weak contrast, occlusions, shadows and object 

complexity. A generalization or regularization process is well known algorithm for eliminating erroneous vertices while preserving 

significant information on rooftop shapes. Most of existing regularization methods achieves this goal base on a local process such as 

if-then rules due to lacking global objective functions or mainly focusing on minimising residuals between boundary observations 

and models. In this study, we implicitly derive rules to generate local hypothetical models. Those hypothesized models produce 

possible drawings of regular patterns that given rooftop vectors can possibly generate by combining global and local analysis of line 

directions and their connections. A final optimal model is globally selected through a gradient descent optimization. A BSP (Binary 

Tree Partitioning)-tree was used to produce initial rooftop vectors using ISPRS WGIII/4’s benchmarking test sites in Veihngen. The 

proposed regularization algorithm was applied to reduce modelling errors produced by BSP-tree. An evaluation demonstrates the 

proposed algorithm is promising for updating of building database.  

 

1. INTRODUCTION 

In recent years, there has been increasing demands to have 3D 

rooftop models as emerging technologies such as GeoWeb, LBS 

(Location Based System) and MAR (Mobile Augmented 

Reality) have been demonstrated potential applications. These 

include urban management, planning and development (Scherer 

and Schapke 2011, Yu et al. 2010), environmental management 

(Kurakula 2007), tourism (Glander and Dollner 2009), 

telecommunications (Wagen and Rizk 2003), transportation and 

navigation, public safety. Reconstructing 3D rooftop models 

using remotely sensed data should deal with the presence of the 

“missing data”. Assume that a rooftop is comprised of a set of 

polygons (planar features), which are inter-linked with lines 

(linear features). It is generally unknown as a priori knowledge: 

how the shape of a building of interest is (shape prior); how 

many features (polygons and lines) are required to model it; 

what topological rules (relations) are associated with the model. 

Moreover, the signal-to-noise ratio is always unknown, which 

causes difficulties to predict fragmentary level of modelling 

cues (features) extraction. Knowing a building shape prior 

would make ease all difficulties in rooftop modelling since it 

provides compensate the  knowledge on “missing features” and 

“missing relations”. However, obtaining such rich priors is rare 

case in practice: even generalizing the shape prior into a 

semantic level (how to describe a shape) would be hard problem. 

To overcome this limitation, the parametric modelling approach 

(You et al. 2003, Verma and Kumar 2006, Teo 2008, Frederik 

et al. 2012) poses it as a model selection problem. That is, the 

method assumes that multiple shape priors (flat, gable, hip and 

etc) are given in advance. Thus, the rooftop problem is now 

translated into determining which prior (model template) would 

be the best fit to given observations (surface model and features) 

and estimating associated model parameters. The method would 

be promising if right modelling templates and sufficient 

observations are given for reconstructing rooftop models. 

However, a most challenge in this approach might be faced 

when a building of interest is comprised of N numbers of sub-

models; unfortunately this would be the case in complex urban 

setting. In contrast to the parametric modelling approach, a 

generic modelling (Rottensteiner 2003, Alharty and Bethel 2004, 

Sampath and Shan 2007, Sohn, et al. 2008) is based on a 

bottom-up vision process, which recovers the missing data 

mainly relying on extracted features from given data. This could 

limit to access to building shape priors, which causes more 

difficult problems in recovering missing features and their 

topological relations. However, it would be adaptive to 

delineate more complex shapes by avoiding the use of shape 

priors. However, the missing features is an inevitable. The 

generic modelling method should deal with recovering the 

features missed during its reconstruction process. Sohn et al. 

(2008) proposed a BSP (Binary Space Partitioning)-tree as for 

solving the missing data problem in a generic modelling 

approach. It demonstrated its success to produce building 

models, but also discussed its limitations of incorrectly 

producing topological links amongst modelling features. This 

paper proposes a new method to rectify the topological errors 

produced by Sohn et al. (2008)’s BSP algorithm. The proposed 

method is designed mainly based on part of cartographic 

regularization algorithms (Douglas and Peucker, 1973; Weidner 

and Forstner, 1995; Ameri, 2000; Sampath and Shan, 2007), 

which eliminates erroneous vertices, while preserving 

significant information of building shape. Our method was 

motivated by Weidner and Forstner (1995)’s work. We consider 

the resulting vectors from BSP as nosy model boundaries. The 

proposed algorithm progressively rectifies them based on 

Minimum Description Length (MDL). 

 

2. METHODOLOGY 

This paper proposes a new generative modelling approach to 

reconstruct 3D building model and rectify their geometric and 
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topological errors amongst modelling features. The important 

aspect of the proposed method is to determine a optimal shape 

regularity (orthogonality, symmetricity and simplication) during 

modelling process. This is achieved by testing hypothesized  

regularizing models. Fig. 1 depicts the whole work flow for 

proposed modelling algorithm.  
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Figure 1. Illustrated workflow of proposed 3D rooftop 

modelling process. 

2.1 Roof Element Clustering 

Buildings exhibit a range of rooftop types and a complex 

combination of building parts including roof superstructures. 

This places some limitations on extracting meaningful 

modelling cues directly from building-labelled point clouds. To 

reduce the complexity in feature extraction, the first step is to 

partition building points into each homogeneous rooftop region 

based on two similarities: height and plane similarity. In the 

height clustering, let R = {Pi | i=1,2,…n} represent a rooftop 

region with n numbers of points and consists of m numbers of 

height segments R = {S1,S2, …, Sm}. Height difference     at 

each point is computed from its neighbour points connected in 

Triangular Irregular Network (TIN). If     is less than a certain 

threshold, Pi belongs to the same height cluster. As a result, the 

segments satisfy with the property R=    
 
          {}, 

    . Once a set of height clusters is extracted, the plane 

clustering process is performed over each height cluster Si, 

which is decomposed of k numbers of plane clusters 

{         }. We adopt random sample consensus (RANSAC) 

algorithm to obtain the best plane segments as suggested in 

many previous studies (Ameri and Fritsch 2000, Tarsha et al. 

2008). First, three points are randomly selected. These points 

are used as seed points to generate an initial plane segment. 

Then, more points are captured by using a tolerance distance ζ 

between    and Pj, and plane parameters (a,b,c) are updated 

recursively. This process continues until each plane has the 

maximum probable inlier points and all points that belong to Si 

are assigned into plane clusters.  

   

2.2 Linear Modelling Cue Extraction 

After plane segments are detected, two different types of line 

primitives (intersection and step lines) are extracted. The 

intersection line is simply generated by intersecting between 

adjacent planar segments. To extract step lines, plane boundary 

points are traced. This process is accomplished by using a 

modified convex-hull method, in which the topology between 

member points is defined based on TIN structure. Then a local 

height discontinuity is investigated to detect step edge pixels 

among boundary points between adjacent planes. Then the 

process of initial vectorization is performed to generate linear 

modelling cues. Given a sequence D={P1, …, Pn}, Pi    2 of n 

boundary points in the plane, the polyline segments are formed 

as a successive chain C= {                            }. The initial 

simplification of polylines is performed by obtaining a chain C’ 

with m fewer segments. To achieve this goal, we adopt 

Douglas-Peucker (DP) algorithm which has been recognized as 

an effective line simplification method (Ramer, 1972). By using 

a line segment          ={1 ≤  i, j ≤ n | i ≠ j}, if the norm from a 

vertex to          is less than tolerance ζ > 0, the vertex is removed, 

while a vertex shows the maximum norm is determined as an 

inlier point to the line segment         . This procedure continues 

until the norms of remaining vertices are less than ζ. Note that 

the degree of irregularity to be handled in DP algorithm depends 

on ζ. DP is effective to eliminate erroneous vertices in a simple 

manner. However, it does not provide a mechanism to make 

given polylines being regular shape patterns, that is maximizing 

Gestatic laws (orthogonality, parallelity and symmetricity) in 

addition to simplication. In later sections, we propose these 

multiple objectives can be achieved through MDL (Minimum 

Description Length).  

  

2.3 BSP-based Polyhedral Building Model Reconstruction 

Once all modelling features (lines and planes) are extracted as 

described in the previous sections, topological relations amongst 

modelling features for each height segment are constructed 

using Sohn et al. (2008)’s algorithm. Sohn et al. (2008) 

concentrated on a topological construction with fragmentary 

modelling features. They proposed BSP-tree as its solution to 

globally recover modelling topology from incomplete features. 

A partitioning optimum is achieved by maximizing planar 

homogeneity produced through a recursive intersection between 

lines and associate planes. The process generates a hierarchical 

binary tree, in which each node (terminal) represents planar 

polygons that provides the information of topological relations 

among its adjacent planar segments. A final model is produced 

to combine similar planar segments in BSP-tree. 

 

2.4 Model regularization using MDL 

A most bottleneck of BSP-tree for rooftop modelling is caused 

by an “accidental cause” that occurs in line-line intersection for 

constructing planar topological relations. That is, an error in line 

feature inherited from line extraction process might lead to 

errors in geometry and under-/over-generation of vertices in 

rooftop models. Thus, it is required to rectify those errors. It 

could be done by line simplication algorithm. However, our 

goal is to make given rooftop vectors being a regular shape 

pattern in addition to eliminating erroneous vertices; combining 

line simplication with regularization. A shape regularity is 

defined as being as shape pattern that shows orthogonal, parallel 

and symmetric relations between lines as similar to Gastaltic 

laws. This prior knowledge on shape regularity is often 

implemented using a set of deterministic rules such as “IF-

THEN” rules. However, in our approach, the shape regularity 

means more than pre-specified rules, but implicitly derive rules 

(possible shape regularity) with given initial rooftop vectors. 

The proposed method does not require pre-determined threshold 

constraining the regular shapes, rather determining optimal 

shape through MDL-based model selection process. 
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In MDL theory, we can estimate the lengths (model description 

length) that encode the messages delivered with observations 

associated with corresponding model. It is convenient to 

decompose the model description length (DL) into two parts: 

the length of the data with given model (the first term in Eq. (1)) 

and the length of the model (the second term in Eq. (1)). The 

first term in Eq. (1) measures how the data D is well 

approximated with hypothesized model H (favouring low 

residuals), while the second term in Eq. (1) encoding the model 

complexity used (favouring simpler models). In Eq. (1), the 

model complexity is defined by three factors: 1) the number of 

vertices used   , (2) the repeatability of identical line direction 

  , and (3) the inner angle transition    . An optimal model is 

selected that shows the minimum description length. The 

proposed description length model is: 

 

                        

(1)           
 

    
            

                   
            

              
          

 

Where the subscript v, d, and    indicate vertex, direction, and 

inner angle; Ω is the sum of the squared residuals between a  

model (H) and a set of observations (D), [D-H]T[D-H]; LS 

means the line significance of polylines, (L/APD)/NP, which is 

comprised of line length (L), average point distance (APD) and 

the number of its member points (NP);   ,   , and     indicate 

the number of vertices, the number of identical line directions, 

and quantity of penalty value related to inner angle. These 

factors are used for an initial model;  
 ,   

 , and    
  are related 

to newly generated hypothetical models;   ,   , and     are 

weight values for each sub-factor in the model complexity;    , 

and     are weight values for the model closeness and model 

complexity. 

 

2.4.1 Hypothesis Generation: Let Hi denote a hypothetical 

model at i-th vertex. Hi is characterized by a shape parameter 

set w that include the number of vertices, inner angle and line 

directions. w is driven by considering two factors: 1) globally 

analyzing given rooftop vectors for estimating line directions 

and 2) local configuration of lines connected at i-th vertex. w 

changes for each vertex where local hypothetical models are 

produced. Given D and a shape parameter set w0 (initial shape 

parameters), k hypotheses Hi(w
0), Hi(w

1), …, Hi(w
k) are 

generated by changing line directions at i-th vertex without or 

with removing its consecutive vertices. This leads to the 

occurrence of various shapes.  

For instance, Fig. 2 shows a situation where a number of model 

hypotheses is produced at P2 in a polygon  A={P1, P2, P3, P4, P5, 

P6, P7}, to which another polygon  B ({P4, P7} ∈  B) is 

connected. We label three vertices (P2, P3, P4) as Anchor Point 

(AP), Floating Point (FP), and Guiding Point (GP). Using these 

vertices, we drive three basis lines, Floating Line (FL = [AP, 

FP]) and Guiding Line (GL = {[GP, FP]   (x, y)     |   
           }) in two different orientations, clockwise and 

counter-clockwise. Where,   indicates the angle between a line 

segment and x-axis, and   is the line distance from the origin. 

For each vertex, a number of model hypotheses are generated 

by moving FP along GL following a set of line directions. 

These line directions are analyzed globally using given entire 

rooftop vectors. For this purpose, we adopt Compass Line Filter 

(CLF) proposed by Sohn et al. (2008). This filter quantizes line 

slopes into pre-specified numbers of discrete line directions, 

which will be refined by least-square adjustment. Fig. 2(b) and 

2(c) illustrates how another sets of model hypotheses are 

produced when FP is merged with adjacent vertices (P4, P7) 

belonging to  B. This process can be considered as part of line 

simplication which eliminates erroneous vertices produced by 

“accidental causes” occurred in BSP.  
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Figure 2. Possible alternative hypotheses by assigning three 

vertices as AP, FP, and GP: (a) moving FL = {P2, P3}, (b) 

eliminating the line {P2, P3} and moving FL = {P2, P4}, (c) 

eliminating the line {P2, P3} and moving FL = {P2, P7} in 

clockwise and counter-clockwise, respectively. 

 

2.4.2 Global Optimization: Let H = {H1, H2, …, Hm} denotes 

all model hypotheses, which are produced from m vertices 

(entire vertices of given initial rooftop vectors produced by 

BSP-tree). Note that Hi has a set of locally produced hypotheses 

at i-th vertex. The optimal model H* is finally selected which 

shows the minimum description length following Eq. (1). 

Similar to gradient descent optimization, this process will be 

terminated if the current iteration of model selection does not 

gain in reducing the description length compared to the previous 

iteration. Fig. 3 depicts an example of the proposed building 

rooftop modelling procedure. The process starts with classified 

building map from airborne LiDAR data (Fig. 3(b)). Using this 

classified points, building point clouds are then segmented into 

height clusters (Fig. 3(c)) based on a height discontinuity, which 

is subsequently segmented into planar patches using RANSAC 

(Fig. 3(d)). Then, intersection (Fig. 3(e)) and step (Fig. 3(f)) 

lines are extracted. The extracted linear modelling cues are 

introduced to the BSP-based modelling to produce initial 

rooftop vectors (Fig. 3(g)). Finally, MDL-based regularization 

is performed by rectifying geometrical distortions between 

adjacen  plane/line segments (Fig. 3(h)), and the fine rooftop 

model is produced as shown in Fig. 3(i). 
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Figure 3. Results in reconstructing an optimal rooftop model: (a) 

aerial image, (b) LiDAR data, (c) height clustering, (d) plane 

clustering, (e) intersection line extraction, (f) step line extraction, 

(g) BSP-based building reconstruction with distortion errors 

indicated as arrows, (h) MDL-based shape regularization, and (i) 

3D polyhedral building model.    

 

 

3. EXPERIMENTAL RESULTS 

The performance of the proposed approach was evaluated with 

the real data set which is provided from ISPRS Commission III, 

WG3/4 and used for the ISPRS test project on the urban 

classification and 3D building reconstruction. As shown in Fig. 

4, the test data (120m  180m) contains historic buildings 

showing various degrees of shape complexity including 

rectangle, L, I, T-shape, gable and hip roof, which are located in 

Vaihingen, German. The Vaihingen LiDAR data set was 

acquired by Leica ALS50 system at an altitude of 500m above 

ground level in August 2008. 10 strips are overlapped with 30% 

rate and an average point density is approximately 6.7/m2 

(~0.39 m point spacing). The 3D positional accuracy of the 

point clouds is approximately less than 15 cm. 

 

 
 

Figure 4. Test data set (yellow colour contour line area) 

 

The evaluation results on building rooftop modeling are 

reported from the ISPRS Commission III, WG3/4 and are 

summarized in Table 1. To evaluate overall building 
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reconstruction performance, a confusion matrix which consists 

of three classes (i.e., completeness, correctness, and quality) is 

used, which are derived from the following three factors: (a) TP 

(True Positive) which is the number of building objects that are 

found in both the reference and the result, (b) FN (False 

Negative) which is the number of building objects that are 

found only in the reference, but not in the result, (c) FP (False 

Positive) which is the number of building objects that are found 

only in the result but not in the reference. Based on the ratio 

among the three factors, the completeness denotes the detection 

rate of objects and the correctness means how well the objects 

correctly match to buildings in the reference. The quality 

indicates the overall performance of results in the comparison 

with the reference. These evaluation criteria are described as: 

 

Completeness (%)  
  

     
         (2) 

Correctness (%)  
  

     
       (3) 

Quality (%)  
  

        
       (4)  

 

The three classes are computed with respect to three geometric 

levels: area, object, and object balanced by area. A more detail 

description of the evaluation factors can be found in Rutzinger 

et al. (2009) and the website, http://www. commission3.isprs. 

org/wg4/. 

 

Table 1. Overall performance of building rooftop modelling 

 

Category[%] Completeness Correctness Quality 

Area 88.8 99.5 88.4 

Object 88.2 98.5 87.0 

Object Balanced 

by Area 
93.4 99.3 92.7 

Average 90.1 99.1 89.4 

 

The overall performance of the proposed approach shows 90.1% 

for completeness, 99.1% for correctness, and 89.4% for quality. 

In the building reconstruction based on LiDAR data, theist 

model quality normally relies on the irregularity in the data 

distribution. Moreover, due to the use of laser last return 

information, the extracted models tend to shrink compared to 

reference vectors digitized from high-resolution images with 

centimetre-level ground sampling distance. This results in the 

low completeness compared to high correctness. 

Fig. 5 shows several examples and the whole 3D building 

models reconstructed by the proposed method depict in Fig. 6.  

 

   

   

   

   

   

(a) (b) (c) 

  

Figure 5. Reconstructed complex roof structure building: (a) 

airborne images, (b) Lidar point clouds, and (c) perspective 

view of the reconstructed 3D building model.  

 

The proposed method has main limitations: (a) during the 

clustering process of neighboring points, polygons can be over-

segmented due to the use of a certain error tolerance. For 

example, 1m tolerance is used for evaluating height 

discontinuity. (b) Curved polylines are extracted as linear 

segments. These limitations cause the occurrence of 

deformation rooftop models.   

  

 
(a) 

 
(b) 

Figure 6. 3D building reconstruction results in the whole test 

area: (a) LiDAR data and (b) 3D fine building models 
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4. CONCLUSIONS 

This study presented the new automatic regularization method 

to correct geometric and topological errors between adjacent 

plans or line vector segments based on the MDL theory. A new 

objective function is introduced to enhance the efficiency of 

geometric regularity in terms of the repetition of identical line 

directionality, regular inner angle transition and the number of 

vertices used. The experiments demonstrate that the proposed 

automatic method for 3D fine building modeling is able to 

achieve high overall modeling quality with more than 89% 

based on the used evaluation factors. As future researches, we 

will integrate multiple data sources such as image and LiDAR 

data to reconstruct more detail rooftop models including small 

superstructures. 
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