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ABSTRACT:

This article describes a pipeline developed to mat@ally detect and correct motion blur due to #iglane motion in aerial
images provided by a digital camera system witmokekdependent exposure times. Blurred images sh@etaopy in their Fourier
Transform coefficients that can be detected anunattéd to recover the characteristics of the mobtur. To disambiguate the
anisotropy produced by a motion blur from the palssspectral anisotropy produced by some perioditems present in a sharp
image, we consider the phase difference of the i€odransform of two channel shot with differentpesure times (i.e. with
different blur extensions). This is possible beeao$ the deep correlation between the three visdblannels ensures phase
coherence of the Fourier Transform coefficientsharp images. In this context, considering the @ldifference constitutes both a
good detector and estimator of the motion blur p&tars. In order to improve on this estimation, ghase difference is performed
on local windows in the image where the channedsmore correlated. The main lobe of the phaserdiffee, where the phase
difference between two channels is close to zetaailg imitates an ellipse which axis ratio disciriaites blur and which orientation
and minor axis give respectively the orientation @ime blur kernel extension of the long exposumetchannels. However, this
approach is not robust to the presence in the piiiffeeence of minor lobes due to phase sign ineessin the Fourier transform of
the motion blur. They are removed by considerirgphblar representation of the phase difference.Barethe blur detection step,
blur correction is eventually performed using twifedent approaches depending on the blur extensiper using either a simple
frequency-based fusion for small blur or a semndliterative method for larger blur. The higher guiting costs of the latter
method make it only suitable for large motion bluhen the former method is not applicable.

1. INTRODUCTION

Since the late 1990’s, the development of airbodigital
acquisition brought many improvements, especially the
radiometric quality of images where each pixel doog given a
physical value after a radiometric calibration &k tcamera,
which was not the case with silver film. The missi@ften take
place in summer when the brightness is optimal.eXbeless,
the tree foliage could hide some ground level dbjes roads or
rivers. The only way to have leafless trees islytdtfe mission
between autumn and spring when the luminosity iakw&hus,
the exposure time should be increased, at theafistausing
motion blur.

Fortunately, the images in which the blur is sigpaifit (more
than 2 pixels) often represent a very small praporof the

mission. Our article proposes an automated pip#fiaedetects
blurred images and removes the motion blur accgrdinthe
blur extension. First, we will describe the chartependent
exposure time camera for which our method is desigithen
we will review the previous work done on the tojpit blur

correction. Our pipeline will then be presentedtwo parts:
first, a blur detector taking advantage of the Hjp#ty of our

camera, then a step of correction that will dependhe blur
extension. Some results on real images eventuhlitrate the
reliability and the relevance of the method.

* Corresponding author.
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2. PRESENTATION OF THE PROBLEM
2.1 Dataacquisition

The images used in our study are provided by aitoliénnel
camera system designed by the French National Mgppi
Agency (inset Figure 1). This multi-sensor systeas Hbeen
preferred to a classical Bayer sensor for many reasdmong
them, the lack of colored artifacts, a better dyicarange in the
shadowed areas and the possibility of using a liocitennel in
the near infra-red wavelengths for remote senspgications.
We will only work on natural color images where yrthe
visible wavelengths (between 380 and 780 nm) ansidered.

The relative response of the three channels (R, GarB)
influenced by the KAF-16801LE sensor performan&s{man
Kodak Company, 2002) and by the colour filter traission
(CAMNU, 2005) as illustrated on Figure 1. In partau the
response in the blue channel is very low relativeother
channels. The blue signal is enhanced by augmerttieg
exposure time which ensures a good signal to maise (SNR)
along with a better dynamic range in the blue clenn

Conversely, for highly luminous scenes, the respams$ie red
channel is very high, such that it may cause sesaturation,
even for small exposure times (Figure 1). To awhid, another
correction, has been brought to the red camerathycing its
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aperture. The following table summarises the sjpitiefs of the
airborne camera system that provided the data iegdlin this
study:

Channel Red Green Blue
Aperture /8 /5,6 /5,6
Exposure time 8 ms 15,2 mg 28 m9g

Table 1. Aperture and exposure time for each cblann

The motion blur produced by the movement of thelaire
(which is, in first order approximation, rectilimeand uniform)
is corrected by Time Delayed Integration: the chaog each
pixel are physically shifted in the sensor matnix arder to
compensate the airplane’s uniform movement knowitsg
elevation and speed. The device reaches a preaiditwalf a
pixel (CAMNU, 2005) and allows long exposure time
acquisitions. However, it has some limits: the cengation is
only made for a motion blur induced by the printipavement
of the airplane and doesn't take into account peations such
as drifts or rotations. They may cause a motiorr bdunging
from one to ten pixels in some images.

Reponse curves of the R,G,B cameras

—#— Blue channel

—=— Green channel

—&— Red channel

Relative reponse
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Figure 1. Cameras response for constant exposdrapserture
(inset: 4 channels digital camera used in our gtudy

2.2 Motion blur model

We assume that the blur kernel is a rectangulactiom

centered on zero along a single direction. The sxgmtime is
supposed to be short enough not to integrate ndarmm

movements from the airplane. The best way to rejites linear
blur is to consider the blurred images a convolution of the
sharp imagé by a blur kerneh:

i=fCh+n (1)

The additive noisen will be neglected in the step of blur
detection (the good SNR of the imaging system allowsto
make this assumption). This quantity will yet bgndficant in
the step of deconvolution. Applying a Fourier Trfans (FT)
to a convolution leads to a product:

FT(i)=FT(f)FT(h)+ FT(n) @)
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Using a channel dependant exposure time to sheointhges
has the effect of returning three images with thdééerent
motion blur kernels. Those kernels have the sanentation
but different extension: according to the Tablentl assuming
that the blur extension is proportional to the esyre time, in
the same shot the blur extensidff in the red channel is about
3 times smaller thah”® in the blue channel and about 2 times
smaller thanh9®®" in the green channel. After neglecting the
noise, the model (2) becomes:

FT(I red ) - FT(f red ) EFT(hrEd )
FT (I green) - FT (f green) EFT (h green)
FT (| blue) - FT ( f blue) D:T (h blue)

©)

3. RELATED WORK

Image restoration has gained in importance withateval of
digital photography and the development in compstéEnces;

it is now a fundamental topic in image processwdth the
evolution computer resources, methods of increasing
complexity have become feasible. With very litttéormation,
blind or semi-blind deconvolution algorithms canstoze
photographs. In a different way, pansharpeningrétga could
also be a solution.

3.1 Pansharpening approach

In the case of blurred images, there is a loss\fofination in

the high frequencies of the Fourier domain. Somaging

systems produce two versions of the same imageigh

resolution grayscale version and a low resolutiolorcversion.

One solution is to replace, in the Fourier domdirg altered
high frequencies of the low resolution image by frleguencies
of the full resolution panchromatic image. An eqlént

method (Strait et al., 2008) is to do the same atper in a
wavelet domain where the detail levels of the l@sotution

image are replaced by the ones of the panchronmatge.

Another solution (Strait et al., 2008) is to wonkthe IHS space
(Intensity-Hue-Saturation) and replace the intgnsftthe low

resolution image by the one of the full resolutfmanchromatic
image.

Yet in the case of a color image where the threanghls are
taken with different exposure times, the completioithe
frequencies in the Fourier domain would be preferdab the
IHS method. Even if the channels are well correlatgether,
replacing the intensity by a specific channel (vehire image is
sharp) wouldn't give suitable results.

3.2 Bayesian approach

In the case of blind deconvolution, the problemtvisfold.
First, the blur should be characterized (deterrionabf the
PSF) then it should be removed from the image
(deconvolution). A general approach would be tokldor a
function that maximizes the probability of obtaigithe desired
result according to the data we already have. Ldgfne h as
the image of the PSF we are looking fbthe desired sharp
image (latent image) an(,h) the knowledge we have at our
disposal:

f =argmax{p(f |i,h)} @
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After applying Bayes' law to (4) and also writingais an energy
minimization problem:

f =argmin{- log(p(i,h|)) - log(p(i, h))}

Wherep(i,h|f) is the maximum likelihood angli,h) the a priori.
This Maximum a Posteriori (MAP) problem is an itbged
problem. The a priori knowledge is a constraintt thelps to
find the best solution among all the possible ones.

©)

321 Single image method

Historically, the two most classical approaches te ones
proposed respectively by Wiener (Wiener,
Richardson (Richardson, 1972). Wiener filter is tbkitson of
a MAP problem based on an energy minimization inmglya
regularization term. The regularization term isiadtion (often
depending on SNR) that will have an influence on es@spect
of the restored images (noise, smoothness, etachaRison-
Lucy deconvolution is an iterative procedure whadnverges
on the maximum likelihood solution. Both methodsuret
restored images with some unaesthetic artifactsgifrg for
example).

A more recent study (Fergus et al., 2006) propasasilti-scale
method to estimate the blur kernel using a MAP apgh based
on the gradient distribution of the image. Theaesion step is
done using Richard-Lucy algorithm. This method mesugood
results, yet, to obtain satisfying results an ofmerahould
choose a relevant area (typically an area withatutrated pixel)
on the image to run the blur kernel estimator.

322 M ulti-image method

Another way to obtain good a priori information tre latent
image is to use several images with different dutensions.
Lim (Lim et al., 2008) uses a short exposure timage (with
noise) and a long exposure time images (with mabiom) of a
same subject to obtain a deblurred and denoisedenighe
blur kernel is estimated by comparing the imagesaofo-
correlation and inter-correlation between the twoages.
However, the
satisfying. This method isn’t suitable for imagedsots with
different channels. An iterative approach is pregbby (Tico
et al.,
deconvolution are performed at the same time. Tit&li PSF
is a rough estimation which is refine by repeatimg operation
on the roughly deblurred image. The model usetiisrmethod
is close to (Lim et al., 2008) and gives betteritss yet it
remains slow. These methods imply the existenca short
exposure image which is not always our case. lrtiadd the
images taken by the three channels of our imagystem are
not exactly the same.

4. PROPOSED APPROACH

The presented method could be divided into twospdirtst a
blur detector using two channels of the imagingtesysand
returning an estimation of blur extension and estiiom, then a
step of restoration taking into account the blurapseters
obtained in the first time.
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1964) and

results obtained with our images weren

2007) where the PSF estimation and the émag

4.1 Blur detection and first estimation

In a previous work (Lelégard et al., 2010) we shibvikat
considering the phase difference constitutes a sy to
detect images with motion blur. This consideratias based
on the fact that the structure of an image is mdstld by the
phase of its Fourier transform (Oppenheim and Li®&81).

Let's defineAg as the phase difference between the red channel

image (where the exposure time is the shortest)thadblue
channel (with the longest exposure time). As threglchannels
are quite correlated with each other, the phaderdiice in the
case of sharp images is close to zero:

8g() =i )-o(™)
- ¢(f red)_¢(f blue)+¢(hred)_¢(hblue)
=g(n)-¢")=29(0)

Yet instead of performing the phase difference loa Wwhole

image, it will be defined as a mean & calculated on small
patches (128x128 pixels) and weighted by a relatoefficient

{1 - “mean of the saturation channel on the pajdn”order to

give more importance to patches where the threarmiaare
correlated.

(6)

In order to emphasize the frequency regions whieeephase
difference is close to zero and have a better limigon of the
phenomenon, (Lelégard et al., 2010) provides anhcad-

definition ofy equivalent to:
() OJ -

MR

L1 £

Figure 2. Examples of phase differencéor a sharp image
(left) and for blurred images (right)

y=m

This quantity (Figure 2) often imitates a circlédgp images) or
an ellipse (blurred images). The blur parameters lma easily
derived by fitting an ellipse on the gradient ofhaesholded
version ofy. The orientation of the main axis of the ellipse i
perpendicular to the motion blur kernel orientatiand the
minor axis is inversely proportional to the blutension.

In very few cases, somg show minor lobes (Figure 2, right
example) which bring bad estimation of the ellipseameters.

Those specifiay are easy to detect by setting a threshold on the

residual variance with the fitted ellipse. In orderremove the
minor lobesyy is represented in polar projection (Figure 4). For
each column, a region-growing is performed fromlib&om to
the top with a double threshold gnintensity (it stops under a
certain value, where the coefficient are no momeetated) and
on y gradient (it stops when the value of the gradaanges,
before the appearance of a minor lobe). The passitibtakes
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in the region growing process will be smoothened by4.2.2 For large motion blur
mathematical morphology filtering.

However, forp < 35%, all the channels are blurred. In this case,
4.2 Imagerestoration the way we choose to restore these images bluritedanarge

kernel is to use a semi blind approach.
The score is defined as the ration of the small axis onlénge

axis. A distinction will be made between the cpse35% and
the case < 35%. The value of 35% ratio is chosen accorting
the ratio between the exposures times of the redth@ blue
cameras (which is about 33%).

Minirmum research
and thresholding

Vertical gradlents -
transformat\on

Section of ] 1
L I cﬁimwws |
For p = 35%, the red channel could be assumes as a sha S
channel (the blur kernel is less than a pixel iis tase). By —

considering the red channel as a reference chaanelcould
consider a pansharpening method to restore theeimag Mathemmlmomwow

4.2.1  For small motion blur

Section of the |
vertical gradients

Vit ishs deiestion

.’ et *“ !

For small motion blur we replace the altered cogdfit in the
green and blur channel by the one of the red chathiag¢ is
considered as unaltered. The selection of the ictesit in the
green and the blue channel are done according gobbhr
parameter returned in the previous step. The blsir i

overestimated (the spectral mask is narrowed) derto give Figure 4. Minor lobes removal
priority to the sharpest channel. The processlistiated in
Figure 3.

In order to deal with our problem, we choose ayfallitomatic
approach close to (Fergus et al., 2006) and degdltyy Shan
in (Shan et al., 2008). It is an iterative singigage approach
Red Channel ~ Green and Blue Channels especially relevant in the case of large blur esitam This
(sharp) (stightly blurred) semi-blind deconvolution is illustrated by the Figb. It is a
MAP problem where the latent image and the blun&kare the
a priori. Let's suppose that the kerihek independent from the
latent imagéd:

(f,ﬁ):argma{p(f,h\i)}

=argmax{p( | f,h)Cp(f ) Cp(h)}

The quantityp(i|f,h) is the maximum of likelihood and is here to
minimize the noise produced by the deconvolutidrarBworks
on a derivative-dependent model of noise to limdisa
multiplication in the flat area of the image. Thirba priori

FTl

®

Masks of the p(h) supposes that the kernel is mostly composed f. Z&s
interesting distribution follows an exponential law. Eventualthe latent
cGoeaf;glgqts image a priorip(f) could be decomposed as a product of two

termsp(f) andpg(f) relative to the local and global behaviors of
the desired image. The global termy(f) is based on
observations made by (Roth and Black, 2005) and @\sgisl
Feeman, 2005) that show that the gradient distdhubf an
image follow a distributiord focusing on two distinct behavior

+

4 FT(Red) FT(Red)

Replacement
by the FT(Red)

coeiiaes of the gradient distribution (where x refers to theadients
values):
-k x<|
®(x) = )42 ‘ ©)
Restored —(ax +b) x>,
channels

The local termp(f) limits the ringing effect in the restored
image. It constrains the flat area of the imageetoain close to

the original blurred image.
Figure 3. Pansharpening approach used in theoéasrall 9 . imag

motion blur (when the red channel remains sharp) According to (5), equation (8) could also be writtas an

energy minimization problem (10).
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f ) =argmin- tog(p(f..h 1)}
=argmin{E(f, h)}

(

(10)

The energ)E is here defined by the relation (11). Each line of

the equation (11) corresponds respectivelyp(itf,h) , py(f) ,

pi(f) andp(h). M is a binary mask with value 1 for smooth area

and 0 either (Figure 5). It is obtained by caldalgta standard
deviation on a sliding windows followed by a threkting. The
minimization of the energy is performed after satiag the
determination of the latent image (the three firsts of (11))
from the one of the blur kernel (the last line bf)).

E(f,h)= w0, f Oh-a,il> + /o, f Oh-a,i;
+ A0, )+, ), (11)
+/12m6yf -

+[hl,

A +[o, -0, )om

The parametey constrainsy to be close t@f. The choice of its
value has an influence on the speed convergence¢hef
algorithm. As @ is convex each term could be minimized
separately. Now let assume thas fixed and is the variable:

E, =0, f Oh-0,if2+a]o, f 0h-a,i’

12)
g -0.117 +p, -0, 1[")

This equation can be solved in the Fourier domiarfact, on
could apply Plancherel's theorem, which states ttheatsum of
the square of a function equals the sum of the rego# its
Fourier transform. The equation (12) is equivatent

Ere(r) = @ |FT(0,)FT(f)FT(h)-FT(0,i)
+aFT(,)oFT () FT(n) - FT(0,i)]

+YFT(p,)-FT(0,)FT

+1|FTlp,)-FTlo, )oFT

(13)

The blind determination of h is performed in ortleestimate a
more accurate kernel than the one returned by loudietection
step. In this stepf, is fixed and the energl is limited to the
first and the last line of (11):

£h) = .o, f oh-a,iZ +Jo, f ch-a, )
+[h,

(14)

| order the find the blur kernél, (14) is solved under its matrix
form:

— 2
H)=Am e ],

As the kernel h is assumed to be small (less ti@apixls), its

matrix form H has a moderate size (less than 400x4b keep
a reasonable size, A and B are matrix forms of @ afotheir
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relative images. The resolution is based on a ndetleveloped
2007).

by (Kim et al.,

Figure 5. A binary mask obtained with a 21x21 [sxeindow

nitial blur kernel
estimated for
each channel

ﬂ

Restored
RGB images

New blur kernel
detrnination

Figure 6. Description of the restoration process

Blurred
RGB images

5. RESULTS

In most of the cases, the blur extension in the lshannel (the
one with the maximum exposure time) is less thaeetipixels.
This kind of blur could be corrected with a panglesing
approach (Figure 8) present a part 4.2.1. Evehefdorrected
image looks sharp, the radiometry is slightly @&terYet this
inconvenience will be unnoticed for the user of tfieal

product.

In the case of larger motion blur, the more sojxtastd

approached proposed by (Shan et al. 2008) brintgsesting
results. Even if the ringing artifacts are stiléta (Figure 7) the
idea of looking for a more accurate model of keiiegustified

by the fact that the ellipse detection (Figure 3f}ero

overestimates the blur extension. In addition, thetangular
uniform model of the motion blur is an approximatitat isn’t

strictly relevant for large blur extension. Yet t@mputing time
of Shan’s iterative deblurring method is the maiawback of
the process especially on large aerial images.

6. CONCLUSION

The process presented in this article is an impraveg of a
previous work based on a blur detector (Lelégardl.e2010).
A step of blur estimation and two kind of correatidepending
on the blur extension have been added to compieterocess.
The results are quite promising and an applicationan
operational context is conceivable at least indase of images
with small blur extension requiring only a panstemipg
correction using the high frequencies of the named
channel, in our case the red one.

Yet the correction of larger blur extension stiléturns
unaesthetic ringing artifacts. A possible improvamsould be
to correct the three channels by using spectratindtion in the
three channels together as it is done in the papshimg
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approach and not independently for each channieisadone in
this current work. Another perspective would be the
exploitation of the in-flight inertial measuremendsderive the
blur kernel estimate.
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