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ABSTRACT: 
 
This article describes a pipeline developed to automatically detect and correct motion blur due to the airplane motion in aerial 
images provided by a digital camera system with channel-dependent exposure times. Blurred images show anisotropy in their Fourier 
Transform coefficients that can be detected and estimated to recover the characteristics of the motion blur. To disambiguate the 
anisotropy produced by a motion blur from the possible spectral anisotropy produced by some periodic patterns present in a sharp 
image, we consider the phase difference of the Fourier Transform of two channel shot with different exposure times (i.e. with 
different blur extensions). This is possible because of the deep correlation between the three visible channels ensures phase 
coherence of the Fourier Transform coefficients in sharp images. In this context, considering the phase difference constitutes both a 
good detector and estimator of the motion blur parameters. In order to improve on this estimation, the phase difference is performed 
on local windows in the image where the channels are more correlated. The main lobe of the phase difference, where the phase 
difference between two channels is close to zero actually imitates an ellipse which axis ratio discriminates blur and which orientation 
and minor axis give respectively the orientation and the blur kernel extension of the long exposure-time channels. However, this 
approach is not robust to the presence in the phase difference of minor lobes due to phase sign inversions in the Fourier transform of 
the motion blur. They are removed by considering the polar representation of the phase difference. Based on the blur detection step, 
blur correction is eventually performed using two different approaches depending on the blur extension size: using either a simple 
frequency-based fusion for small blur or a semi blind iterative method for larger blur. The higher computing costs of the latter 
method make it only suitable for large motion blur, when the former method is not applicable. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Since the late 1990’s, the development of airborne digital 
acquisition brought many improvements, especially in the 
radiometric quality of images where each pixel could be given a 
physical value after a radiometric calibration of the camera, 
which was not the case with silver film. The missions often take 
place in summer when the brightness is optimal. Nevertheless, 
the tree foliage could hide some ground level objects as roads or 
rivers. The only way to have leafless trees is to fly the mission 
between autumn and spring when the luminosity is weak. Thus, 
the exposure time should be increased, at the risk of causing 
motion blur. 
 
Fortunately, the images in which the blur is significant (more 
than 2 pixels) often represent a very small proportion of the 
mission. Our article proposes an automated pipeline that detects 
blurred images and removes the motion blur according to the 
blur extension. First, we will describe the channel-dependent 
exposure time camera for which our method is designed. Then 
we will review the previous work done on the topic of blur 
correction. Our pipeline will then be presented in two parts: 
first, a blur detector taking advantage of the specificity of our 
camera, then a step of correction that will depend on the blur 
extension. Some results on real images eventually illustrate the 
reliability and the relevance of the method. 

2. PRESENTATION OF THE PROBLEM 

2.1 Data acquisition 

The images used in our study are provided by a multi-channel 
camera system designed by the French National Mapping 
Agency (inset Figure 1). This multi-sensor system has been 
preferred to a classical Bayer sensor for many reasons. Among 
them, the lack of colored artifacts, a better dynamic range in the 
shadowed areas and the possibility of using a fourth channel in 
the near infra-red wavelengths for remote sensing applications. 
We will only work on natural color images where only the 
visible wavelengths (between 380 and 780 nm) are considered. 
 
The relative response of the three channels (R, G, B) are 
influenced by the KAF-16801LE sensor performances (Eastman 
Kodak Company, 2002) and by the colour filter transmission 
(CAMNU, 2005) as illustrated on Figure 1. In particular, the 
response in the blue channel is very low relative to other 
channels. The blue signal is enhanced by augmenting the 
exposure time which ensures a good signal to noise ratio (SNR) 
along with a better dynamic range in the blue channel. 
 
Conversely, for highly luminous scenes, the response in the red 
channel is very high, such that it may cause sensor saturation, 
even for small exposure times (Figure 1). To avoid this, another 
correction, has been brought to the red camera by reducing its 
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aperture. The following table summarises the specificities of the 
airborne camera system that provided the data exploited in this 
study: 
 

Channel Red Green Blue 

Aperture f/8 f/5,6 f/5,6 

Exposure time 8 ms 15,2 ms 28 ms 

 
Table 1.  Aperture and exposure time for each channel  

 
 
The motion blur produced by the movement of the airplane 
(which is, in first order approximation, rectilinear and uniform) 
is corrected by Time Delayed Integration: the charge on each 
pixel are physically shifted in the sensor matrix in order to 
compensate the airplane’s uniform movement knowing its 
elevation and speed. The device reaches a precision of half a 
pixel (CAMNU, 2005) and allows long exposure time 
acquisitions. However, it has some limits: the compensation is 
only made for a motion blur induced by the principal movement 
of the airplane and doesn’t take into account perturbations such 
as drifts or rotations. They may cause a motion blur ranging 
from one to ten pixels in some images. 
 

 
 
Figure 1.  Cameras response for constant exposure and aperture 

(inset: 4 channels digital camera used in our study) 
 
 
2.2 Motion blur model 

We assume that the blur kernel is a rectangular function 
centered on zero along a single direction. The exposure time is 
supposed to be short enough not to integrate non-uniform 
movements from the airplane. The best way to represent a linear 
blur is to consider the blurred image i as a convolution of the 
sharp image f by a blur kernel h: 
 

 nhfi +∗=      (1) 

 
The additive noise n will be neglected in the step of blur 
detection (the good SNR of the imaging system allows us to 
make this assumption). This quantity will yet be significant in 
the step of deconvolution. Applying a Fourier Transform (FT) 
to a convolution leads to a product: 
 

( ) ( ) ( ) ( )nFThFTfFTiFT +⋅=      (2) 

 

Using a channel dependant exposure time to shoot the images 
has the effect of returning three images with three different 
motion blur kernels. Those kernels have the same orientation 
but different extension: according to the Table 1 and assuming 
that the blur extension is proportional to the exposure time, in 
the same shot the blur extension hred in the red channel is about 
3 times smaller than hblue in the blue channel and about 2 times 
smaller than hgreen in the green channel. After neglecting the 
noise, the model (2) becomes: 
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3. RELATED WORK 

Image restoration has gained in importance with the arrival of 
digital photography and the development in computer sciences; 
it is now a fundamental topic in image processing. With the 
evolution computer resources, methods of increasing 
complexity have become feasible. With very little information, 
blind or semi-blind deconvolution algorithms can restore 
photographs. In a different way, pansharpening algorithm could 
also be a solution. 
 
3.1 Pansharpening approach 

In the case of blurred images, there is a loss of information in 
the high frequencies of the Fourier domain. Some imaging 
systems produce two versions of the same image: a high 
resolution grayscale version and a low resolution color version. 
One solution is to replace, in the Fourier domain, the altered 
high frequencies of the low resolution image by the frequencies 
of the full resolution panchromatic image. An equivalent 
method (Strait et al., 2008) is to do the same operation in a 
wavelet domain where the detail levels of the low resolution 
image are replaced by the ones of the panchromatic image. 
Another solution (Strait et al., 2008) is to work in the IHS space 
(Intensity-Hue-Saturation) and replace the intensity of the low 
resolution image by the one of the full resolution panchromatic 
image. 
 
Yet in the case of a color image where the three channels are 
taken with different exposure times, the completion of the 
frequencies in the Fourier domain would be preferable to the 
IHS method. Even if the channels are well correlated together, 
replacing the intensity by a specific channel (where the image is 
sharp) wouldn’t give suitable results. 
 
3.2 Bayesian approach 

In the case of blind deconvolution, the problem is twofold. 
First, the blur should be characterized (determination of the 
PSF) then it should be removed from the image 
(deconvolution). A general approach would be to look for a 
function that maximizes the probability of obtaining the desired 
result according to the data we already have. Let’s define h as 
the image of the PSF we are looking for, f the desired sharp 
image (latent image) and (i,h) the knowledge we have at our 
disposal: 
 

 ( ){ }hifpf ,maxarg=
)

    (4) 
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After applying Bayes’ law to (4) and also writing it as an energy 
minimization problem: 
 

( )( ) ( )( ){ }hipfhipf ,log,logminargˆ −−=    (5) 

 
Where p(i,h|f) is the maximum likelihood and p(i,h) the a priori. 
This Maximum a Posteriori (MAP) problem is an ill-posed 
problem. The a priori knowledge is a constraint that helps to 
find the best solution among all the possible ones. 
 
3.2.1 Single image method 
 
Historically, the two most classical approaches are the ones 
proposed respectively by Wiener (Wiener, 1964) and 
Richardson (Richardson, 1972). Wiener filter is the solution of 
a MAP problem based on an energy minimization implying a 
regularization term. The regularization term is a function (often 
depending on SNR) that will have an influence on some aspect 
of the restored images (noise, smoothness, etc.). Richardson-
Lucy deconvolution is an iterative procedure which converges 
on the maximum likelihood solution. Both methods return 
restored images with some unaesthetic artifacts (ringing for 
example). 
 
A more recent study (Fergus et al., 2006) proposes a multi-scale 
method to estimate the blur kernel using a MAP approach based 
on the gradient distribution of the image. The restoration step is 
done using Richard-Lucy algorithm. This method returns good 
results, yet, to obtain satisfying results an operator should 
choose a relevant area (typically an area without saturated pixel) 
on the image to run the blur kernel estimator. 
 
3.2.2 Multi-image method 
 
Another way to obtain good a priori information on the latent 
image is to use several images with different blur extensions. 
Lim (Lim et al., 2008) uses a short exposure time image (with 
noise) and a long exposure time images (with motion blur) of a 
same subject to obtain a deblurred and denoised image. The 
blur kernel is estimated by comparing the images of auto-
correlation and inter-correlation between the two images. 
However, the results obtained with our images weren’t 
satisfying. This method isn’t suitable for images shot with 
different channels. An iterative approach is proposed by  (Tico 
et al., 2007) where the PSF estimation and the image 
deconvolution are performed at the same time. The initial PSF 
is a rough estimation which is refine by repeating the operation 
on the roughly deblurred image. The model used in this method 
is close to (Lim et al., 2008) and gives better results, yet it 
remains slow. These methods imply the existence of a short 
exposure image which is not always our case. In addition, the 
images taken by the three channels of our imaging system are 
not exactly the same. 
 
 

4. PROPOSED APPROACH 

The presented method could be divided into two parts: first a 
blur detector using two channels of the imaging system and 
returning an estimation of blur extension and estimation, then a 
step of restoration taking into account the blur parameters 
obtained in the first time. 
 

4.1 Blur detection and first estimation 

In a previous work (Lelégard et al., 2010) we showed that 
considering the phase difference constitutes a robust way to 
detect images with motion blur. This consideration was based 
on the fact that the structure of an image is mostly held by the 
phase of its Fourier transform (Oppenheim and Lim, 1981). 
Let’s define ∆φ as the phase difference between the red channel 
image (where the exposure time is the shortest) and the blue 
channel (with the longest exposure time). As the three channels 
are quite correlated with each other, the phase difference in the 
case of sharp images is close to zero: 
 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )hhh

hhff

iii

bluered

blueredbluered

bluered

ϕϕϕ
ϕϕϕϕ

ϕϕϕ

∆=−≈
−+−=

−=∆
   (6) 

 
Yet instead of performing the phase difference on the whole 
image, it will be defined as a mean of ∆φ calculated on small 
patches (128x128 pixels) and weighted by a relative coefficient 
{ 1 – “mean of the saturation channel on the patch” } in order to 
give more importance to patches where the three channel are 
correlated. 
 
In order to emphasize the frequency regions where the phase 
difference is close to zero and have a better visualization of the 
phenomenon, (Lelégard et al., 2010) provides an ad-hoc 
definition of ψ equivalent to: 
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ϕ
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f

   (7) 

 

 
 

Figure 2.  Examples of phase difference ψ for a sharp image 
(left) and for blurred images (right) 

 
 

This quantity (Figure 2) often imitates a circle (sharp images) or 
an ellipse (blurred images). The blur parameters can be easily 
derived by fitting an ellipse on the gradient of a thresholded 
version of ψ. The orientation of the main axis of the ellipse is 
perpendicular to the motion blur kernel orientation and the 
minor axis is inversely proportional to the blur extension. 
 
In very few cases, some ψ show minor lobes (Figure 2, right 
example) which bring bad estimation of the ellipse parameters. 
Those specific ψ are easy to detect by setting a threshold on the 
residual variance with the fitted ellipse. In order to remove the 
minor lobes, ψ is represented in polar projection (Figure 4). For 
each column, a region-growing is performed from the bottom to 
the top with a double threshold on ψ intensity (it stops under a 
certain value, where the coefficient are no more correlated) and 
on ψ gradient (it stops when the value of the gradient changes, 
before the appearance of a minor lobe). The possible mistakes 
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in the region growing process will be smoothened by 
mathematical morphology filtering. 
 
4.2 Image restoration 

The score ρ is defined as the ration of the small axis on the large 
axis. A distinction will be made between the case ρ ≥ 35% and 
the case ρ < 35%. The value of 35% ratio is chosen according to 
the ratio between the exposures times of the red and the blue 
cameras (which is about 33%). 
 
4.2.1 For small motion blur 
 
For ρ ≥ 35%, the red channel could be assumes as a sharp 
channel (the blur kernel is less than a pixel in this case). By 
considering the red channel as a reference channel, one could 
consider a pansharpening method to restore the image. 
 
For small motion blur we replace the altered coefficient in the 
green and blur channel by the one of the red channel that is 
considered as unaltered. The selection of the coefficient in the 
green and the blue channel are done according to the blur 
parameter returned in the previous step. The blur is 
overestimated (the spectral mask is narrowed) in order to give 
priority to the sharpest channel. The process is illustrated in 
Figure 3. 
 
 

 
 

Figure 3.  Pansharpening approach used in the case of small 
motion blur (when the red channel remains sharp) 

 
 

4.2.2 For large motion blur 
 
However, for ρ < 35%, all the channels are blurred. In this case, 
the way we choose to restore these images blurred with a large 
kernel is to use a semi blind approach. 
 
 

 
 

Figure 4.  Minor lobes removal 
 
 
In order to deal with our problem, we choose a fully automatic 
approach close to (Fergus et al., 2006) and developed by Shan 
in (Shan et al., 2008). It is an iterative single image approach 
especially relevant in the case of large blur extension. This 
semi-blind deconvolution is illustrated by the Figure 6. It is a 
MAP problem where the latent image and the blur kernel are the 
a priori. Let’s suppose that the kernel h is independent from the 
latent image f: 
 

( ) ( ){ }
( ) ( ) ( ){ }hpfphfip

ihfphf

⋅⋅=

=

,maxarg

,maxargˆ,ˆ
    (8) 

 
The quantity p(i|f,h) is the maximum of likelihood and is here to 
minimize the noise produced by the deconvolution. Shan works 
on a derivative-dependent model of noise to limit noise 
multiplication in the flat area of the image. The blur a priori 
p(h) supposes that the kernel is mostly composed of zero. Its 
distribution follows an exponential law. Eventually, the latent 
image a priori p(f) could be decomposed as a product of two 
terms pl(f) and pg(f) relative to the local and global behaviors of 
the desired image. The global term pg(f) is based on 
observations made by (Roth and Black, 2005) and (Weiss and 
Feeman, 2005) that show that the gradient distribution of an 
image follow a distribution Φ focusing on two distinct behavior 
of the gradient distribution (where x refers to the gradients 
values): 
 

 ( ) ( )



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>+−

≤−
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t

t

lxbax
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2
    (9) 

 
The local term pl(f) limits the ringing effect in the restored 
image. It constrains the flat area of the image to remain close to 
the original blurred image. 
 
According to (5), equation (8) could also be written as an 
energy minimization problem (10). 
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−=

  (10) 

 
The energy E is here defined by the relation (11). Each line of 
the equation (11) corresponds respectively to p(i|f,h) , pg(f) , 
pl(f) and p(h). M is a binary mask with value 1 for smooth area 
and 0 either (Figure 5). It is obtained by calculating a standard 
deviation on a sliding windows followed by a thresholding. The 
minimization of the energy is performed after separating the 
determination of the latent image (the three first lines of (11)) 
from the one of the blur kernel (the last line of (11)). 
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The parameter γ constrains φ to be close to ∂f. The choice of its 
value has an influence on the speed convergence of the 
algorithm. As Φ is convex each term could be minimized 
separately. Now let assume that φ is fixed and f is the variable: 
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This equation can be solved in the Fourier domain. In fact, on 
could apply Plancherel's theorem, which states that the sum of 
the square of a function equals the sum of the square of its 
Fourier transform. The equation (12) is equivalent to: 
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The blind determination of h is performed in order to estimate a 
more accurate kernel than the one returned by our blur detection 
step. In this step, f is fixed and the energy E is limited to the 
first and the last line of (11): 
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I order the find the blur kernel h, (14) is solved under its matrix 
form: 
 

 
( )

1

2

2
HBHAHE ++⋅=

  (15) 
 
As the kernel h is assumed to be small (less than 20 pixels), its 
matrix form H has a moderate size (less than 400x400). To keep 
a reasonable size, A and B are matrix forms of a crop of their 

relative images. The resolution is based on a method developed 
by (Kim et al., 2007). 
 
 

 
 
Figure 5.  A binary mask obtained with a 21x21 pixels window 
 
 

 
 

Figure 6.  Description of the restoration process 
 
 

5. RESULTS 

In most of the cases, the blur extension in the blue channel (the 
one with the maximum exposure time) is less than three pixels. 
This kind of blur could be corrected with a pansharpening 
approach (Figure 8) present a part 4.2.1. Even if the corrected 
image looks sharp, the radiometry is slightly altered. Yet this 
inconvenience will be unnoticed for the user of the final 
product. 
 
In the case of larger motion blur, the more sophisticated 
approached proposed by (Shan et al. 2008) brings interesting 
results. Even if the ringing artifacts are still there (Figure 7) the 
idea of looking for a more accurate model of kernel is justified 
by the fact that the ellipse detection (Figure 3) often 
overestimates the blur extension. In addition, the rectangular 
uniform model of the motion blur is an approximation that isn’t 
strictly relevant for large blur extension. Yet the computing time 
of Shan’s iterative deblurring method is the main drawback of 
the process especially on large aerial images. 
 
 

6. CONCLUSION 

The process presented in this article is an improvement of a 
previous work based on a blur detector (Lelégard et al., 2010). 
A step of blur estimation and two kind of correction depending 
on the blur extension have been added to complete the process. 
The results are quite promising and an application in an 
operational context is conceivable at least in the case of images 
with small blur extension requiring only a pansharpening 
correction using the high frequencies of the non-blurred 
channel, in our case the red one. 
 
Yet the correction of larger blur extension still returns 
unaesthetic ringing artifacts. A possible improvement would be 
to correct the three channels by using spectral information in the 
three channels together as it is done in the pansharpening 
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approach and not independently for each channel as it is done in 
this current work. Another perspective would be the 
exploitation of the in-flight inertial measurements to derive the 
blur kernel estimate. 
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Figure 7.  Result of the blur correction step using the iterative 

approached developed by (Shan et al., 2008) 
Left: the original image. Right: the restored image. 

 
 
 

 

 
 

Figure 8.  Result of the blur correction step using the 
pansharpening approach. 

Top: the original image. Bottom: the restored image. 
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