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ABSTRACT: 

 

The tracking of moving objects from single images has received widespread attention in photogrammetric computer vision and 

considered to be at a state of maturity. This paper presents a model-driven solution for localizing moving objects detected from 

monocular, rotating and zooming video images in a 3D reference frame. To realize such a system, the recovery of 2D to 3D 

projection parameters is essential. Automatic estimation of these parameters is critical, particularly for pan-tilt-zoom (PTZ) 

surveillance cameras where parameters change spontaneously upon camera motion. In this work, an algorithm for automated 

parameter retrieval is proposed. This is achieved by matching linear features between incoming images from video sequences and 

simple geometric 3D CAD wireframe models of man-made structures. The feature matching schema uses a hypothesis-verify 

optimization framework referred to as LR-RANSAC. This novel method improves the computational efficiency of the matching 

process in comparison to the standard RANSAC robust estimator. To demonstrate the applicability and performance of the method, 

experiments have been performed on indoor and outdoor image sequences under varying conditions with lighting changes and 

occlusions. Reliability of the matching algorithm has been analyzed by comparing the automatically determined camera parameters 

with ground truth (GT). Dependability of the retrieved parameters for 3D localization has also been assessed by comparing the 

difference between 3D positions of moving image objects estimated using the LR-RANSAC-derived parameters and those computed 

using GT parameters. 

 

 

1. INTRODUCTION 

The augmentation and dynamic positioning of 3D moving 

objects avatars, particularly, vehicles and pedestrians for virtual 

reality surveillance applications powered by Google Earth and 

Microsoft Virtual Earth is becoming increasingly important. 

Figure 1 illustrates the implementation of such a system (Sohn 

et al., 2011). There has been an extensive amount of work that 

tries to augment or contextualize 3D virtual environments with 

dynamic objects from video data (Kim et al., 2009, Baklouti et 

al., 2009).  

 

Numerous sensors and positioning devices such as GPS, inertial 

sensors and Radio Frequency IDentification (RFID) are existing 

technologies which can potentially be used for such purposes. 

However, these egocentric devices must be attached to the 

object for tracking and some are impractical for open cityscapes 

or indoor spaces where for instance, GPS is not functional.  

Given the widespread use of surveillance cameras, tracking can 

be performed on a more global basis using video data. The 

challenge here is the automatic conversion of 2D object 

positions detected from single images into the 3D space of the 

reference frame. With the availability of expensive geospatial 

data sources that have already been used to generate the static 

3D building models populating the virtual environment, an 

approach has been developed which further utilizes this model 

information for dynamic 3D localization of vehicles and 

pedestrians. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 3D surveillance prototype. Top: Moving image 

objects detected from surveillance video. Bottom: 3D 

visualization of detected objects in Google Earth. 
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2. OVERVIEW 

The transfer of 2D object positions into 3D space requires 

determination of mapping parameters between camera and the 

3D coordinate frames. Traditionally this is done by manually 

collecting 2D and 3D corresponding features such as points or 

lines. Then perspective mathematical models are applied to 

determine the projection parameters. Whenever there is camera 

motion, this procedure must be repeated. To automate this 

process, the challenging problem of model-based feature 

matching (MBFM) must be addressed. MBFM is a coupled 

problem, i.e. a correspondence and transformation problem. 

One of these is solvable if the solution to the other is known. 

Early works in photogrammetry and computer vision have 

presented several innovative MBFM approaches. Fishler and 

Bolles (1981) designed the popular RANdom Sample And 

Consensus (RANSAC) algorithm, Stockman et al. (1982) 

proposed the ‘pose clustering’ method, whilst, Grimson and 

Lozano (1987) developed the ‘interpretation tree’ approach. 

Given the current prevalence of geospatial products and data 

such as airborne LIDAR and digital surface models (DSMs), 

there has been a recent upsurge in MBFM for various 

applications. This includes the automated texturing of 3D 

building models (Wang and Neumann, 2009), and for 

autonomous robot navigation (Aider et al., 2005). RANSAC-

based strategies were used for the mentioned texture mapping 

works, whilst, Aider et al., (2005) employed the interpretation 

tree scheme for 2D/3D line matching. In this paper, a MBFM 

framework utilizing a novel robust estimator called Line-based 

Randomized RANSAC (LR-RANSAC) is presented. In the first 

step of the matching process, a common feature matching space 

must be defined. Automatically detected vanishing points (VPs) 

are used to determine initial camera parameters enabling the 

back-projection of model data into image space. To correct 

errors in the VP-based camera parameters, LR-RANSAC is then 

applied to obtain an optimal fitting of the model to image. The 

method utilizes linear segments from both video image data and 

the geometric 3D wireframes models of man-made structures 

such as buildings, roads and street furniture vectors for 

automatic generation of the parameters. Focal length and the 3 

image to world rotation angles are considered as the unknown 

parameters to be estimated (principal point and lens distortions 

are assumed to be known and zero, respectively) from a Pan-

Tilt-Zoom (PTZ) surveillance camera. Camera position is 

assumed to be rigid and known within the coordinate frame of 

the 3D model. This is reasonable presumption since 

surveillance cameras are mounted to a fixed position. 

 

The speed of RANSAC is primarily dependent on a 

combination of factors such as the number of outliers present in 

the dataset and the time complexity of the hypothesis 

verification phase. To minimize the influence of outlying 

matches, orientation and localization constraints (OLC) and 

perceptual grouping constraints (PGC) are incorporated in the 

matching framework. The hypothesis verification scheme used 

in this work is an evidence search function which proves to be 

the computational bottleneck of the overall method. To 

optimize the overall matching time, LR-RANSAC has been 

implemented and is a modified version of the Randomized 

RANSAC (R-RANSAC) initially proposed by Chum and Matas 

(2002). The R-RANSAC algorithm has been described as 

‘randomized’ since the decision for executing hypothesis 

verification becomes a random process that is subject to the 

quality of the random sample set as determined by a ‘pre-

verification’ test. A fast, effective linear feature test has been 

proposed for LR-RANSAC’s robust estimation framework. 

 

 
 

             Figure 2. General overview of proposed framework 

 

 

3. INITIAL REGISTRATION 

Outdoor images populated with man-made structures and 

indoor scenes such as rooms and hallways generally adhere to 

the Legoland World (LW) assumption. This is an important 

criterion for the detection of 3 orthogonal VPs. In this work, 

VPs are used to obtain initial estimates of interior parameters 

(i.e. focal length), as well as, the camera rotation angles. A 

sequential-based scoring approach as proposed by Rother 

(2002) has been employed for estimation of the VPs. Straight 

line segments are used in the extraction of VPs and are also for 

the matching phase. The line segments are automatically 

generated using a Canny edge-based approach (Kovesi, 2011).   

In the first stage of the registration pipeline, these initial 

estimates localize the 3D model in image space, where matching 

can then be performed. 

 

 

4. OPTIMAL REGISTRATION 

There are inherent errors in the VP-based camera parameters. 

These are due to factors such as image quality and strength of 

local scene geometry which propagate into the quality of the 

resulting VP estimates. To refine these parameters, LR-

RANSAC is used for matching back-projected wireframe model 

lines and extracted image lines. LR-RANSAC is an iterative 

algorithm comprising 3 stages: Hypothesis Generation, Pre-

verification Testing and Hypothesis Verification. 

 

4.1 Hypothesis Generation 

Constraints.   Efficiency of the matching process depends on 

all possible combinations of model to image matches. The basic 

premise of any RANSAC-based algorithm is to find a solution 

in the presence of outliers. Outliers are image lines that 

erroneously match model lines. To reduce outlying possibilities, 

PGC and OLC were applied. For PGC, the number of 

hypothetical matches is lessened by merging broken and multi-

detected image line segments that are perceived to be the same. 

Segments were merged using a least squares fit. Gestalt laws as 
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parallelism and proximity were applied. OLC uses the concept 

of locally oriented search spaces for random sampling of 

matches instead of a naive global sampling approach. Similarly 

oriented image lines were automatically classified into the 3 LW 

directions as a result of the VP estimation process. Wireframe 

lines have also been classified a priori according to major LW 

directions. A significant portion of outliers are removed by 

limiting the random sampling of model and image lines which 

belong to the same vanishing direction. One can also assume 

that the correct image line match for a particular back-projected 

model line is localized within the vicinity of this model line. 

Similarly oriented image and model lines are projected into 

theta-rho (θ-ρ) space. In a similar vein to spatial buffering, the ρ 

direction in θ-ρ space is split into buffer-like bins for every 

wireframe line in each θ direction and each ρ range. Bin widths 

are defined empirically for each dataset. Image lines that lie 

inside these local neighbourhoods are considered as candidate 

matches for that particular model line.  

 

Cost Function for Matching.   Given the randomly sampled 

correspondence candidates, a camera parameter hypothesis must 

be established. A line-based mathematical model has been 

developed for this purpose (Persad et al., 2010). The VP-based 

parameters are used for initializing the optimization. Refined 

camera parameters are estimated by adjusting the initial 

parameters via a minimization of the orthogonal point to line 

distance,‘d’, between each pair of corresponding projected 

model and image lines. Coordinates of the projected model 

lines, LM are functions of initial camera parameters whereas 

those from the image lines, LI are functions of the yet to be 

defined optimal parameters. The general form of the cost 

function, ‘F, used in the non-linear least squares is defined as: 

 

 

                           2),(min IM LLdF                           (1) 

 

 

4.2 Pre-verification Test 

Assuming a minimal random sample is not contaminated with 

outlying matches, the camera parameter hypothesis is 

considered to be a possible solution. Upon re-backprojecting 

the sampled wireframe lines into θ-ρ space, the Euclidean 

distances between model to image feature points for each 

randomly sampled model/image line pair should all be reduced 

or have minimal change compared to their respective distance 

before the hypothesis had been applied. Reduction in this 

distance suggests that there is a closer model to image 

alignment based on the data from this minimal random subset.  

 

         
Figure 5. Randomly sampled putative matches in θ-ρ space 

To confirm, a full verification must be applied globally to the 

entire dataset. This is dealt with in the next section. If there is 

an increase in the distance between wireframe and image θ-ρ 

feature points after applying the camera parameter hypothesis, 

the current sample subset is discarded and new ones are 

generated. 

 

4.3 Hypothesis Verification 

The following section describes the process for accumulating 

the positive and negative evidence using the pre-verified camera 

parameter hypothesis. All scores are in a normalized 0~1 range. 

 

Positive and Negative Pixel Coverage.   Function SC attempts 

to verify the validity of the hypothesis Hj (where, j is the current 

LR-RANSAC iteration number) by scoring the ratio of the sum 

of the overlap of image line pixels PI with the pixels of the 

backprojected model line hypothesis PM  as generated by Hj , to 

the total number of PM. This metric is considered to be a 

measure of the positive image pixel support of the overall 

wireframe coverage. 

                           

 
      

       Figure 6. Positive and Negative Coverage for Indoor Scene 
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The negative pixel coverage function SN is defined similarly to 

SC i.e. the ratio of those wireframe pixels not covered by image 

line pixels to the total number of wireframe pixels. Figure 6 

show positive and negative coverage in an indoor environment.                           
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Line Presence.   The search for positive line presence is the 

ratio of extracted image lines that exist over the hypothesized 

wireframe lines. This differs from the pixel coverage evidence 

since linear feature characteristics such as orientation and length 

are taken into account here. 
  

 

 

              
 

                  Figure 7. Line presence for Indoor Scene 

 

An image line crossing the model line or in close vicinity to it is 

considered to be present, however, this can be misleading and 

the presence support is a false positive as seen in figure 7. In 

such cases, overlap may be very small and should be classified 

as a weak line presence. Penalization of false positives has been 

treated as the modelling of orientation residual error between 

the model line hypothesis and the candidate image lines that are 

present on that model line. The modelling of a priori error 

distribution uses the Laplacian probability density function 

(pdf). The York Urban Database (Denis et al., 2008), a database 

of terrestrially captured images comprising of indoor and 

outdoor man-made scenes, has been used to perform the 

training for parameter definition in the fitting of this distribution 

model. From the 102 images in the database, 12 randomly 

selected images with ground truth (GT) defined lines obtained 

from manual digitizing were used for training. 

 

      
          Figure 8. Error model for Orientation Residual Scoring  

 

To obtain empirical training data, angular difference between 

GT lines and automatically established lines are then collected. 

A GT line and detected line are deemed to be the same line if 

they are less than 1.5 pixels apart. Laplace distribution has been 

used due to the ‘highly peaked’ characteristic and general 

leptokurtic nature of the empirical data. Figure 8 shows the 

normalized pdf between 0 and 1. Its estimated fitting parameters 

were: b=0.66, μ = -0.04. P(∆θ) is the angular residual score. 

The principal idea of angular residual scoring is to assign a 

relatively high value if the residual is small. Likewise, if it is 

high, a low score will be attributed.  
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Where: 

                        

 
                         (6)  

 

 

Weighting by ratio of image to model line length has been used 

to ensure that presence lines that may be orientation-wise high 

scoring but possibly only 2 or 3 pixels in length are considered 

less influential with little significance on the overall scoring. If 

|LI| is greater than |LM|, then the weighted length ratio is given a 

max score of 1. For every model line, a search is performed to 

determine each image line that intersects it. Each of the image 

line in the set intersecting the wireframe is individually scored 

by its angular deviation from the model line, weighted by the 

ratio of their respective lengths. The summations of the 

individual scores are then averaged by a fragmentation factor 

SF, equation 5, which handles multiple broken lines, thus 

defining a presence score SA for that one particular model line. 

SF corresponds to the inverse of the cardinality of the set of line 

presence candidates m for a single model line. Overall presence 

score SP, is the ratio of the sum of SA for all model lines to the 

total number of model lines. 
 

Virtual Corner Presence.   The line presence scores propagate 

into the confidence scores which define the corner support. The 

3D corners of the wireframe which are deemed to be present on 

the image are referred to as virtual corners VC in image space.  

 

          
 

         Figure 9. Virtual Corner presence for Indoor Scene 
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Based on a camera parameter hypothesis for every wireframe 

corner MCx3D (where, x is the number of corners) defined on the 

image, the scores of the individual line presence for two 

hypothesized wireframe lines forming the VC are averaged into 

a single score. The total virtual corner presence score, SV is 

then defined as the ratio of the sum of all the individual VC 

presence scores to the cardinality of the set of wireframe 

corners. SV is defined in equation 7. 
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Full Verification Score.   After the individual scores have been 

determined from the various evidence knowledge they are 

combined into a single confidence value to rate Hj. E+ and E- in 

equations 8 and 9 define the positive evidence and negative 

evidence scores respectively. Similar to the weights given wα, 

wβ and wγ in E+, a bias weight penδ is applied to E-. A value of 

0.5 is used for penδ to account for shadows and occlusions 

preventing line extraction. The optimal values for wα, wβ and wγ 

have been experimentally set as 0.7, 0.2 and 0.1 respectively. 

The hypothesis score SHyp is represented as a linearly weighted 

combination of the accumulated evidence. The best fit 

hypothesis Hyp* is selected according to equation 11, where 

Userthres is a user-driven value and N is the max number of set 

RANSAC iterations (0.8 and 2000 were respective values used 

for Userthres and N in all experiments). 
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5. EXPERIMENTS 

Tests were done using 2 un-calibrated camera models. The 

indoor video dataset (94 frames) was taken using a Nikon D90 

digital camera mounted onto a tripod with a rotatable panoramic 

head. The outdoor dataset (144 frames) was obtained using an 

American Dynamics SpeedDome PTZ camera. Wireframe 

models have been created using geospatial data such as floor 

plans, vector data, digital elevation models, orthophotos and 

LIDAR point clouds. Four line correspondences were used to 

recover the camera parameters in all experiments. In figure 10, 

frames 80 and 90 demonstrate the algorithm`s performance in 

recovering the camera parameters during partial occlusion due 

to pedestrian movement. The system is also able to match 

scenes where there is partial occlusion of scene due to camera 

movement, as shown for frames 41 and 90. 

 

          
 

Figure 11. 3D wireframe models used for matching. Indoor 

model(left).Outdoor road and street post vector(right). 

 

Table 1 show that the uncertainties, σ, are relatively low for all 

4 camera parameters. For 94 frames of the indoor video 

sequence, GT camera parameters has been obtained by applying 

the collinearity equations to 6 pairs of wireframe and image 

points whose correspondences have been manually defined. The 

mean absolute errors (i.e., difference between LR-RANSAC 

and GT parameters) were: 1.6 pixels (0.06mm) for focal length, 

0.24º for omega, 0.23º for phi and 0.18º for kappa. In addition 

to occlusions and aspect changes from camera rotation, the 

outdoor dataset had movements from frame to frame due to 

camera zoom coupled with challenging night conditions. 

Parameter uncertainties were higher in the outdoor dataset. This 

can be attributed to the lack of well-distributed control 

geometry on the image during instances where the camera 

viewing perspective forces the prospective matching to take  
  thresHypHyp UserSifEES  ,  

  iterHyp RANSACifEES
Hyp




,maxarg  > N 

Figure 10. Image sequences registered with Wireframe models (red lines). Indoor dataset (Top row). Outdoor dataset (Bottom row). 

 

Frame 13 Frame 41 
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Frame 3 Frame 39 Frame 143 Night Conditions 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

357



 

 

Table 1. LR-RANSAC derived camera parameters across   

several frames from indoor and outdoor image sequences 

 

place in a small concentrated section of the image space. It is 

assumed that the lack of matching features in these ‘control 

free’ image areas increases the level of uncertainty in estimated 

parameters. Based on GT comparison across 144 frames, mean 

absolute errors for parameters were: 13.2 pixels (0.07mm) for 

focal length, 0.28º for omega, 0.19º for phi and 0.30º for kappa. 

Based on general angular errors, accuracies are in the order of 

1/285 and 1/200 for the indoor and outdoor dataset respectively. 

 

Tests were also done for 3D object localization. For this 

experiment, two static image sequences in the indoor and 

outdoor test areas were used. Background subtraction was used 

to detect a single moving object in each area, i.e. pedestrian for 

indoor and vehicle for outdoor. The 2D detected object 

locations are only an approximate indication of the true ground 

position (i.e. the base of the fitted image-based bounding box). 

Inverse collinearity was used to estimate planimetric (X and Y) 

model positions of each detected object, with the ground plane 

Z coordinate constrained to zero. To quantify accuracies of the 

object positions in the 3D model, the difference in positions 

estimated using automatically determined camera parameters 

from those estimated with GT are considered to be errors. In the 

outdoor dataset, the mean X and Y error for objects within 50m 

from the camera is 0.2m and 0.65m respectively. In the indoor 

dataset, the mean X and Y error for objects within 10m from the 

camera is 0.006m and 0.3m respectively. 

 

 

6. CONCLUSIONS 

A framework which automatically matches 3D wireframe 

models to images for dynamic camera parameter retrieval has 

been presented. Results show that the estimation of camera 

parameters for model-space localization is within tolerable 

accuracies. Registration takes 12 seconds on average per frame 

with un-optimized MATLAB code (line extraction and vanishing 

point processes take a combined 7 seconds (bottleneck of 

overall algorithm) and LR-RANSAC takes 4 seconds).  Real 

time efficiency is expected and future work will address such 

limitations with conversion to a low level language and use of 

parallel processing.  With these minor improvements, practical 

use for object localization in virtual reality-based surveillance 

applications would be seamless.  
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   Frame fpix ± (σpix) ωº± (σ") φº± (σ") κº± (σ") 
                                          Indoor dataset 

     13 541 ± 1.6 -9.9 ± 4.7 -1.2 ± 2.9 -1.1 ± 4.3 

     41 542 ± 0.2 -3.5 ± 0.4 -3.2 ± 0.4 -0.8 ± 1.1 

     50 544 ± 6.0 -2.9 ± 40 -4.9 ± 33 -1.4 ± 34 

     80 540 ± 5.9 -0.7 ± 21 -0.9 ± 15 -1.1 ± 36 

     90 527 ± 3.1 -9.9 ± 8.3  3.8 ± 5.8 -0.5 ± 18 

                                        Outdoor dataset 

      3 667 ± 6.2 -12 ± 39 -30 ± 37 -4.9 ± 79 

    39 716 ± 5.2 -12 ± 35 -11 ± 32 -0.7 ± 111 

   143 724 ± 5.5 -16 ± 25 -30 ± 20 -7.3 ± 62 

Night Cond. 722 ± 3.9 -15 ± 14 -22 ± 17 -5.4 ± 45 
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