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ABSTRACT:

Semi-Global Matching (SGM) is a robust stereo method thapinaven its usefulness in various applications ranging @aerial image
matching to driver assistance systems. It supports piselwiatching for maintaining sharp object boundaries andsfimetures and
can be implemented efficiently on different computatiordiaaare. Furthermore, the method is not sensitive to the elafiparameters.
The structure of the matching algorithm is well suited to becpssed by highly paralleling hardware e.g. FPGAs and GHAUs
drawback of SGM is the temporary memory requirement thaedég on the number of pixels and the disparity range. On tke on
hand this results in long idle times due to the bandwidthtinons of the external memory and on the other hand the éggmminds

are quickly reached. A full HD image with a size of 19201080 pixels and a disparity range of 512 pixels requiresadiyel billion
elements, which is at least several GB of RAM, depending eretbment size, wich are not available at standard FPGA- &ld-G
boards. The novel memory efficient (eSGM) method is an adraeat in which the amount of temporary memory only depends on
the number of pixels and not on the disparity range. This fistmatching of huge images in one piece and reduces thereeogmts

of the memory bandwidth for real-time mobile robotics. Thatfire comes at the cost of 50% more compute operations gsaoedn

to SGM. This overhead is compensated by the previously ioitepuite logic within the FPGA and the GPU and therefore resnlt

an overall performance increase. We show that eSGM prodheesame high quality disparity images as SGM and demoastsat
performance both on an aerial image pair with 142 MPixel aitbima real-time mobile robotic application. We have impknted

the new method on the CPU, GPU and FPGA. We conclude that eS@Wantageous for a GPU implementation and essential for an
implementation on our FPGA.

1 MOTIVATION Cuts. This makes SGM suitable for real world applicatioks li
(tilewise) aerial image matching (Hirschmdller, 2008 h8e et
The justification for SGM arises from the limitations of aothe al., 2010) and automotive applications (Steingrube eRaDY).

global approaches for the real-world applications.
The drawback of SGM is its memory consumption that depends,

Graph Cuts (Kolmogorov and Zabih, 2001, Szeliski et al.,800 as for all global methods, on the number of pixels and the dis-
is a global stereo method that translates the matching gmobl parity range. This limitation may be overcome in principlighw
into a graph and seeks a partition, which effectively approx tilling the input data. While this approach is usually suéit for
mates the minimization of a global energy. The method is nolCPUs it does not take advantage of the high degree of pasatlel
only slow, but also quite memory intensive. Belief Propamgat commonly found in FPGAs and GPUs.

(Felzenszwalb and Huttenlocher, 2004, Szeliski et al. 8209
another approach for minimizing a global cost function.dsges
messages iteratively in a three dimensional grid strudturep-
proximating the global minimum. The size of the temporary
memory is linear to the number of pixels and the disparitgean The SGM method (Hirschmdller, 2008) aims to minimize the
as explained above. A Dynamic Programming stereo matchinglobal cost function

method (Birchfield and Tomasi, 1998) can be implemented with

much less memory requirements, since the method optinfiges t £(D) =» _(C(p,D(p)) + > PiT[|D(p) — D(q)| =1]

2 MEMORY EFFICIENT SEMI-GLOBAL MATCHING

global function along each scanline separately. Unfotelpa P a€Np

this leads to streaking artifacts. 4 Z P T[D(p) — D(q)| > 1]).

The Semi-Global Matching (SGM) method (Hirschmdiller, 2P0 acNp 1
minimizes a global cost function only in one dimension likg-D @

namic Programming, but the direction is not oriented alaans

lines. Instead, it is performed symmetrically from eighted: g fynction consists of one term that sums the matching st
tions towards all pixels in the image. SGM does not suffemfro o6 gl pixelsp, according to given disparitieB,. For rectified
streaking artifacts like Dynamic Programming and does aet r images, the absolute difference would be calculated by

quire iterations like Belief Propagation. The rather sienphd

regular integer operations of the SGM algorithm make itzdhlé C(p,d) = |I.(p) — Ir(p — d)|. (2)

for implementations on the GPU (Rosenberg et al., 2006, daibs

and Marques, 2008, Ernst and Hirschmiller, 2008) and FPGA

(Gehrig et al., 2009, Banz et al., 2010), which permits temé  This just serves as an example. In practice, more robushingtc

performance. costs should be used (Hirschmiller and Scharstein, 20D9¢.
second term of (1) sums small penaltiésfor all pixels, where

In practice, SGM appears rather robust and insensitive é¢o ththe disparity difference to the neighbor is at most one piXéle

choice of parameters in contrast to other methods like Graplast term sums a higher penalf} for all pixels with a higher
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disparity difference to neighboring pixels. The goal is talfthe ~ The disparity for each pixel corresponds to the minimum,dast
disparity imageD that minimizes this function.

Dr(p) = argmin S(p, d). (6)
2.1 Review of the SGM Method ¢

In SGM (Hirschmiiller, 2008), the minimization of (1) is dohy ~ Subpixel interpolation can be performed by either fittingeapola
going along one dimensional pathsn eight directions: through ~ through the neighboring cost values or by using an equiangul
the image. Thus, at each pixel paths from eight directions meet line fit (Shimizu and Okutomi, 2005). The choice depends en th
as shown on the left in Figure 1. matching cost.

8 Paths from all Directions r Minimum Cost Path (p, d) Unlike Dynamic Programming solutions, the pathwise cost-co
X putation does not contain any handling for occlusions. Téis

not possible because the paths are not oriented in theidineuft
/ epipolar lines. Therefore, the disparity of the right imdgge is
computed by either a diagonal searchsiiHirschmuller, 2008),
I or by switching the roles of the left and right image and com-
d I puting from scratch. A consistency check is performed by-com
: paring D1, with Dg and differing disparities are set to invalid or
| interpolated if needed (Hirschmdiller, 2008).

Xy p . . )
Aggregation can be performed in two passes. The first pass goe
Figure 1: Aggregation of costs in disparity space. from the top left pixel line wise through the image and coregut
the path from left, diagonally from top-left, from top andagdt
Along each patfl.,, the minimum cost to reach all disparities of onally from top-right. For each pixel, the four paths aretoon
a pixel p on the path is computed according to the global cosfued from the previous pixels to the current pixel accordm(g)
function (1). The minimum cost along a path is visualizedl t  as shown on the left in Figure 2. This requires storing thé pat
right in Figure 1. Mathematically, the cost computation e  costsL, for the previous pixels for all disparities for each direc-
by recursively computing tion separately. Consequently, the required memory haseean$i
) 3 X W X dmaz + dmas €lements, withv as width of the image
Le(p, d) =C(p, d) + min(L:(p —r, d), andd,.... as disparity range. After computing the four pathwise
L.(p—r,d—1)+ P, costs for a pixel, the result is added according to (5) to theya
Le(p—r,d+ 1)+ Py, (3 S, which has the size» X h X dmas elements.

mier(p —r,i)+ P2) — mk}nLr(p —r, k).

Thus, for each pixep and disparityd, the cost is computed by :
the sum of the matching cost and the minimum path cost of the |
previous pixelp — r, considering the penaltieg; and P.. The }
latter is done by computing the minimum over four values. The |
first value is the path cost at the previous pixel at the same di L - - !
parity. This value is taken without any penalty. The secamdl & i re 2: Calculation of the eight path directions in a tapvd
third value is the path gost at the previous pixel Wlth thetnex pass (left) and a bottom-up pass (right).

lower and higher disparity. Here, the small pendhyis added.

The last value is the minimum cost at the pl’eViOUS piXel oller a Thereafter, a second paSS is required that starts from mO

disparities with the additional higher penafty. right pixel and goes upwards for computing the remaining fou
) o paths. This completes the computationSofThe disparity image

The last term of equation (3) subtracts the minimum costet this derived fromS immediately according to equation (6). Thus,

previous pixel from all costs of the current pixel. This im@dor  the total temporary memory requirement of SGM is
keeping the value& low for using a small data type. In fact, an

arbitrary value could be chosen, as long as it is constanalfor Mogm = w X h X dmaz +3 X W X dmae + dmaz-  (7)
disparities. The minimum of the previous pixel is used, beea

it is already available and subtraction will never make ttehe ) ) ) )
term negative. The main problem is the memory size $fas it depends on the

width, height and disparity range. In contrast, the memaory f

Since disparity changes are usually indicated by intexianges, ~Pathwise costs only depends on the width and disparity tange

the penaltyP; is adapted to the intensity gradient between theSince a disparity range that is larger than the total image si
current and the previous pixel, according to does not make sense, the required memory will be at most in the

order of the size of the input image.

R

L.

Py

P, = . 4
O VP = oy ey 4 2.2 The Novel eSGM Method

In the SGM algorithm, the disparity is determined as the xnde
The information from all paths is fused for all pixels andpdis-  that corresponds to minimum cost of all disparities of a i
ties by However, each of the eight paths that contribute to the amst f
a pixel, carries its own preference for the location of thaimi
S(p,d) = Z L:(p,d). (5)  mum. Figure 3 shows the costs of the eight paths from difteren
r directions at pixep for all disparities. Ideally, the location of the
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minimum of the eight paths would be the same disparity. How-Obviously, the computational effort of eSGM is increase&0%o
ever, we have to anticipate that paths from some directicmg m in comparison to SGM due to the necessary third pass.

be disturbed, e.g. near depth discontinuities. Neverskelat

least one path should predict the disparity correctly. Teaiis The new eSGM method does not allow the direct derivationef th
to focus only at the locations of, where the eight paths have right disparity image from the cost arr&yby a diagonal search
their minima. These are at most eight distinct places. For al(Hirschmdiller, 2008). Therefore, we suggest another kiifdst
other disparities, the costs need not to be stored. THuse-  consistency check that projed®; directly into Dr by consid-

comes a spars€’, whose size does not depend on the number ofring the costs that are available at the disparitie®gf For
disparities any more. rectified images it can be written d3g(x — Dr(z,y),y) =

Dy (z,y). Double mappings are resolved by storing the disparity
Lo |—1 |-2 |—3 |—4 I—5 L6 |—7 S with the lower associated cost infog.
The reasoning behind the new method permits the derivafion o
= Minimum matching confidence as the number of paths that have the min-
N / imum at the same disparity as the final disparity. Obviously,

+ - HHA 4 4 = [ paths from all directions have the same minimum, then thet tru

d = in the found disparity is very high. In contrast, if other Ipali-

- B rections suggest a different disparity, then the confidéndbe
correctness of the match is lower. Computing this confidence
number is computationally very cheap, because the eSGM algo

rithm already computes the individual minima of all paths.

Figure 3: Costs for all disparities of a certain pixel fronthzaof
eight different directions that are summedstoThe minimum of
S may differ from the minima of the pathwise costs. 3 IMPLEMENTATIONS

The immediate question is if we do not reduce the number of po
sible disparities too early? What if the minimum $fis at a dif-
ferent location than the minimum of any of the eight paths@ Th
answer is that it is very unlikely thatue disparity is not detected
by any of the pathand at the same time appears as minimum in
S. We claim that if the minimum of is at a different place than 31 CPU
any of the eight pathwise minima, then it can only be the abrre

disparity by pure chance. Thus, the new eSGM method shoulgye paye implemented the SGM and eSGM method on the CPU as
have qualitatively the same output as the SGM method. explained in Section 2 using unsigned integer values withit.6

The new method can be implemented with three passes. The fird basic elements. The pathwise cost calculation loop is com
pass works like in the original method, except for storing - Puted using SSE2 vector commands. In case of SGM, the Census
sult to S. Instead of storing the costs for all disparities, for eachMmatching cost was computed only once and the pairwise match-
pixel the four minima of the four paths that meet in this piag¢ ~ ing costs stored for each pixel and disparity, which doultes
determined and the costs are only stored for these four riispa Memory requirement, but offers fastest processing. Tiesid-

ties. For subpixel interpolation, the costs of the next loared  tal temporary memory requirement in bytes of our SGM imple-
higher disparity is stored as well. Figure 4 shows the valbas ~ Mentation is four times equation (7).

need to be stored for one pixel. The second pass computes the ) . . .
remaining four paths from the bottom up. The costs are adtded ur eSGM implementation uses unsigned 16 bit integer valses

the places that were identified by the first pass. These fagepl yvell andfcompu:]esfthhe Hsmming distancg of Cdensus transtbrme
are complete, which allows the computation of an interntedia 'Ma9€s Tor €ach o the three passes, usrgand popent com-
result by choosing the lowest cost among the four and catcula mands, that are part of the SSE 4.2 or SSE 4a specificatiors, Thu

ing the sub-pixel disparity position. This frees the memafithe the total amount temporary memory in bytes is two times equa-
four minima of the first pass. The memory is used for storirgg th tion (8).

costs at the four minima of the paths from the second passhwhi 32 GPU

are in general different to the minima of the first pass. Thgag )
gation is completed by a third pass that computes the sarhe pat
as in the first pass, but adds the costs at the minima that whe
identified in the second pass. The final minima of each pixel ca
then be selected among these four minima and the interneedial
result of the second pass.

SWe have implemented the new method on different hardwate pla
forms for different applications. As matching cost, we h&we
cused on Census, since this matching cost appears to have the
highest radiometric robustness (Hirschmuller and S¢eegr,2009).

;I'he GPU implementation of eSGM uses conventional OpenGL/Cg
@egal and Akeley, 2009, NVI, 2009) programming techniques
ERosenberg et al., 2006, Ernst and Hirschmuller, 2008ye2¢
render buffers of an OpenGL frame buffer object keep the data
in a 16 bit float data format while the arithmetic operations a

S(dy+1) S(dy+1) usually done in 32 .bit float precision. All .the work is carrith
S(dy) () S thro_ugh the execution of OpenGL renderlr_]g commands with spe
nt cialized fragment and vertex shaders. With respect to tha-me
S(dy-1) S(d;-1) dint ory bandwidth, necessary for direct matching cost calmnatve
do d, have chosen a Census cost function with:a 5 window and al-

ternatively Mutual Information as matching cost (Hirsakitar
Figure 4: Definition of 18 data elements that need to be stared and Scharstein, 2009). Mutual Information requires a hotiia
each pixel in the eSGM method. cal eSGM algorithm.

Thus, for this algorithm, the amount of temporary memoryi& | Due to the two-step approach, the computing time for the path
cost values is theoretically doubled as compared to SGMarit ¢
Mesgm = w X h X 18 +3 X w X dmaz + dmaz.  (8) be reduced if the minimal path cost values are saved durimg th
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first step for the second one. The memory size§owith eight 4.1 Evaluation on Middlebury Datasets

values per pixel and the data structures for storing themabhi

path cost indices and values is sufficient for computing iesag Figure 6 shows the standard data sets from the Middlebury web
up t02048 x 2048 pixels on a GPU with OpenGL/Cg. A dispar- page (Scharstein and Szeliski, 2010, Scharstein and Ez2092,

ity range of up to 2048 pixels is only limited by the 16 bit float Scharstein and Szeliski, 2003). We used the same paraneéter s
data format of the buffers. For consistency checking on tReIG  tings for SGM and eSGM and for all images. The consistency
the right disparity image is calculated from scratch witlapped ~ check was used for identifying occlusions, which were jnter
input images. Alternatively the fast consistency checkheéiof  lated as explained in Section 2.1.

Section 2.2 can be used.
The disparity images of SGM and eSGM are almost identical. In

3.3 FPGA contrast, eSGM with the fast consistency check producesevor
results. The last row of Figure 6 shows the confidence images

Programmable hardware like FPGAs have been used for stergfat were computed by eSGM as explained in the end of Section

methods like SGM (Banz et al., 2010, Gehrig et al., 2009). FP2 2. Obviously, lower confidence is estimated near object bo

GAs have a low power consumption and high computational powgers, which is in fact the place where most errors occur.
that make them suitable for energy aware embedded systains th

demand real-time image processing. A FPGA implementation oAll pixels that differ by more than one pixel from the ground
the original SGM algorithm on a high-end FPGA board matchegruth are counted as error. Table 1 shows the results oveoail
two pairs of 320x200 images at 27 frames/s using ZSAD as matchccluded pixels. The performance of SGM and eSGM is very
ing cost (Gehrig et al., 2009). During our FPGA implememtati  similar, which confirms that the eSGM method produces vilgua
efforts it became clear that the required memory bandwgithé  the same output as the SGM method. The original SGM imple-
limiting factor for increased image resolutions or dephgylow mentation is listed as SemiGlob in the table. The differetoce

cost FPGAs in mass production. our implementation is the matching cost. We have used Census
PP PP S In contrast SemiGlob uses Mutual Information, which isislig
:[rectification]: : N : i i i i i
sensor_ ) ctoron |  CoTUS P : inferior (Hirschmuller and Scharstein, 2009).
. R . t| transform Lo :
:|_correction |: ¢ | L/Rcheck | disparit . . . .
: P eSGM [ post b mpap ¥ The runtime is given in the last column of Table 1. We have
sensor_ J|recioaton]: i census ; cLprocessing; measured it on a Xeon X5570 CPU with 3 GHz. The implemen-
data %] correction |: | tremsform © EpeAor | tation is single threaded, thus only one CPU core was used. In
ENC A R FPGA o1 GPU this example, eSGM is 56% slower than SGM, which confirms

. . . _the theoretical runtime overhead of 50%.
Figure 5: Overview of the functional blocks and the undedyi

heterogeneous hardware platform. 4.2 Matching of Huge Images

Unlike other FPGA implementations (Gehrig et al., 2009) ne a The main advantage of SGM is the possibility to match huge

using Census as matching cost, as it is well suited for harlwa . . . . - . .
> i - images in one piece without tiling. Figure 7 shows a rectified
realization and because of superior performance undeistieal

" . N . - . aerial image pair. Both images have a siz@™2 x 14580 =
conditions (Hirschmiiller and Scharstein, 2009, Hirsalenr'and . . . S .
Gehrig, 2009). The window size of the Census transform can b142 MPixel. The disparity range in this example is 1788 to 2300,

set to any arbitrary size. For our real-time setup, the cesiae thus 512 pixels, mainly due to the tower, which has a height of

was chosen to bé x 5, since we found that it gives the best ~ 370 m i reality.

trade-off between hardware impact and image quality. eSGM computed the disparity and confidence image, as shown in

: : Figure 7, in one piece using 4.8 GB of temporary memory. It re-
All hardware components are designed with the hardware de- ™ . . . .
P 9 quired 72 Minutes on a Xeon X5570 CPU with 3 GHz in a single

scription language VHDL, following a hardware operating-sy . . . .
tem concept (HW-OS). The HW-OS allows forafastinterchangethreadEd implementation. The SGM implementation would re-

of already deployed and proven hardware modules, at thexegpe guire 272 GB of memory for computing the.whole imfige, which
of 5-10 % additional resource utilization. The eSGM coreis-c 'S absolutely unrealistic. Instead the disparity imageisiputed

tomizable to any disparity and image resolution, which niesa in 7 x 11 tiles of the sizel 478 x 14_06 pixels and required 4 GB pf
power of two. Our hardware platform consists of a mid-sized€Mmporary memory. Thus, the t||gs have an overlap. of 4(.) mxgl
Xilinx Virtex 5 FPGA (XC5VSX95T) with a PCI express in- _The computation time was 51 Minutes. The re;ultlng dlsparlt_
terface to the image sensors and a GPU. The GPU is used fgfad¢ looks the same as the eSGM_rgs_uIt and is therefore omit-
pre- and post-processing as shown in Figure 5. Based on th d. The problem of tiling is the definition of the overlap. rFo
hardware environment, a stereo image pair with a resolufon well textur_ed, r?‘ther f_Ia_t scenes, as the current one, a lewayy
1024 x 1024 pixels and a maximum of 64 disparity steps can beof 29'40 pixels IS sufficient. Hoyvever,.low-textured Scemer
processed at nearly 10 Hz. VGA sized image pairs are prmtessé’r. high depth dn‘fer.ences require a higher overlap. With K5G

at 33 Hz with the same disparity range. The consistency checwIS problem is avoided.

doubles the execution time. A second independent matcloirgg ¢
may be instantiated in a FPGA with more logic resources. Th
novel eSGM method has also proven its feasibility on low costr
Xilinx Spartan Devices.

In this example, eSGM is 41% slower than SGM. In practive,
ven higher disparity ranges are typical, because the ritigpa
ange is not known and therefore is often overestimateddingo
on the safe side. Furthermore, the ground resolution in xhe e
ample was 15 cm/pixel, but 5 cm/pixel can be obtained by beria
4 RESULTS cameras, which increases the disparity range by factor 8emes
with the same relative depths. Finally, scenes with mounstand
We have tested our implementations of SGM and eSGM againstanyons will have larger depth ranges. Thus, disparityeanj
each other on a standard test set, on huge images and orudiffer thousands of pixels have to be considered in aerial imagelmat
platforms for finding out the advantageous and disadvantage ing. For tiled processing, it means using much smaller.tilas
of our new method. contrast, eSGM does not have this problem.
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Dataset

SGM

eSGM

eSGM (fast)

eSGM
confidence
Figure 6: Comparison of our SGM and eSGM implementation erMiddlebury datasets.
4.3 Computation Time on Different Hardware relaxed by the eSGM method.
As discussed before, we have implemented the new method on 5 CONCLUSION

three different hardware platforms. Allimplementatioss €en-

sus as matching cost and a full consistency check. The CPU Ve{ye have shown that the novel eSGM method improves the SGM
sion runs single threaded on one CPQ core. Parallelizatiton i algorithm by making its temporary memory requirement inde-
several threads appears feasible, but is not used. Tablevssh engent from the disparity range without sacrificing matghi
the runtime using two different image configurations. quality. The novel feature comes at the cost of around 50% mor

. . tation ti 1 M.
Table 2: Runtime in seconds of SGM and eSGM on one CPlfompu ation time as compared to SG

core (Xeon X5570, 3 GHz), GPU (NVidia GeForce G280) andWe have argued that memory efficiency is very important fer ap

FPGA (Xilinx Virtex 5, 125 MHz). plying global stereo methods to real world problems. As the i
| Method (Hardware)| 640 x 480 x 64 2k x 2k x 1k | age resolution increases in future, the disparity rangeases as
SGM (CPU) 111s 150.0 5 well. This means that the problem will become worse in future
SGM (GPU) 013s . !f the main memory does not increase over-proportional & th
eSGM (CPU) 2145 2500g  'mageresolution.
eSGM (GPU) 0.24s 265s The novel eSGM method permits matching of huge images up
eSGM (FPGA) 0.06 s - to several hundred MPixel in one piece on the CPU, which is

not possibly by any other similarly accurate stereo metfidee
These results show that eSGM has special advantageous on thenefit of eSGM is even higher on the GPU and the FPGA as the
GPU and the FPGA, because these platforms typically have nahain memory size is more limited on these devices and the rati
as much memory available as the CPU implementation andthe rigetween computational power to memory bandwidth is worse.
tio between computation power and memory bandwidth is worse

On the GPU, especially the memory size is a problem. An image

of size2048 x 2048 pixels and 1024 pixel disparity range cannot REFERENCES

be computed by SGM, but by eSGM. On the FPGA, the memBanz, C., Hesselbarth, S., Flatt, H., Blume, H. and Pirsch, P
ory size as well as the memory bandwidth is a problem, which i2010. Real-time stereo vision system using semi-globatimat
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Table 1: Errors in non-occluded areas of the Middlebury sittausing the standard threshold of one pixel.

| Algorithm | Tsukuba Venus Teddy CongsAverage error| Runtime for Teddy]|
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SemiGlob (Hirschmiller, 2008 3.26 1.00 6.02 3.06 7.50 (unknown)
eSGM (fast) 2.98 1.49 6.36 3.57 8.84 0.54s

Figure 7: Left and right rectified aerial image with 142 MRj)disparity image by eSGM and corresponding confidence énag
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