
SEMI-SUPERVISED MARGINAL FISHER ANALYSIS FOR HYPERSPECTRAL IMAGE
CLASSIFICATION

Hong Huang, Jiamin Liu and Yinsong Pan

Key Lab. on Opto-electronic Technique and systems, Ministry of Education
Chongqing University, Chongqing, China

Commission III, ICWG III/VII

KEY WORDS: Hyperspectral image classification, dimensionality reduction, semi-supervised learning, manifold learning, marginal
Fisher analysis

ABSTRACT:

The problem of learning with both labeled and unlabeled examples arises frequently in Hyperspectral image (HSI) classification. While
marginal Fisher analysis is a supervised method, which cannot be directly applied for Semi-supervised classification. In this paper, we
proposed a novel method, called semi-supervised marginal Fisher analysis (SSMFA), to process HSI of natural scenes, which uses a
combination of semi-supervised learning and manifold learning. In SSMFA, a new difference-based optimization objective function
with unlabeled samples has been designed. SSMFA preserves the manifold structure of labeled and unlabeled samples in addition
to separating labeled samples in different classes from each other. The semi-supervised method has an analytic form of the globally
optimal solution, and it can be computed based on eigen decomposition. Classification experiments with a challenging HSI task
demonstrate that this method outperforms current state-of-the-art HSI-classification methods.

1 INTRODUCTION

With the development of the remote-sensing imaging technology
and hyperspectral sensors, the use of hyperspectral image (HSI)
is becoming more and more widespread, such as target detection
and land cover investigation. Due to the dense sampling of spec-
tral signatures of land covers, HSI has a better potential discrimi-
nation among similar ground cover classes than traditional multi-
spectral scanners (Li et al., 2011, Guyon and Elisseeff, 2003, D.
Tuia et al., 2009). However, classification of HSI still faces some
challenges. One major challenge is that the number of training
samples is typically limited compared with the dimensionality of
the data (Huang er al., 2009). This procedure usually results in
a loss of accuracy as the data dimensionality increases, which is
called the curse of dimensionality (Chen and Zhang, 2011, Kaya
et al., 2011). Therefore, the most important and urgent issue is
how to reduce the number of those bands largely, but without
loss of information (Yang et al., 2011, Paskaleva et al., 2008).

The goal of dimensionality reduction is to reduce complexity of
input data while some desired intrinsic information of the data is
preserved. Techniques for representing the data in a low-dimen-
sional space can be subdivided into two groups (Huang et al.,
2011, Huang et al., 2011): (1) linear subspace algorithms; (2)
manifold learning based nonlinear algorithms. Principal com-
ponent analysis (PCA) and Linear discriminant analysis (LDA)
are the most popular subspace methods among all dimension-
ality reduction algorithms, which seek linear subspaces to pre-
serve the desired structure of the data in the original Euclidean
space. In recent years, many researchers have considered that the
real-world data may lie on or close to a lower dimensional man-
ifold. The representative of such methods include locally linear
embedding (LLE) (Roweis and Saul, 2000), isometric mapping
(Isomap) (Tenenbaum et al., 2000), and Laplacian eigenmaps
(Belkin and Niyogi, 2003), etc. However, these methods are de-
fined only on training data, and the issue of how to map new test
data remains difficult. Therefore, they cannot be applied directly
to problems.

Recently, some algorithms resolve this difficulty by finding a

mapping on the whole data space, rather than on training data.
Locality Preserving Projection (LPP) (He et al., 2005) and neigh-
borhood preserving embedding (NPE) (He et al., 2005) are de-
fined everywhere in the ambient space rather than just on the
training data set. Then, LPP and NPE outperform LLE and LE
in locating and explaining new test data in the feature subspace.
However, the two algorithms, like Isomap, LLE and LE, do not
make use of the class label information, which is much avail-
able for classification tasks. Cai et al. (Cai et al., 2007) pre-
sented a Locality Sensitive Discriminant Analysis (LSDA) algo-
rithm to find a projection which maximizes the margin between
data points from different classes at each local area. Another dis-
criminant analysis method should be mentioned here, which is
called marginal Fisher analysis(MFA) (Yan et al., 2007). MFA
provides a proper way to overcome the limitations of LDA, and
a new criterion for MFA is designed to obtain an optimal trans-
formation by characterizing the intra-class compactness and the
inter-class separability.

Most of the existing discriminant methods are fully supervised,
which can perform well when label information is sufficient. How-
ever, in the real world, the labeled examples are often very diffi-
cult and expensive to obtain. The traditional supervised methods
cannot work well when lack of training examples; in contrast,
unlabeled examples can be easily obtained(Camps-Valls et al.,
2007, Velasco-Forero et al., 2009, D. Tuia et al., 2009). There-
fore, in such situations, it can be beneficial to incorporate the in-
formation which is contained in unlabeled examples into a learn-
ing problem, i.e., semi-supervised learning (SSL) should be ap-
plied instead of supervised learning (Song et al., 2008, Zhu and
Goldberg, 2009, Zha and Zhang, 2009).

In this paper, we propose a semi-supervised dimensionality re-
duction method, called semi-supervised marginal Fisher analy-
sis (SSMFA), to process hyperspectral image for classification.
SSMFA utilizes the labeled and unlabeled data points to discover
both discriminant and geometrical structure of the data manifold.
In SSMFA, the labeled points are used to maximize the inter-
manifold separability between data points from different classes,
while the unlabeled points are used to minimize the intra-manifold
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compactness between data points belong to the same class or
neighbors.

The remaining of the paper is organized as follows. In Section 2,
we first present a brief review of MFA , and discuss the limita-
tions of this algorithm. The SSMFA method is introduced in Sec-
tion 3. Section 4 presents the experimental results on both illus-
trative toy examples and several hyperspectral image databases
to demonstrate the effectiveness of SSMFA. Finally, we provide
some concluding remarks and suggestions for future work in Sec-
tion 5.

2 RELATED WORKS

In this section, we provide a brief review of marginal Fisher anal-
ysis (MFA) (Yan et al., 2007), which is relevant to our proposed
method. We begin with a description of the dimensionality re-
duction problem.

2.1 The Dimensionality Reduction Problem

The generic dimensionality reduction problem is as follows. Given
n data points X = {x1, x2, . . . , xn} ∈ <m×n sampled from
one underlying manifold M, and `i ∈ {1, . . . , c} denotes the
class label of xi. The goal of dimension reduction is to map
(X ∈ <m) 7→ (Y ∈ <d) where d ¿ m by using the information
of examples.

2.2 Marginal Fisher Analysis (MFA)

To overcome this limitation of Linear discriminant analysis (LDA),
marginal Fisher analysis (MFA) was proposed by developing a
new criterion that characterized the intra-class compactness and
the inter-class separability to obtain the optimal transformation.

In order to discover both geometrical and discriminant structure
of data points, MFA designs two graphs that characterize the
intra-class compactness and inter- class separability, respectively.
The intrinsic graph Gc illustrates the intra-class point adjacency
relationship, and each sample is connected to its k-nearest neigh-
bors that belong to the same class. The penalty graph Gp illus-
trates the inter-class marginal point adjacency relationship, and
the marginal point pairs of different classes are connected.

Let N+
k1

(xi) = {x1
i , x2

i , . . . , xk1
i } be the set of its k1 nearest

neighbors. Thus, the weight matrix Wc of Gc can be defined
as follows

Wc,ij =

{
1
0

if xi ∈ N+
k1

(xj) or xj ∈ N+
k1

(xi)
otherwise

(1)

Then, the intra-class compactness is defined as the sum of dis-
tances between each node and its k1-nearest neighbors that be-
long to the same class:

∑
ij

‖yi − yj‖2Wc,ij

= 2trace(VT X(Dc −Wc)XT V)
= 2trace(VT XLcXT V)

(2)

where Dc is a diagonal matrix with Dc,ii =
∑

j Wc,ij , Lc =
Dc −Wc is the Laplacian matrix.

We consider each pair of points (xi, xj) from the different classes,
and add an edge between xi and xj if xj is one of xi’s k2-nearest
neighbors whose class labels are different from the class label of

xi. Let N−
k2

(xi) = {x1
i , x2

i , . . . , xk2
i } be the set of its k2 nearest

neighbors. The weight matrix Wp of Gp can be defined as

Wp,ij =

{
1
0

if xi ∈ N−k2(xj) or xj ∈ N−k2(xi)
otherwise

(3)

The interclass separability is characterized by a penalty graph
with the term

∑ ‖yi − yj‖2Wp,ij

= 2trace(VT X(Dp −Wp)XT V)
= 2trace(VT XLpXT V)

(4)

where Dp is a diagonal matrix with Dp,ii =
∑

j Wp,ij , Lp =
Dp −Wp is the Laplacian matrix.

Then, the Marginal Fisher Criterion is defined as follows:

arg min
V

VT XLcXT V
VT XLpXT V

(5)

The projection direction V that minimizes the objective function
(5) can be obtained by solving the generalized eigenvalue prob-
lem:

XLcXT v = λXLpXT v (6)

3 SEMI-SUPERVISED MFA (SSMFA)

In this section, we introduce the SSMFA method, which respects
both discriminant and manifold structures in the data. We begin
with a description of the semi-supervised dimensionality reduc-
tion problem.

3.1 The Semi-supervised Dimensionality Reduction Prob-
lem

The generic semi-supervised dimensionality reduction problem
is as follows. Given n data points X = {xi, x2, . . . , xn} ∈ <m

sampled from one underlying manifold M, suppose that the first
l points are labeled, and the rest n − l points are unlabeled. Let
`i ∈ {1, . . . , c} denote the class label of xi. The goal of semi-
supervised dimension reduction is to map (X ∈ <m) 7→ (Y ∈
<d) where d ¿ m by using the information of both labeled and
unlabeled examples.

3.2 SSMFA

To improve MFA, we consider to exploit the optimal discriminant
features from both labeled and unlabeled examples, and it also
treats the labeled and unlabeled data differently to construct the
objective function for maximizing the inter-class margin while
minimizing the intra-class disparity.

We assume that naturally occurring data may be generated by
structured systems with possibly much fewer degrees of freedom
than what the ambient dimension would suggest. Thus, we con-
sider the case when the data lives on or close to a manifoldM of
the ambient space. In order to model the local geometrical struc-
ture ofM, we first construct a nearest neighbor graph G. For each
data point xi, we find its k nearest neighbors and put an edge be-
tween xi and its neighbors. Let N(xi) = {x1

i , x2
i , . . . , xk

i } be the
set of its k nearest neighbors. Thus, the weight matrix of G can
be defined as follows:

Aij =

{
exp(− ‖xi−xj‖2

σ2 )
0

if xi ∈ N(xj) or xj ∈ N(xi)
otherwise

(7)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

378



where σ is the local scaling parameter.

The nearest neighbor graph G with weight matrix A characterizes
the local geometry of the data manifold. However, this graph
fails to discover the discriminant structure in the data. In order
to discover both geometrical and discriminant structures of the
data manifold, we construct two graphs, that is, between-manifold
graph Gb and within-manifold graph Gw.

For between-manifold graph Gb, the ith node corresponds to data
point xi. Then, we put an edge between nodes i and j if xi and
xi and xi have different class labels. For within-manifold graph
Gw, we put an edge between nodes i and j if xi and xi have the
same class labels or xi or xj is unlabeled but they are close, i.e.
xi is among k3 nearest neighbors of xj or xj is among k3 nearest
neighbors of xi. Let N l

k3(xi) = {x1
i , x2

i , . . . , xk3
i } denotes the set

of its k3 nearest neighbors in Gw.

Once the graphs Gb and Gw are constructed, their affinity weight
matrices, denoted by Wb and Ww, respectively, can be defined as

Wb,ij =

{
Aij

0
if `i 6= `j

if `i = `j
(8)

Ww,ij =





βAij

Aij

0

if `i = `j

if xi ∈ Nl
k3(xj) or xj ∈ Nl

k3(xi)
otherwise

(9)
where β > 1 is a trade-off parameter, which is used to adjust the
contribution of labeled and unlabeled data. When two data share
the same class label, it is with high confidence that they live on a
same manifold. Therefore, the weight value should relatively be
large.

The objective of SSMFA is embodied as that it maximizes the
sum of distances between margin points and their neighboring
points from different classes, and minimizes the sum of distances
between data pairs of the same class and each sample in N l to its
k3-nearest neighbors. Then, a reasonable criterion for choosing
an optimal projection vector is formulated as

arg max
V

∑
ij

‖VT xi − VT xj‖2Wb,ij (10)

arg min
V

∑
ij

‖VT xi − VT xj‖2Ww,ij (11)

The objective function (10) on the between-manifold graph Gb is
simple and natural. If Wb,ij 6= 0, a good projection vector should
be the one on which those two samples are far away from each
other. With some algebraic deduction, (10) can be simplified as

Jb(V) =
∑
ij

‖VT xi − VT xj‖2Wb,ij

=
∑
ij

(VT xi − VT xj)(VT xi − VT xj)
T Wb,ij

= 2trace(VT X(Db −Wb)XT V)
= 2trace(VT XLbXT V)

(12)

where Db is a diagonal matrix with Db,ii =
∑

j Wb,ij and Lb =
Db −Wb is the Laplacian matrix.

The objective function (11) on the within-manifold graph Gw is
to find a optimal projection vector with stronger intra-class/local
compactness. Following some algebraic deduction, (11) can be

simplified as

Jw(V) =
∑
ij

‖VT xi − VT xj‖2Ww,ij

=
∑
ij

(VT xi − VT xj)(VT xi − VT xj)
T Ww,ij

= 2trace(VT X(Dw −Ww)XT V)
= 2trace(VT XLwXT V)

(13)

where Dw is a diagonal matrix with Dw,ii =
∑

j Ww,ij and
Lw = Dw −Ww is the Laplacian matrix.

Then, the objective function (10) and (11) can be reduced to the
following:

max VT XLbXT V
min VT XLwXT V (14)

From the linearization of the graph embedding framework, we
have the Semi-supervised Marginal Fisher Criterion

V∗ = arg max
V

VT XLbXT V
VT XLwXT V

(15)

The optimal projection vector v that maximizes (15) is general-
ized eigenvectors corresponding to the d largest eigenvalues in

XLbXT v = λXLwXT v (16)

Let the column vector v1, v2, . . . , vd be the solutions of (16) or-
dered according to their eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λd. Thus,
the projection vector is given as follows:

V∗ = [v1, v2, . . . , vd] (17)

4 EXPERIMENTS AND DISCUSSION

In this section, we compare SSMFA with the several represen-
tative dimensionality reduction algorithms on synthetic data and
two well-known hyperspectral image databases.

4.1 Experiments on synthetic data

To illustrate the dimensionality reduction capability of the pro-
posed SSMFA algorithm, we present dimensionality reduction
examples of PCA, LDA, LPP (He et al., 2005), NPE (He et al.,
2005), MMC (Li et al., 2006), MFA (Yan et al., 2007), SSMMC
(Song et al., 2008), S3MPE (Song et al., 2008), SDA (Cai et al.,
2007) and SSMFA, where two-class synthetic data samples are
embedded into one-dimensional space. In this experiment, we
select 20 data as the seen set and 200 data as the unseen set for
each class.

Figure 1 shows the synthetic dataset, where the first class is rep-
resented by a single Gaussian distribution, while the second class
is represented by two separated Gaussians. The results of this
example indicate that both MFA and SSMFA are working well,
whereas almost other methods other method almost mix samples
of different classes into one cluster. The poor performance of
LDA and MMC is caused by the overfitting phenomenon, and the
failure of other semi-supervised methods, i.e., SSMMC, S3MPE
and SDA, may be due to the assumption that the data of each class
has a Gaussian distribution.

The above examples illustrate that both MFA and SSMFA have
more discriminating power than other methods, and the perfor-
mance of SSMFA is the best.
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Figure 1: The optimal projecting directions of different methods
on the synthetic data. The circles and triangles are the data sam-
ples and the filled or unfilled symbols are the labeled or unlabeled
samples; solid and dashed lines denote 1-dimensional embedding
spaces found by different methods, respectively (onto which data
samples will be projected)

4.2 Experiments on the real hyperspectral image dataset

In this subsection, classification experiments are conducted on
three HSI datasets, i.e., Washington DC Mall dataset (Biehl, 2011)
and AVIRIS Indian Pines dataset (Biehl, 2011), to evaluate the
performance of SSMFA.

4.2.1 Data Description (I) The Washington DC Mall hyper-
spectral dataset (Biehl, 2011) is a section of the subscene taken
over Washington DC mall(1280×307 pixels, 210 bands, and 7
classes composed of water, vegetation, manmade structures and
shadow) by the Hyperspectral Digital Imagery Collection Exper-
iment(HYDICE) sensor. This sensor collects data in 210 contigu-
ous, relatively narrow, uniformly-spaced spectral channels in the
0.40-2.40 µm region. A total of 19 channels can be identified
as noisy(1, 108-111, 143-153, 208-210), and safely removed as
a preprocessing step. This data set has been manually annotated
in (Biehl, 2011), and there are 60 patches of seven classes with
ground truth. The hyperspectral image in RGB color and the cor-
responding labeled field map based on the available ground truth
are shown in Figure 2(a) and Figure 2(b) respectively. In the ex-
periments, we use those annotated data points to valuate the per-
formance of SSMFA.

(a) The hyperspectral image in RGB color

(b) Corresponding ground truth of the annotated patches

Figure 2: Washington DC Mall hyperspectral image

(II) The AVIRIS Indian Pines hyperspectral dataset (Biehl, 2011)
is a section of a scene taken over northwest Indiana’s Indian Pines(
145×145 pixels, 220 bands) by the Airborne Visible/Infrared Imag-
ing Spectrometer(AVIRIS) sensor in 1992. Fig. 2(a) shows the
AVIRIS Indian Pine image in RGB color, and the ground truth

of it defining 16 classes is available and is shown in Fig. 2(b).
This image is a classical benchmark to validate model accuracy
and constitutes a very challenging classification problem because
of the strong mixture of the class signatures. In all experiments,
200 out of 220 bands are used, discarding the lower signal-to-
noise (SNR) bands (104-108, 150-163, 220). The six most repre-
sentative classes were selected: Hay-windrowed (C1), Soybean-
min (C2), woods (C3), Corn-no till (C4), Grass/pasture (C5), and
Grass/trees (C6). Classes C1-C4 mainly include large areas, and
classes C5 and C6 consist of both large and relatively small areas.

(a) The hyperspectral image
in RGB color

(b) Corresponding ground truth

Figure 3: AVIRIS Indian Pine hyperspectral image

4.2.2 Experimental Setup In order to evaluate the performance
of the SSMFA algorithm, we compare it with the several repre-
sentative feature selection algorithms, including PCA, LDA, LPP,
NPE, MMC, MFA, SSMMC, S3MPE and SDA. For the Baseline
method, we perform the support vector machines (SVM) classifi-
cation in the original feature space.

In the experiments, the parameter β in SSMFA is set to 100. For
all graph-based dimensionality reduction methods, the number of
neighbors is set to 7 for all cases.

To test these algorithms, we select a part of data as the seen set
and another part of data as the unseen set. Then, we randomly
split the seen set into the labeled and unlabeled set. The details of
experimental settings are shown in Table 1. For the unsupervised
methods, all data points including the labeled and unlabeled data
is used to learn the optimal lower-dimensional embedding with-
out using the class labels of the training set. For supervised and
semi-supervised methods, we increase the training set with the
labeled images taken randomly from the seen set.

In our experiments, the training set is used to learn a lower-dimen-

sional embedding space using the different methods. Then, all
the testing samples are projected onto the lower-dimensional em-
bedding space. After that, the nearest neighborhood (1-NN) clas-
sifier with Euclidean distance is employed for classification in all
experiments.

4.2.3 Experimental Results on Washington DC Mall Dataset
In this experiment, we repeat the classification process 10 times
by using different splits and calculate the average classification
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Table 1: Experimental settings.

Data set Class Total samples Dim. Seen UnseenLabeled Unlabeled
Washington DC Mall 7 8079 191 2,4,6 10 300
AVIRIS Indian Pines 6 6929 200 2,4,6 10 300

Table 2: Comparison of different methods for Washington DC Mall data set (mean + std(dim)).
(Lab, Unlab) (2, 5) (2, 10) (2, 20) (4, 10) (6, 10) (8, 10)

Baseline 80.56±1.36(191) 80.56±2.87(191) 80.56±2.54(191) 86.62±1.60(191) 90.85±3.59(191) 92.61±3.85(191)
PCA 71.02±0.62(13) 73.84±0.60(18) 75.47±0.94(14) 94.46±0.36(10) 93.85±0.57(19) 94.55±0.81(14)
LDA 79.60±0.37(2) 79.60±0.37(2) 79.60±0.37(2) 90.02±0.18(3) 95.28±0.69(4) 92.80±0.21(5)
LPP 76.34±0.15(19) 81.42±0.23(15) 84.04±0.10(25) 79.53±0.64(11) 79.31±0.21(29) 82.36±0.76(12)
NPE 80.32±1.58(10) 89.32±0.40(16) 90.86±0.59(29) 77.37±0.18(23) 81.57±0.64(23) 88.43±0.46(24)

MMC 76.25±0.10(4) 76.25±0.10(4) 76.25±0.10(4) 87.48±0.45(4) 89.27±1.01(4) 90.30±1.06(5)
MFA 91.58±0.84(8) 91.58±0.84(8) 91.58±0.84(8) 95.39±0.15(2) 95.85±0.46(3) 96.28±0.20(40)

SSMMC 71.56±0.65(16) 71.46±0.63(27) 95.26±1.00(41) 75.04±3.25(22) 93.97±0.25(32) 92.24±0.50(3)
S3MPE 90.61±0.67(4) 93.52±0.69(3) 95.45±0.15(38) 94.01±0.86(6) 94.77±2.05(25) 96.24±0.95(4)

SDA 91.81±0.34(6) 93.50±0.49(21) 94.91±1.02(3) 94.05±0.22(25) 94.48±0.68(23) 94.86±0.41(39)
SSMFA 92.33±0.93(18) 95.04±0.39(8) 95.30±0.63(37) 95.66±0.16(9) 96.17±0.26(10) 96.57±0.39(2)

’Lab’and ’Unlab’ denote the number of labeled samples and the number of unlabeled samples. The bold values indicate that the corresponding methods obtain best
performances under specific conditions. And this notes for each table.

rates on different dimensions. Table 2 reports the best perfor-
mance of different methods.

As can be seen from Table 2, for unsupervised and semi-supervised
methods, the recognition accuracy increases with the increase in
the extra sample size of the unlabeled set. Clearly, the semi-
supervised methods outperform the supervised counterparts, which
indicates that combining the information provided by the labeled
and unlabeled data gives the benefits to hyperspectral image clas-
sification. In most cases, SSMFA outperforms all the other meth-
ods.

To investigate the influence of the numbers of labeled data on the
performances of semi-supervised algorithms, we replace the 2 la-
beled data in semi-supervised algorithms with 4, 6 and 8 labeled
data, respectively. As expected, the classification accuracy rises
with the increase in the labeled sample size. Note that SSMMC
and SSMFA don’t improve much on MMC and MFA when 8 la-
beled data for training, because 8×7 = 56 labeled examples are
quite enough to discriminate the data and therefore the effects of
unlabeled data has been limited.

4.2.4 Experimental Results on AVIRIS Indian Pines Data
Set In each experiment, we randomly select the seen and un-
seen set according to Table 1, and the top 50 features were se-
lected from AVIRIS Indian Pines data set by different methods.
The results are shown in Table 3.

As can be seen from Table 3, all semi-supervised methods are
all superior to supervised and unsupervised methods, which indi-
cates that combining the information provided by the labeled and
unlabeled data gives the benefits to feature selection for hyper-
spectral image classification. Our SSMFA method also outper-
forms the semi-supervised counterparts in most cases. Neverthe-
less, for unsupervised and semi-supervised methods, the classi-
fication accuracy increases with the increase in the extra sample
size of the labeled set.

It’s obvious that the semi-supervised methods greatly outperform
the other methods and that SSMFA performs better than oth-
ers semi-supervised methods. Nevertheless, most methods don’t
achieve good performance in this data set. One possible rea-
son for the relatively poor performance of different methods in
the data set lies in the strong mixture of the class signatures of
AVIRIS Indian Pines data set. Hence, it is very interesting to de-
velop more effective method to further improve the performance
of hyperspectral image classification under complex conditions.

4.3 Discussion

The experiments on synthetic data and two hyperspectral image
databases have revealed some interesting points.

(1) As more labeled data are used for training, the classification
accuracy increases for all supervised and semi-supervised algo-
rithms. This shows that a large number of labeled samples give
benefits to identify the relevant features for classification.

(2) Semi-supervised methods, i.e. S3MPE, SDA and SSMFA,
consistently outperform the supervised and unsupervised meth-
ods, which indicates that semi-supervised methods can take ad-
vantage of both labeled and unlabeled data points to find more
discriminant information for hyperspectral image classification.

(3) An effective learning method can improve the performance
when the number of the available unlabeled data increases. As
expected, the recognition rate of the semi-supervised and unsu-
pervised methods are significantly improved when the number
of the available unlabeled data increases in Tables 2-3. Mean-
while, the supervised methods, i.e. MMC and LDA, degrade the
performance of classification accuracy due to the overfitting or
overtraining.

(4) As shown in Tables 2-3, it is clear that SSMFA performs much
better than other semi-supervised methods and MFA achieves a
good performance than other supervised methods. This is due to
that many methods, i. e. LDA and MMC, assume a Gaussian dis-
tribution with the data of each class. MFA and SSMFA provide
a proper way to overcome this limitations. Furthermore, SSMFA
outperforms MFA in most cases. MFA can only use the labeled
data, while SSMFA makes full use of the labeled and unlabeled
data points to discover both discriminant and geometrical struc-
ture of the data manifold.

5 CONCLUSIONS

The application of machine learning to pattern classification in
the area of hyperspectral image is rapidly gaining interest in the
community. It is a very challenging issue of urgent importance to
select a minimal and effective subset from those mass of bands.

In this paper, we present a semi-supervised dimensionality re-
duction method, called semi-supervised marginal Fisher analysis
(SSMFA), for hyperspectral image classification. SSMFA has
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Table 3: Comparison of different methods for AVIRIS Indian Pines data set (mean + std(dim)).
(Lab, Unlab) (2, 5) (2, 10) (2, 20) (4, 10) (6, 10) (8, 10)

Baseline 27.00±3.03(200) 26.67±3.85(200) 25.94±2.48(200) 28.21±3.25(200) 28.80±2.26(48) 30.91±3.03(200)
PCA 26.73±2.07(14) 24.92±1.72(13) 27.75±2.27(28) 25.41±2.38(26) 26.67±1.71(28) 27.63±2.07(44)
LDA 28.94±1.38(4) 28.94±1.38(4) 28.94±1.38(4) 29.63±1.95(5) 30.49±2.97(5) 32.94±4.14(5)
LPP 26.86±1.96(22) 28.19±4.13(30) 30.05±3.95(8) 29.86±2.30(28) 30.50±1.78(37) 30.86±1.96(15)
NPE 26.44±2.18(21) 27.94±2.57(15) 30.07±2.27(10) 28.84±1.24(29) 29.08±2.75(35) 29.74±2.18(19)

MMC 29.29±1.98(5) 29.29±1.98(5) 29.29±1.98(5) 30.19±2.92(5) 30.97±2.51(5) 31.40±3.54(5)
MFA 30.52±2.16(30) 30.52±2.16(30) 30.52±2.16(30) 30.87±3.59(11) 31.98±1.04(33) 33.47±1.97(40)

SSMMC 31.12±2.31(22) 32.48±3.33(29) 34.77±2.76(41) 33.40±2.26(26) 34.72±3.37(31) 35.897±2.31(45)
S3MPE 33.39±3.10(22) 36.24±3.36(16) 36.39±1.20(35) 35.39±1.10(27) 36.09±2.14(10) 39.39±3.10(20)

SDA 34.64±1.96(20) 35.54±1.67(27) 36.99±1.82(38) 36.30±1.18(29) 37.65±1.08(24) 40.15±1.96(45)
SSMFA 37.09±1.98(22) 39.42±2.88(29) 41.95±2.09(37) 39.01±2.05(27) 41.23±2.59(40) 45.09±1.98(41)

two prominent characteristics. First, it is designed to achieve
good discrimination ability by utilizing the labeled and unlabeled
data points to discover both discriminant structure of the data
manifold. In SSMFA, the labeled points are used to maximize
the inter-manifold separability between data points from different
classes, while the unlabeled points are used to minimize the intra-
manifold compactness between data points belong to the same
class or neighbors. Second, it provides a proper way to overcome
the limitations that many dimensionality reduction methods as-
sume a Gaussian distribution with the data of each class, which
further improves hyperspectral image recognition performance.
Experimental results on synthetic data and two well-known hy-
perspectral image data sets demonstrate the effectiveness of the
proposed SSMFA algorithm.
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