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ABSTRACT: 
 
Automatic image classification is one of the fundamental problems of remote sensing research. The classification problem is even 
more challenging in high-resolution images of urban areas, where the objects are small and heterogeneous. Two questions arise, 
namely which features to extract from the raw sensor data to capture the local radiometry and image structure at each pixel or 
segment, and which classification method to apply to the feature vectors. While classifiers are nowadays well understood, selecting 
the right features remains a largely empirical process. Here we concentrate on the features. Several methods are evaluated which 
allow one to learn suitable features from unlabelled image data by analysing the image statistics. In a comparative study, we evaluate 
unsupervised feature learning with different linear and non-linear learning methods, including principal component analysis (PCA) 
and deep belief networks (DBN). We also compare these automatically learned features with popular choices of ad-hoc features 
including raw intensity values, standard combinations like the NDVI, a few PCA channels, and texture filters. The comparison is 
done in a unified framework using the same images, the target classes, reference data and a Random Forest classifier. 
 
 

1. INTRODUCTION 

Automatic image classification is one of the fundamental 
problems of remote sensing research. The classification of 
urban areas in high-resolution images is even more challenging, 
because many relevant objects are small, and because at small 
ground sampling distance (GSD) fine texture details become 
visible, such that the spectral variation within one class 
increases. At the same time, remote sensing of urban areas is 
becoming more important (Yang, 2011), since nowadays more 
and more people live in cities. Thus, there is an increased need 
for geo-spatial data to support the management of urban zones. 
 
The classification process involves two steps: first, one has to 
derive features from raw observations in order to represent local 
radiometric properties. Then classification method which, given 
the previously extracted features, estimates the most likely land-
cover class, has to be applied. 
 
Classifiers are nowadays well understood and there exists a 
mature theory of statistical learning and classification  
(Bishop, 2006; Hastie, 2009), whereas the feature design still 
remains mainly an empirical process. In the present paper we 
empirically evaluate several methods for feature extraction from 
the image data. An end-to-end evaluation is carried out: the 
different features are extracted and fed into a standardized 
classifier, and then the output is compared to manually labelled 
ground truth to assess the classification accuracies. 
 
1.1 Classification 

Assuming that the image features have been extracted (note, this 
includes the case that the raw intensity values constitute the 
features), classification amounts to estimating for each possible 
class the probabilities that a certain pixel or a region belongs to 
that class.  

Following (Bishop, 2006) the main classification approaches 
are: 
 

• parametric generative class models which assume a 
simple parametric form of the classes in the feature 
space, such as for example the maximum likelihood 
classifiers, widely adopted by commercial software 
packages, 

• instance-based class models directly based on the 
examples given as reference data, such as kNN  
(k-Nearest-Neighbour) algorithms; and 

• discriminative classifiers which focus on the class 
boundaries, such as linear discriminant analysis 
(LDA), Support Vector Machines (SVMs) 
(Cortes et al., 1995), and Random Forests  
(Breimann, 2001). 

 
It is important to note that not all the classifiers are suitable for 
all sets of features. Popular parametric methods like Gaussian 
maximum likelihood are problematic in high-dimensional 
feature spaces (the “curse of dimensionality” problem), because 
the sampling density decreases exponentially with the 
dimension of the feature space. 
 
It is expected that for higher-dimensional vectors, 
discriminative methods will be most appropriate. This is 
supported both not only by the literature in computer vision and 
machine learning (e.g. Dalal et al., 2005; Hinton et al., 2006a), 
but also by experiences with hyper-spectral remote sensing data 
(e.g. Waske et al., 2009). Over the last decade computer vision 
researchers, who are also actively investigating object class 
detection and semantic labelling in images, have made 
significant progress, also mainly based on improved feature 
extraction and discriminative classification methods  
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(e.g. Viola et al., 2001; Shotton et al., 2006; Gehler et al., 2009; 
Walk et al., 2010). 
 
1.2 Image features 

The amount of energy measured by the sensor in different 
spectral bands, i.e. the raw pixel values, are the most obvious 
features. They are indeed the most widespread features and still 
often the only ones taken into account. Another popular feature 
is the terrain height obtained from laser scanning, dense image 
matching of radar interferometry. 
 
In particular cases useful features can be hand-crafted to 
represent a known physical effect (e.g. the normalized 
differential vegetation index NDVI). However one cannot 
expect that such simple relations exist for all the classes that one 
might want to extract. 
 
Important cues, such as texture patterns cannot be derived from 
a single intensity sample, thus it should be useful to also look at 
the pixel values in a certain neighbourhood of a pixel. To take 
them into account, one can either use the raw values within the 
neighbourhood, or describe their intensity pattern with 
responses to texture filters such as Gabor filters (Fogel et al., 
1989), wavelet coefficients (Dauchbechies, 1992) or local 
binary patterns (Heikkilae et al., 2009). More sophisticated 
features are only occasionally used in remote sensing 
applications (e.g. Kluckner et al., 2009; Dalla Mura et al., 
2010). All features mentioned so far are independent of the 
images used and thus do not take into account properties of the 
data at hand.  
 
1.3 Feature learning 

Since different images differ in their radiometric properties due 
to sensor characteristics and lighting effects, it seems reasonable 
that classification could benefit if one were to use features 
designed specifically for a given dataset. There are no obvious 
guidelines how to do that by hand, but data-driven statistical 
methods can potentially help. 
 
In the recent statistical learning literature, there are two 
complementary approaches to learn features from data. The 
simpler method first generates a large set of potential features 
and then enforces the sparsity of the feature vector when 
learning the classifier, such that only an optimal and sufficiently 
small subset is used for classification (Freund et al., 1995; 
Bradley et al., 1998). A second, arguably more principled 
method to select right features proceeds in a different way. The 
basic idea is to choose a general class of parametric functions 
that map pixel values to features. The problem of finding the 
right features is then reduced to optimizing the parameters of 
the mapping function, such that the features capture as much as 
possible of the image statistics. An advantage of this method is 
that the choice of representation is driven by the statistics of the 
data (i.e. the characteristics of the sensor, the lighting 
conditions during acquisition and the properties of the area), not 
the class labels. That is important, since providing a large 
amount of labelled the ground truth data is costly. 
 
 

2. DATASETS 

In this work two datasets have been used in the experimental 
evaluation (see Fig. 1). The first dataset (KLOTEN) consists of 
an analogue aerial image recorded with a Wild RC30 analogue 

camera and shows a part of Kloten airport near Zurich, 
Switzerland. The image has three spectral bands in red, green 
and near infrared, and 15894 by 15708 pixels, which at a GSD 
of ~8cm correspond to the area of ~1.6 km2. 
 
The second dataset (GRAZ) is part of a high-resolution RGB 
aerial image acquired with a Vexcel Ultracam D. It depicts a 
purely urban area of 200x200m in Graz, Austria, and has been 
downsampled to a GSD of ~25cm. In addition to the pixel 
intensities, the relative height over ground is available as a 
further channel. The relative height has been generated 
automatically by creating a DSM with dense multi-view 
matching, filtering it to a bare-earth DTM, and taking the 
difference DSM-DTM (nDSM). The height information will 
always be used as an additional component of the feature 
vector. For both datasets no pre-processing of the measured 
intensities was used before feature extraction. 
 
In our evaluation we concentrate on a small number of 
dominant land-cover classes to ensure that a reasonable number 
of training and test examples are available for each class. For 
KLOTEN, the six classes are forest, crops, grass, buildings, 
roads and shadows. For GRAZ, the four classes used are 
buildings, roads, grass and trees. For the both datasets ground 
truth was annotated manually. The ground truth for the 
KLOTEN data consists of selected image patches for each land-
cover class. For the GRAZ dataset the entire image has been 
annotated. 
 

 

 
(a) 
 

 
(b) 

 
Figure 1. KLOTEN (a) and GRAZ (b) datasets. 
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3. METHODS 

3.1 General-purpose features 

Several standard feature sets were evaluated, which are widely 
used to classify image data, namely raw pixel intensities alone 
as well as augmented with NDVI and PCA channels, raw pixel 
patches of 9x9 pixel neighbourhoods and multi-scale texture 
filter responses. 
 
Raw pixel values 
The most elementary feature set is made up by the raw pixel 
values at each pixel, i.e. the red/green/near infrared channels for 
the KLOTEN dataset, respectively the red/green/blue channels 
for the GRAZ data. Thus the dimension of the feature vectors is 
three. 
 
9x9 pixel neighbourhood 
In order to include information from the local neighbourhood, 
we extract the intensities of a 9x9 image patch centred at each 
pixel and thus obtain a 243-dimensional feature vector. Note 
that due the strong overlap between the patches smoother 
results can be expected. 
 
Augmented raw pixel values 
This feature set is intended to represent a typical “educated 
guess” in the context of an optical remote sensing. In addition 
to the pixel intensities, the NDVI and the three PCA-channels 
are used to form a 7-dimensional feature vector. For the GRAZ 
dataset, for which no infrared channel is available, a “pseudo-
NDVI” with the green and red channels was computed. Note 
that the projection onto the PCA-basis of the training examples 
is already a “data-driven method” which allows minimal 
adaptation to the specific data. Note however that the widely 
used per-pixel PCA projection is different from the PCA-
features listed below. 
 
Texture filters 
As a typical “educated guess” from computer vision, which also 
includes neighbourhood information, we use the responses to a 
set of filters adopted from (Winn et al., 2005). The filter-bank 
consists of Gaussian filters, x- and y-scaled Gaussian 
derivatives, and Laplacian of Gaussians, all at multiple scales. 
The filters are applied separately in each spectral band to yield a 
17/33 (KLOTEN) or 18/34 (GRAZ) -dimensional feature 
vector. 
 
3.2 Data-driven feature extraction methods 

Principal Component Analysis 
Feature learning aims to find a mapping, which optimally 
represents the data while suppressing noise. A standard method 
for that purpose is a linear projection onto an orthogonal basis 
found with Principal Component Analysis (PCA) basis. Under 
the assumption of i.i.d. Gaussian noise PCA finds the linear 
basis that is optimal in the sense that for a given number of 
basis vectors it preserves the largest amount of the variance in 
the data. The PCA approach for extracting image features is 
long-standing and widely used (e.g. “eigenfaces” in Turk and 
Pentland, 1991). In our study, we again start from the 9x9 pixel 
neighbourhood and project the 243 intensity values onto a 60-
dimensional basis. Here, and in the remainder of the paper, we 
opt for a rather high dimensionality, since the random forest 
classifier inherently performs feature selection and is known to 
cope well with spurious dimensions. Thus we prefer to have too 
many dimensions rather than too few. 

Deep belief networks 
The main limitation of PCA is that the features are still a linear 
combination of the input, while non-linear combinations of the 
image data are potentially useful to highlight certain classes 
(probably the most well-known non-linear feature at the single-
pixel level is the NDVI). Unfortunately, when the feature 
mapping is no longer a simple linear transformation, the 
optimization problem to find the best feature set becomes very 
difficult, and naïve approaches tend to get stuck (e.g. back-
propagation in neural networks). In recent years new learning 
algorithms have been developed, such as deep belief networks 
(DBNs) (Hinton et al., 2006b). They sidestep the difficulty by 
decomposing the learning problem into a sequence of simpler 
layers. The first layer takes the observation data as an input and 
converts them to features by applying a linear mapping (a 
contrastive divergence was used as an optimization method to 
find the parameters of linear mapping) followed by a sigmoid-
like non-linear transformation. The next layer then takes the 
resulting features as an input and processes them in the same 
way, which yields higher-level features, and so on. Although the 
multi-layer architecture is maintained, the layers can be learned 
one after another, which simplifies the optimization problem. 
We rely on a publicly accessible prototype implementation of 
the DBN framework (Salakhutdinov, 2011). Layered sequential 
learning has been successfully employed for classifying images 
of handwritten digits. We are only aware of one work where 
deep belief networks have been applied to a remote sensing 
application, namely the binary classification of road vs. non-
road pixels (Mnih, 2010). 
 
In our experiments we have used the DBN consisting of three 
layers with 60 nodes in the first and second layer and 240 in the 
third one (the inventors recommend a top layer that is four times 
larger than lower ones). The batch size used for learning the 
network was set to 100 and the number of epochs to 500. This 
choice has been proved by performing a detailed evaluation of 
DBN parameters (number of nodes in each layer, batch size, 
number of epochs). For the unsupervised training of the 
network we have used the 9x9 pixel neighbourhood training 
patches. We have tested each intermediate representation, 
regarding it as a separate feature set: the (linear) filters of the 
first layer (L1), the output of mapping them with the sigmoid 
(L1n), and similar for the second (L2, L2n) and third levels (L3, 
L3n). All together we thus evaluate 6 different sets of DBN 
features with 60 dimensions (levels 1 and 2), respectively 240 
levels. 
 

  
 

Figure 2. Examples of the L1 filter responses 
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Figure 3. Feature vectors for each of the methods. The height 
information is used as an additional feature in the GRAZ 

dataset. 
 

3.3 Random Forest classifier 

Random Forests (Breimann, 2001) are a state-of-the-art 
discriminative statistical classification method. They have been 
successfully applied to image classification tasks in remote 
sensing as well as other image classification tasks, e.g. 
(Gislason et al., 2006; Marée et al., 2005; Lepetit et al. 2006). 
Their popularity is based mainly on the fact that they are 
inherently suitable for multi-class problems, as well as on their 
computational efficiency during both training and testing. 
 
A random forest is simply an ensemble of randomized decision 
trees. During training, the individual trees are grown 
independently in a top-down manner, using a subset of training 
examples randomly sampled from the overall training set. The 
internal decision nodes of the trees are learned such that they 
best separate the training samples according to some quality 
measurement (e.g. the Gini index or the information gain, 
typically also maximized with random sampling). Consequently, 
each leaf node of a tree corresponds to an estimate of the 
probability distribution P(k|x) over the available classes 1…k, 
for those samples x which reach that leaf node. 
 
The final class probability P(k|x) is then obtained by averaging 
(weighted voting) over all T trees of the forest, 
      
   
      (1) 

  
 
At test time, the test sample (represented by its feature vector) is 
propagated through each tree until a leaf is reached, the class 
probability P(k|x) is computed, and the sample is assigned to 
the class with the highest probability. 
 
A random forest has only two parameters, both of which are 
relatively easy to set: the number of trees T, and the depth of the 
trees D. Both can be set conservatively: a too high T will 
increase computation times (unless the trees are evaluated in 
parallel, which is easy to implement), but not impair the results; 
a too high D could cause overfitting, which can however to a 
large extent be prevented by appropriate stopping criteria for 
the growing process. Empirically, the performance of random 

forests is on par with other modern discriminative techniques 
like support vector machines or boosting of shallow trees, and 
significantly better than that of individual decision trees.  
 

 
4. RESULTS 

4.1 Comparison of different image features 

For the KLOTEN dataset 64 polygons containing 1.1 Mega-
pixels were used to train the classifier, and an independent 
sample of 103 polygons containing 9.7 Mega-pixels was used to 
assess the mapping accuracy. 
 
For the Graz dataset, which is fully labelled, the image was split 
into subsets: a training dataset consisting of 0.15 Mega-pixels 
and a test dataset consisting of 0.47 Mega-pixels. In order to 
assess the classification accuracy, confusion matrices were used. 
Overall classification accuracy, mapping accuracies per class 
and the percentage of omission and commission errors per class 
were then extracted from the confusion matrices (Tab. 1). The 
graph (Fig. 4) shows the comparison of the overall classification 
accuracy for all feature sets and both datasets. 
 
In all experiments the raw classification was assessed without 
post-processing such as majority filtering, morphological 
cleaning etc. In this way biases due to the post-processing are 
avoided. 
 

 
 

 
 

Figure 4. Overall classification accuracies. T = 50, D = 15. 
Please note the different scales on the y-axis. 
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Table 1. Example of the confusion matrix for 9x9 pixel 
neighborhood, T = 50, D = 15, GRAZ dataset 

 
Several conclusions can be drawn from the experiments: first of 
all, methods based on patches dominate those based on 
individual pixels, which confirms the expectation that the grey-
value distribution in the local neighbourhood (the “texture”) 
holds important information in high-resolution images and 
should be accounted for. 
 

 
(a) 

 
(b) 

 
Figure 5. GRAZ dataset: Ground truth (a) and classified data 

using 9x9 neighborhood features (T = 50, D = 15). Please note 
that this depicted result is “biased” - in order to produce the 
classified image, the classifier has been tested on the whole 

dataset (including subset for training)  (b) 
 
Regarding statistical feature learning, the conclusions are less 
clear. In general, complex non-linear learning does not seem to 
help – the best DBN features are L1 (level 1 before the non-
linearity), i.e. simple linear filters. Still they slightly outperform 
PCA on both datasets, which hints at non-Gaussian noise. We 
did not manage to get the higher levels of DBN features to 
match the performance of linear methods. The overall lower 
performance on the Graz dataset may be due to the much 
smaller amount of training data, although further research is 
required to confirm this. 
 
In terms of both the pixel-based and the patch-based features, 
the differences between raw intensity values and derived 
features are relatively small. This provides evidence that the 
random forest classifier is in fact able to extract the information 
from the raw data and feature extraction as a pre-processing step 
may not be required at all. E.g. the “augmented” features 
including the NDVI bring no improvement in the KLOTEN 
example although a qualitative visual check confirms that as 
expected it discriminates vegetation very well, and better than 
the raw channels. Apparently the classifier successfully recovers 
the information from the raw intensities. 
 
4.2 Influence of classifier 

The evaluation has shown that by and large, the random forest 
classifier is able to deal with raw observation data and extract 

almost as much information from them as from other less basic 
features. This raises the question how the classifier itself should 
be tuned. A random forest has two main parameters, the number 
of trees T and the depth of the trees D (see section 3.3). In the 
following we test their influence on the classification result. As 
already mentioned, the more important thing is not to set them 
too low, whereas too many trees, and to a large degree also too 
high maximum depth, should be less critical in terms of 
performance. Still, overly high values naturally increase the 
computation time during for both training and testing,  
 
The literature suggests that using less than 5 trees is not 
appropriate – the averaging over very few trees will no longer 
have the desired regularization effect. On the other hand, rather 
deep trees can be trained if a lot of training data is available, 
which is the case in our study (>150’000 samples for GRAZ 
and even >1’090’000 samples for KLOTEN). We have 
evaluated the classifier for maximum depths of 6, 8, 10, 12, 15. 
Note, that depth 15 already corresponds to up to 215=32’768 
possible estimates per decision tree. Tree growing stops if too 
few samples reach a node or if no improvement is possible at a 
node. We have also varied the number of trees over the range 5, 
10, 20, 50, 100. The evaluation has been carried out on the 
KLOTEN dataset with the DBN L1 features, which are among 
the top performers on that dataset. 
 
Figure 6 shows the results of the experiment. As predicted by 
the theory, increasing both D and T continuously improves the 
classification result, and both parameters eventually saturate. 
Increasing the number of trees does not yield further gains. 
Increasing the depth of a naïve implementation much further 
eventually leads to a performance loss, since not enough data is 
available to train trees of depth, say, 25 (corresponding to >33.5 
million possible outcomes). In practice the performance also 
saturates, since splits which do not decrease the entropy of the 
posterior distribution are rejected, and the trees do not actually 
reach the maximum depth. From the evaluation we conclude 
that setting T = 50, D = 15 is appropriate, and all experiments 
described above have used these setting. 
 

 
 

Figure 6. Overall classification accuracy in regard to random 
forest classifier parameters (T and D) 

 
 

5. CONCLUSIONS 

The aim of the present study has been to evaluate the influence 
of different image features on land-cover classification in 
images of high spatial resolution (and consequently low spectral 
resolution). The focus has been on urban scenes, where the high 
resolution is required, and also more readily available. The 
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evaluation was performed using two different datasets, one 
recorded in the R/G/NIR channels at 8 cm GSD, and one with 
the visible R/G/B channels plus the relative height over ground, 
at 25 cm GSD.  
 
Eleven different feature sets have been tested in conjunction 
with the same standardized random forest classifier. Some were 
popular all-purpose feature sets, whereas other were learned 
from the images in an unsupervised, data-driven manner, to 
allow for adaptations to the specific data characteristics.  
 
The main result at this stage is that features describing a larger 
neighbourhood around a pixel outperform those which only use 
the local information at the pixel itself. Furthermore, the 
random forest classifier is exceptionally good at extracting the 
necessary information even from raw intensities, such that more 
involved feature extractors only lead to small improvements. 
Finally, complex non-linear feature learning did not help. At 
least in our experiments we did not manage to beat simple linear 
feature extraction by adding non-linear processing layers. 
Further research is needed to reach firm conclusions and 
eventually give clear guidelines for feature design. 
 
Many further tests are possible. One interesting question is 
whether with a simpler standard classifier raw intensities would 
still work as well, or whether advanced feature extraction then 
becomes more important. Another open question is how 
suitable the class probabilities estimated from different features 
are for further processing, e.g. smooth labelling with 
conditional random fields, which is known to significantly 
improve classification of high-resolution images. 
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