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ABSTRACT:

Automatic image classification is one of the funéamtal problems of remote sensing research. Thsifitadion problem is even
more challenging in high-resolution images of urlaaeas, where the objects are small and heterogen&wo questions arise,
namely which features to extract from the raw sermiada to capture the local radiometry and imagecsire at each pixel or
segment, and which classification method to applthe feature vectors. While classifiers are nowadeell understood, selecting
the right features remains a largely empirical pesc Here we concentrate on the features. Sevethlods are evaluated which
allow one to learn suitable features from unlalkifeage data by analysing the image statistica. éeomparative study, we evaluate
unsupervised feature learning with different linaad non-linear learning methods, including priatipomponent analysis (PCA)
and deep belief networks (DBN). We also compareettegomatically learned features with popular cb®iof ad-hoc features
including raw intensity values, standard combinaidike the NDVI, a few PCA channels, and textules. The comparison is

done in a unified framework using the same imatiestarget classes, reference data and a Randorst Etassifier.

1. INTRODUCTION

Automatic image classification is one of the funeamal
problems of remote sensing research. The clagsificeof
urban areas in high-resolution images is even rooadlenging,
because many relevant objects are small, and beecusmall
ground sampling distance (GSD) fine texture deth#ésome
visible, such that the spectral variation within eomrlass
increases. At the same time, remote sensing ofhudbeas is
becoming more important (Yang, 2011), since nowadagre
and more people live in cities. Thus, there isrammdased need
for geo-spatial data to support the managementtafruzones.

The classification process involves two stepst,fiocsie has to
derive features from raw observations in ordeefmresent local
radiometric properties. Then classification metigdch, given
the previously extracted features, estimates th&t tik@ly land-
cover class, has to be applied.

Classifiers are nowadays well understood and thgigtsea
mature theory of statistical learning and clasatfn
(Bishop, 2006; Hastie, 2009), whereas the featusggdestill
remains mainly an empirical process. In the prepaper we
empirically evaluate several methods for featutteagtion from
the image data. An end-to-end evaluation is cardat the
different features are extracted and fed into andsiedized
classifier, and then the output is compared to ratiyilabelled
ground truth to assess the classification accusacie

1.1 Classification

Assuming that the image features have been extréctae, this
includes the case that the raw intensity valuesstitoie the
features), classification amounts to estimatingefach possible
class the probabilities that a certain pixel oegion belongs to
that class.

389

Following (Bishop, 2006) the main classification egaches
are:

parametric generative class models which assume a
simple parametric form of the classes in the featur
space, such as for example the maximum likelihood
classifiers, widely adopted by commercial software
packages,

instance-based class models directly based on the
examples given as reference data, such as kNN
(k-Nearest-Neighbour) algorithms; and
discriminative classifiers which focus on the class
boundaries, such as linear discriminant analysis
(LDA), Support Vector Machines (SVMs)

(Cortes et al., 1995), and Random Forests
(Breimann, 2001).

It is important to note that not all the classHia@re suitable for
all sets of features. Popular parametric methdds Gaussian
maximum likelihood are problematic in high-dimensib
feature spaces (the “curse of dimensionality” peab), because
the sampling density decreases exponentially witte t
dimension of the feature space.

It is expected that for higher-dimensional vectors,
discriminative methods will be most appropriate.isThs
supported both not only by the literature in congpwision and
machine learning (e.g. Dalal et al., 2005; Hintorale 2006a),
but also by experiences with hyper-spectral rersetesing data
(e.g. Waske et al., 2009). Over the last decadeputen vision
researchers, who are also actively investigatingeabbclass
detection and semantic labelling in images, havedema
significant progress, also mainly based on improfeature
extraction and discriminative  classification  metbod
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(e.g. Viola et al., 2001; Shotton et al., 2006; IBebt al., 2009;
Walk et al., 2010).

1.2 Imagefeatures

The amount of energy measured by the sensor irereift

spectral bands, i.e. the raw pixel values, arentbst obvious
features. They are indeed the most widespreadrésaaind still

often the only ones taken into account. Anotheruperpfeature
is the terrain height obtained from laser scanndemnse image
matching of radar interferometry.

In particular cases useful features can be harftedrato

represent a known physical effect (e.g. the nomedli
differential vegetation index NDVI). However one nocat

expect that such simple relations exist for all¢lzsses that one
might want to extract.

Important cues, such as texture patterns canndetieed from
a single intensity sample, thus it should be usefalso look at
the pixel values in a certain neighbourhood ofxelpiTo take
them into account, one can either use the raw sakigin the
neighbourhood, or describe their intensity pattewith
responses to texture filters such as Gabor fil(Emel et al.,
1989), wavelet coefficients (Dauchbechies, 1992) lagral
binary patterns (Heikkilae et al., 2009). More dSefibated
features are only occasionally used in remote Bgnsi
applications (e.g. Kluckner et al., 2009; Dalla Muet al.,
2010). All features mentioned so far are indepehdgnthe
images used and thus do not take into account pgrep®f the
data at hand.

1.3 Featurelearning

Since different images differ in their radiometpioperties due
to sensor characteristics and lighting effectseéms reasonable
that classification could benefit if one were toeueatures
designed specifically for a given dataset. Theeerar obvious
guidelines how to do that by hand, but data-drigeatistical
methods can potentially help.

In the recent statistical learning literature, thesre two
complementary approaches to learn features froma. dette
simpler method first generates a large set of (iatefeatures
and then enforces the sparsity of the feature veatoen
learning the classifier, such that only an optiaradl sufficiently
small subset is used for classification (Freundalet 1995;
Bradley et al., 1998). A second, arguably more pied
method to select right features proceeds in ardiffeway. The
basic idea is to choose a general class of paranfetrctions
that map pixel values to features. The problemimdifig the
right features is then reduced to optimizing theapeters of
the mapping function, such that the features capasrmuch as
possible of the image statistics. An advantagénisf inethod is
that the choice of representation is driven bystagistics of the
data (i.e. the characteristics of the sensor, tightihg
conditions during acquisition and the propertiethefarea), not
the class labels. That is important, since proygda large
amount of labelled the ground truth data is costly.

2. DATASETS
In this work two datasets have been used in theraxental

evaluation (see Fig. 1). The first dataset (KLOTENNSIsts of
an analogue aerial image recorded with a Wild RC30oguie
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camera and shows a part of Kloten airport near churi
Switzerland. The image has three spectral bandedngreen
and near infrared, and 15894 by 15708 pixels, which GSD
of ~8cm correspond to the area of ~1.6km

The second dataset (GRAZ) is part of a high-resmiuRGB
aerial image acquired with a Vexcel Ultracam Dddpicts a
purely urban area of 200x200m in Graz, Austria, had been
downsampled to a GSD of ~25cm. In addition to tlveslp
intensities, the relative height over ground isilatde as a
further channel. The relative height has been gtedr
automatically by creating a DSM with dense mulgwi
matching, filtering it to a bare-earth DTM, and itak the
difference DSM-DTM (nDSM). The height informationiliwv
always be used as an additional component of thature
vector. For both datasets no pre-processing ofntkasured
intensities was used before feature extraction.

In our evaluation we concentrate on a small numbgr
dominant land-cover classes to ensure that a reafonumber
of training and test examples are available fohezass. For
KLOTEN, the six classes arforest, crops, grass, buildings,
roads and shadows For GRAZ, the four classes used are
buildings, roads, grasandtrees For the both datasets ground
truth was annotated manually. The ground truth foe
KLOTEN data consists of selected image patchesdoh land-
cover class. For the GRAZ dataset the entire imagebeen
annotated.

D)

Figure 1. KLOTEN (a) and GRAZ (b) datasets.
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3. METHODS
3.1 General-purpose features

Several standard feature sets were evaluated, vetnechvidely
used to classify image data, namely raw pixel isitegs alone
as well as augmented with NDVI and PCA channels, pixel
patches of 9x9 pixel neighbourhoods and multi-sc¢aldure
filter responses.

Raw pixel values

The most elementary feature set is made up by ahepixel

values at each pixel, i.e. the red/green/nearnedrahannels for
the KLOTEN dataset, respectively the red/green/lau@nnels
for the GRAZ data. Thus the dimension of the feataetors is
three.

9x9 pixel neighbourhood
In order to include information from the local nieiigpurhood,
we extract the intensities of a 9x9 image patchrednat each
pixel and thus obtain a 243-dimensional featuretoredNote
that due the strong overlap between the patchesotheio
results can be expected.

Augmented raw pixel values

This feature set is intended to represent a typiedlcated
guess” in the context of an optical remote sensingddition

to the pixel intensities, the NDVI and the three P&rannels
are used to form a 7-dimensional feature vector.tk® GRAZ
dataset, for which no infrared channel is availablépseudo-
NDVI” with the green and red channels was computdote

that the projection onto the PCA-basis of the tragnéxamples
is already a “data-driven method” which allows miai

adaptation to the specific data. Note however thatwidely
used per-pixel PCA projection is different from tiRCA-

features listed below.

Texture filters

As a typical “educated guess” from computer visighich also
includes neighbourhood information, we use theaersps to a
set of filters adopted from (Winn et al., 2005).eTiilter-bank
consists of Gaussian filtersx- and y-scaled Gaussian
derivatives, and Laplacian of Gaussians, all attiplel scales.
The filters are applied separately in each spebaatl to yield a

Deep belief networks

The main limitation of PCA is that the features sti# a linear

combination of the input, while non-linear combinat of the
image data are potentially useful to highlight aertclasses
(probably the most well-known non-linear featuretet single-
pixel level is the NDVI). Unfortunately, when theature
mapping is no longer a simple linear transformatione

optimization problem to find the best feature setdmes very
difficult, and naive approaches tend to get stuelg.(back-
propagation in neural networks). In recent yeans tearning

algorithms have been developed, such as deep befieforks
(DBNs) (Hinton et al., 2006b). They sidestep thdidaifty by

decomposing the learning problem into a sequencangbler

layers. The first layer takes the observation datan input and
converts them to features by applying a linear rrapda

contrastive divergence was used as an optimizatiethod to
find the parameters of linear mapping) followedagigmoid-
like non-linear transformation. The next layer thtakes the
resulting features as an input and processes thetiei same
way, which yields higher-level features, and soAlthough the
multi-layer architecture is maintained, the layeas be learned
one after another, which simplifies the optimizatiproblem.
We rely on a publicly accessible prototype impletagan of

the DBN framework (Salakhutdinov, 2011). Layeredusstdial

learning has been successfully employed for chasgifimages
of handwritten digits. We are only aware of one kvamere

deep belief networks have been applied to a remetesing
application, namely the binary classification ofdovs. non-
road pixels (Mnih, 2010).

In our experiments we have used the DBN consistinree
layers with 60 nodes in the first and second layet 240 in the
third one (the inventors recommend a top layer ighédur times
larger than lower ones). The batch size used famiag the
network was set to 100 and the number of epocl®@ This
choice has been proved by performing a detaileduatian of
DBN parameters (number of nodes in each layer, bsitzh
number of epochs). For the unsupervised trainingthaf
network we have used the 9x9 pixel neighbourhoathitrg
patches. We have tested each intermediate repatisent
regarding it as a separate feature set: the (jirfdtars of the
first layer (L1), the output of mapping them withet sigmoid
(L1n), and similar for the second (L2, L2n) anddHevels (L3,
L3n). All together we thus evaluate 6 differentssef DBN

17/33 (KLOTEN) or 18/34 (GRAZ) -dimensional feature featyres with 60 dimensions (levels 1 and 2), retiyly 240

vector.

3.2 Data-driven feature extraction methods

Principal Component Analysis

Feature learning aims to find a mapping, which roptly

represents the data while suppressing noise. Alatdrmethod
for that purpose is a linear projection onto aragbnal basis
found with Principal Component Analysis (PCA) basiader

the assumption of i.i.d. Gaussian noise PCA finds lthear
basis that is optimal in the sense that for a gimamber of
basis vectors it preserves the largest amounteof/éiiiance in
the data. The PCA approach for extracting imageufeatis
long-standing and widely used (e.g. “eigenfacesTurk and
Pentland, 1991). In our study, we again start ftben9x9 pixel
neighbourhood and project the 243 intensity vale® a 60-
dimensional basis. Here, and in the remainder efpiper, we
opt for a rather high dimensionality, since thed@m forest
classifier inherently performs feature selectiod & known to
cope well with spurious dimensions. Thus we predfdrave too
many dimensions rather than too few.
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levels.

Figure 2. Examples of the L1 filter responses
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Figure 3. Feature vectors for each of the meth®ks.height
information is used as an additional feature inGfRAZ
dataset.

3.3 Random Forest classifier

forests is on par with other modern discriminatigehniques
like support vector machines or boosting of shaltoses, and
significantly better than that of individual decisitrees.

4. RESULTS
4.1 Comparison of different image features

For the KLOTEN dataset 64 polygons containing 1.&ght
pixels were used to train the classifier, and atependent
sample of 103 polygons containing 9.7 Mega-pixeis wsed to
assess the mapping accuracy.

For the Graz dataset, which is fully labelled, itthage was split
into subsets: a training dataset consisting of OEga-pixels

and a test dataset consisting of 0.47 Mega-pixalrder to

assess the classification accuracy, confusion ceatrivere used.
Overall classification accuracy, mapping accurages class
and the percentage of omission and commissionsep@r class
were then extracted from the confusion matriceb(T3. The

graph (Fig. 4) shows the comparison of the ovefalisification

accuracy for all feature sets and both datasets.

Random Forests (Breimann, 2001) are a state-of-the-al" all experiments the raw classification was assgswithout

discriminative statistical classification methochey have been
successfully applied to image classification tagksremote

sensing as well as other image classification taskg.

(Gislason et al., 2006; Marée et al., 2005; Lepstial. 2006).
Their popularity is based mainly on the fact thheyt are
inherently suitable for multi-class problems, adlas on their
computational efficiency during both training aedting.

A random forest is simply an ensemble of randomizecision
trees. During training, the individual trees areovan

independently in a top-down manner, using a subisetining
examples randomly sampled from the overall trairéety The
internal decision nodes of the trees are learneti siat they
best separate the training samples according tce squmality
measurement (e.g. the Gini index or the informatgain,
typically also maximized with random sampling). Ceqsently,
each leaf node of a tree corresponds to an estiofathe
probability distributionP(k|x) over the available classés..k

for those sampleswhich reach that leaf node.

The final class probabilit?(k|x) is then obtained by averaging

(weighted voting) over all trees of the forest,

P(k|x) = %Zg(km 1)

At test time, the test sample (represented bye#tufe vector) is
propagated through each tree until a leaf is rehctiee class

probability P(k|x) is computed, and the sample is assigned to

the class with the highest probability.

A random forest has only two parameters, both oickvtare
relatively easy to set: the number of tréeand the depth of the
trees D. Both can be set conservatively: a too highwill
increase computation times (unless the trees aaiaed in
parallel, which is easy to implement), but not iinphe results;

post-processing such as majority filtering, morplgidal
cleaning etc. In this way biases due to the postgssing are
avoided.
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a too highD could cause overfitting, which can however to a

large extent be prevented by appropriate stoppiitgria for
the growing process. Empirically, the performanéeamdom
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Figure 4. Overall classification accuraciéss 50,D = 15.
Please note the different scales on the y-axis.
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Table 1. Example of the confusion matrix for 9xQebi
neighborhoodT = 50, D = 15, GRAZ dataset

Several conclusions can be drawn from the expetsnéirst of
all, methods based on patches dominate those based
individual pixels, which confirms the expectatidrat the grey-
value distribution in the local neighbourhood (thexture”)
holds important information in high-resolution inesg and
should be accounted for.

(b)

Figure 5. GRAZ dataset: Ground truth (a) and clestidlata
using 9x9 neighborhood featurds< 50, D = 15). Please note
that this depicted result is “biased” - in ordeptoduce the
classified image, the classifier has been testetth@mvhole

dataset (including subset for trainin¢}))

Regarding statistical feature learning, the conohsiare less
clear. In general, complex non-linear learning doesseem to
help — the best DBN features are L1 (level 1 betbee non-
linearity), i.e. simple linear filters. Still theslightly outperform
PCA on both datasets, which hints at non-Gaussi@gsen@e
did not manage to get the higher levels of DBN festuto
match the performance of linear methods. The olvépaler
performance on the Graz dataset may be due to theh m
smaller amount of training data, although furthesearch is
required to confirm this.

In terms of both the pixel-based and the patchddsatures,
the differences between raw intensity values andvel®
features are relatively small. This provides evierthat the
random forest classifier is in fact able to extithe information
from the raw data and feature extraction as a pvegssing step
may not be required at all. E.g. the “augmenteditufees
including the NDVI bring no improvement in the KLEN
example although a qualitative visual check cordirthat as
expected it discriminates vegetation very well, &tter than
the raw channels. Apparently the classifier sudaoéigsecovers
the information from the raw intensities.

4.2 Influence of classifier

The evaluation has shown that by and large, thdamnforest
classifier is able to deal with raw observationadanhd extract
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almost as much information from them as from othes basic
features. This raises the question how the classtfelf should
be tuned. A random forest has two main parameteesaumber
of treesT and the depth of the treBs(see section 3.3). In the
following we test their influence on the classifioa result. As
already mentioned, the more important thing istoogtet them
too low, whereas too many trees, and to a largeegeglso too
high maximum depth, should be less critical in terof
performance. Still, overly high values naturallycriease the
computation time during for both training and tegti

The literature suggests that using less than 5s tisenot
appropriate — the averaging over very few trees$ nal longer
have the desired regularization effect. On therolaed, rather
deep trees can be trained if a lot of training datavailable,
which is the case in our study (>150'000 samplasGRAZ

and even >1'090'000 samples for KLOTEN). We have
evaluated the classifier for maximum depths of 61& 12, 15.
Note, that depth 15 already corresponds to up'te32'768

possible estimates per decision tree. Tree growstogs if too
few samples reach a node or if no improvement ssipte at a
node. We have also varied the number of treestbeerange 5,
10, 20, 50, 100. The evaluation has been carrigdonuthe
KLOTEN dataset with the DBN L1 features, which angoag
the top performers on that dataset.

Figure 6 shows the results of the experiment. Aslipted by
the theory, increasing bofb andT continuously improves the
classification result, and both parameters evelytusdturate.
Increasing the number of trees does not yield &irthains.
Increasing the depth of a naive implementation nmiucther
eventually leads to a performance loss, since notigh data is
available to train trees of depth, say, 25 (cowesing to >33.5
million possible outcomes). In practice the perfante also
saturates, since splits which do not decreasentrepy of the
posterior distribution are rejected, and the t@@sot actually
reach the maximum depth. From the evaluation weclode
that settingT = 50,D = 15 is appropriate, and all experiments
described above have used these setting.

L1 features

90% -
88%

86% -

82% - 15

RN
o

Overall classification accuracy

80% o
10

20

oy
Depth (D)

50—

Number of trees (T) 100

Figure 6. Overall classification accuracy in regardandom
forest classifier parameters éndD)

5. CONCLUSIONS

The aim of the present study has been to evalhatenfluence
of different image features on land-cover clasatfan in
images of high spatial resolution (and consequédatlyspectral
resolution). The focus has been on urban sceneevthe high
resolution is required, and also more readily amd. The
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evaluation was performed using two different dagsene
recorded in the R/G/NIR channels at 8 cm GSD, andvatie
the visible R/G/B channels plus the relative heighgrayround,
at 25 cm GSD.

Eleven different feature sets have been testedomjunction
with the same standardized random forest classieme were
popular all-purpose feature sets, whereas othee wearned
from the images in an unsupervised, data-drivenne@nto
allow for adaptations to the specific data charésties.

The main result at this stage is that featuresritesg a larger
neighbourhood around a pixel outperform those whbicly use
the local information at the pixel itself. Furthama, the
random forest classifier is exceptionally good xtazting the
necessary information even from raw intensitieshsthat more
involved feature extractors only lead to small immments.
Finally, complex non-linear feature learning didt mzlp. At
least in our experiments we did not manage to siegile linear
feature extraction by adding non-linear processlagers.
Further research is needed to reach firm conclgsiand
eventually give clear guidelines for feature design

Many further tests are possible. One interestingstion is
whether with a simpler standard classifier rawnstges would
still work as well, or whether advanced featureaotion then
becomes more important. Another open question iw ho
suitable the class probabilities estimated frorfediit features
are for further processing, e.g. smooth labellingthw
conditional random fields, which is known to sigcditly
improve classification of high-resolution images.
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