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ABSTRACT: 

In remote sensing image interpretation, it is important to combine multiple features of a certain pixel in both spatial and spectral 

domains to improve the classification accuracy, such as spectral signature, morphological property, and shape feature. Therefore, it 

is essential to consider the complementary property of different features and combine them in order to obtain an accurate 

classification rate. In this paper, we introduce a multi-feature dimension reduction algorithm under a probabilistic framework, 

modified stochastic neighbor embedding (MSNE). For each feature, a probability distribution is constructed based on SNE, and then 

we alternatively solve SNE and learn the optimal combination coefficients for different features in optimization. Compared with 

conventional dimension reduction strategies, the suggested algorithm can considers spectral, morphological and shape features of a 

pixel to achieve a physically meaningful low-dimensional feature representation by automatically learn a combination coefficient for 

each feature adapted to its contribution to subsequent classification. In experimental section, classification results using 

hyperspectral remote sensing image (HSI) show that this modified stochastic neighbor embedding can effectively improve 

classification performance. 
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1. INTRODUCTION 

In hyperspectral remote sensing image (HSI) classification, it 

is important to employ multiple features of different types to 

represent a pixel’s information, such as spectral signature (Plaza, 

Benediktsson et al. 2009), morphological property (Soille and 

Pesaresi 2002), and shape feature (Segl, Roessner et al. 2003). 

Previous literatures have reported that combine multiple 

features of a certain pixel in both spatial and spectral domains 

could improve the land cover classification accuracy 

(Landgrebe 1980; Puissant, Hirscha et al. 2005). Since each 

feature can be viewed as a vector in a high-dimensional feature 

space, therefore, it is essential to consider the complementary 

property of different features and combine them in order to 

obtain an accurate classification rate. A conventional approach 

is simply concatenating different features into a long vector and 

applying a particular dimension reduction technique, such as 

Principal Component Analysis (PCA) (Jolliffe 2002), Fisher 

Discriminant Analysis (FDA) (Mika, Ratsch et al. 1999), 

Locally Linear Embedding (LLE) (Roweis and Saul 2000), 

Laplacian Eigenmaps (LE) (Belkin and Niyogi 2003), and so on. 

However, this direct feature concatenation strategy intrinsically 

assumes that different features are distributed in a unified 

feature space, although they are not, because they have different 

physical meanings and statistical properties (Xie, Mu et al. 

2011). Therefore, it is unreasonable to use simple concatenation 

to combine different features for subsequent processing. 

To overcome this problem, in this paper, we introduce a 

multi-feature dimension reduction algorithm under a 

probabilistic framework, stochastic neighbor embedding 

(Hinton and Roweis 2003). For each feature, a probability 

distribution is constructed based on stochastic neighbor 

embedding (SNE), and then we alternatively solve SNE and 

learn combination coefficients, i.e., weighting factors for 

different features in optimization. In summary, this modified 

stochastic neighbor embedding (MSNE): (1) considers texture, 

morphological, shape and spectral signature features of a pixel 

to achieve a physically meaningful low-dimensional feature 

representation for the subsequent classification, and (2) 

automatically optimize the combination weighting factors for 

different features according to their contributions for the 

subsequent classification, which indicate the complementary 

property of different features. The remainder of this paper is 

organized as follows. In Section 2, we introduce the multiple 

feature combination strategy in detail, including the spectral 

and spatial features extraction of HSI and the full optimization 

of modified stochastic neighbor embedding algorithm. Then, 

the hyperspectral remote sensing image classification results are 

reported in Section 3, followed by the conclusion. 

2. MODIFIED STOCHASTIC NEIGHBOR 

EMBEDDING ALGORITHM 

The proposed multiple feature combination strategy can be 

divided into two main components. In the first step, three kinds 

of features of HSI are introduced. Then the MSNE algorithm is 

employed to obtain the final low dimensional representation. 

2.1 Spectral and spatial features extraction 

(1) Spectral Feature: The spectral feature of a pixel in HSI is 

obtained by arranging its digital number (DN) in all of l bands: 
T

1 2Spectral , , , lv v v     (1) 

in which iv  denotes the DN in band i. 

(2) Morphological Feature: The Differential Morphological 

Profiles (DMPs) (Benediktsson, Palmason et al. 2005) are 

defined as a vector where the measures of the slope of the 
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opening-closing profiles are stored for every step of an 

increasing SE series: 
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in which s  and s  be the morphological opening and closing 

operators by reconstruction with structural element SE s . 

MP  and MP  are the opening and closing profiles of the 

image I (Huang and Zhang 2009). 

(3) Shape Feature: The pixel shape index (PSI) based method 

is adopted to describe the shape feature in a local area (Zhang, 

Huang et al. 2006): 
T

1 2Shape , , , pd d d     (3) 

in which id  is the length of the ith direction line measured by 

the pixel homogeneity of the central pixel and the surrounding 

pixels. 

2.2 Modified Stochastic Neighbor Embedding 

The proposed MSNE algorithm finds a low dimension 

representation Rdy  of input multiple features 
 

1R k
k L m

kf  , 

in which m is the number of features. In order to deal with out-

of-sample problem (Bengio, Paiement et al. 2004), only a 

subset of samples in the HSI are used as input data of MSNE. 

Suppose given a multiple features data set of n samples, e.g., 

 
1R k

k L n m

kF F 

  , wherein  k
F  is the kth feature matrix. 

MSNE first builds a probability distribution for each feature 

based on SNE, then, we alternatively solve SNE and learn the 

optimal combination coefficients to obtain the solution of 

MSNE. Finally, the linear transformation for MSNE feature 

mapping is solved by linear regression, and the extracted 

feature representation in reduced feature space is achieved by 

the such linear transformation for each pixel of HSI, 

respectively. 

(1) Stochastic Neighbor Embedding: for the kth feature 

matrix, suppose that we have input high-dimensional data 

samples 
 

1R k
k L n

i if  , SNE defined the the normalized 

pairwise distances as a joint probability distribution over input 

sample pairs, which are represented in a symmetric matrix 

Rn nP   (Hinton and Roweis 2003). Similarly, in the output 

low-dimensional feature space, we define the probability 

distribution Q:  

 
 

1
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1
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 (4) 

The aim of SNE is to match these two distributions P and Q 

as well as possible, which is achieved by minimizing the 

Kullback-Leibler divergences (Kullback and Leibler 1951) 

between the two distributions over all data points: 

 min , min log
ij

ij
y y

i j ij

P
KL P Q P

Q
   (5) 

To find the solution of (5), the gradient with respect to y is: 

 

   
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2

,
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i

ij ij i j i j

j

KL P Q y
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 

    
 (6) 

Given the gradient (6), there are many possible ways to 

minimize (5). In this paper, we employ the method suggested in 

(Maaten and Hinton 2008). 

(2) MSNE: We assume that the final probability distribution 

of the input multiple features is a linear combination of all the 

joint probability distribution matrices, i.e., 

 

1

m
k

k

k

P P


  (7) 

where k  is the nonnegative weight of each features with 

conditions that 0k   and 1kk
  , and  k

P  is a joint 

probability distribution matrix computed by the kth input 

feature. The larger k  is, the more important is the role of the 

kth feature in constructing final probability distribution (7). In 

order to automatically optimize k  for each feature according 

to its unique contribution, we adopt alternating optimization to 

optimize the objective function with respect to both y and   

simultaneously. The final objective function of MSNE is given 

by: 

 
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In every round of iteration, we first fix   to find low-

dimensional embedding y. By constructing the final probability 

distribution (7), we can use t-SNE (Maaten and Hinton 2008) to 

find low-dimensional embedding. 

Then we first fix y to optimize  . Here we can see that the 

current objective function is a linear programming (LP) with 

respect to  . Since the optimal solution of LP will be always at 

the vertex of the linear feasible region, the solution of   must 

be only one of k  equal to 1 and others equal to zeros. To 

avoid this problem, we add an l2 norm regularization term into 

the current objective function:  

2
min log

ij

ij

i j ij

P
P r

Q
  (9) 

The optimization (9) is convex and could be minimised by 

using Nesterov’s accelerated first-order method (Nesterov 

2005). 

(3) Linearization. MSNE tries to train an optimal subspace 

for original multiple features. However, this feature mapping is 

always nonlinear and implicit (Zhang, Zhang et al. 2012). In 

HSI classification, it’s impossible to train such low-dimensional 

subspace using all the pixels features, because the size of the 

joint probability distribution matrices  k
P  scale with the 

number of input samples, thus the suggested MSNE suffers 

from the out-of-sample problem. In this paper, only a subset of 

samples in the HSI are used as input data of MSNE, then, a 

explicit linear projection matrix trained by MSNE is applied to 

approximately construct the low-dimensional representation. 

Based on this subset of samples 
 

1R k
k L n m

kF F 

   and the 

MSNE output low-dimensional representation Rd nY  , the 

linear transformation for MSNE feature mapping is solved by 

linear regression: 

 
1

T TU Y F F F


  (10) 
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3. EXPERIMENT AND ANALYSIS 

The experiment and analysis were conducted on a publicly 

available airborne hyperspectral data set, which was acquired 

by the sensor ROSIS on July 8, 2002, of the urban test area of 

Pavia, Northern Italy (45.11N, 9.09E). The subset of the Pavia 

city data is shown in Fig. 1; its size is 400×400 pixels. Some 

channels were removed due to noise and the remaining 102 

spectral dimensions from 0.43 to 0.83 um were processed. This 

data set was provided by the Data Fusion Technical Committee 

of the IEEE Geoscience and Remote Sensing Society. 

  
(a) (b) 

Fig. 1. Pavia city data set and reference data. 

Based on the spectral and spatial features extraction 

mentioned in section 2.1, we have the following multiple 

features: 102-dimensional spectral feature vector, 40-

dimensional DMPs feature vector and 20-dimensional shape 

feature vector for each pixel in HSI, respectively. Some of the 

feature images are shown in Fig. 2. The total number of samples 

in the data set is N=400×400 pixels; n=1200 samples (0.75% 

of all samples) were randomly sampled from N and were used 

to construct the input feature matrix for MSNE. The proposed 

MSNE as well as PCA (Jolliffe 2002), LPP (He and Niyogi 

2004) and SNE algorithm (Hinton and Roweis 2003) are 

conducted to obtain the low dimension feature representation of 

multiple features. The support vector machine (SVM) classifier 

(Mountrakis, Im et al. 2011) was used to interpret the above 

processed feature data. In SVM classification step, the training 

samples were randomly selected from the reference data, while 

we use the rest of reference data as test samples. The numbers 

of train and test samples are listed in Table I. 

TABLE I 

NUMBERS OF REFERENCE DATA AND CLASS SPECIFIC ACCURACIES 

 Train Test PC LPP SNE MSNE 

Water 30 756 99.25 99.13 99.39 99.13 

Road 30 767 90.03 95.66 94.63 96.69 

Roof 30 794 82.98 91.70 88.41 95.76 

Shadow 30 698 88.28 92.34 92.98 96.72 

Grass 30 907 94.16 93.93 95.66 96.33 

Tree 30 949 87.04 85.62 87.57 93.48 

OA 180 4871 91.27 92.12 92.71 95.46 

Kappa - - 0.8951 0.9053 0.9124 0.9455 

We first investigated the complementary property of the 

above multiple features on Pavia city data set. Fig. 2 shows the 

spectral, DMPs and shape feature for different pixels, these 

pixels correspond to varies classes, e.g., road, roof, grass and 

tree, respectively. Usually, spectral signature is the most 

discriminative feature in HSI classification, however, in Fig. 2, 

pixel pair road and roof have a very similar spectral signature. 

We might still distinguish them according to DMPs and shape 

features. So this complementary property of the multiple 

features on HSI data set provides the information to potentially 

improve the classification performance. The same phenomenon 

could be observed based on the pixel pair grass and tree.  

  

First row: spectral feature images. 

  

Second row: DMPs feature images. 

  

Third row: shape feature images. 

Fig. 2. Multiple features of the Pavia city data set. 

  
(a) PCA (b) LPP 

  
(c) SNE (d) MSNE 

Water RoofRoad Shadow Grass Tree

 
Fig.3. (a)-(d) Classification maps of Pavia city data set obtained 

using features of PCA, LPP, SNE, and MSNE, respectively. 

Four different feature based classification results are 

compared in Figs. 3 (a)-(d). In all dimensional reduction 

methods, the size of reduced feature space is fixed at 25. In Fig. 

3, the proposed MSNE based classification achieved the best 

performance. Compared to the other three dimension reduction 

methods in Figs. 3(a), (b) and (c), the proposed MSNE shows a 

good classification result. In order to evaluate thoroughly the 

different feature representations, the averaged classification 
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accuracies of all classes in ten independent classification 

experiments are also compared in Table I. From Table I, 

improvements can be observed and MSNE obtains the top 

classification rate in five classes and achieves the top OA and 

kappa coefficient.  

Here we also investigated the affect of regularization 

parameter r in alternating optimization step. Figs. 4 (a)-(d) 

describe the relationship of regularization parameter r and 

combination weights in spectral, DMPs and shape feature. We 

can see the spectral feature is the most discriminating feature 

for the Pavia city data set. It also can be observed that if r is 

close to 1, the combination weights is very sparse, thus the most 

discriminative feature will be set to large coefficient. If r is 

increased to infinity, different features will share the similar 

weights for the subsequent feature combination. Therefore, the 

selection of regularization parameter r should be based on the 

complementary properties of input features. If the available 

features are complementary to each other, a larger r is preferred 

to guarantee that all features properly contribute to the 

subsequent classification; otherwise, we can choose a small r. 
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Fig. 4. The affect of regularization parameter r and combination 

weights in each feature. 

4. CONCLUSION 

In this paper, we introduce a multi-feature dimension 

reduction algorithm under a probabilistic framework which 

could considered the spectral, DMPs and shape features of a 

pixel to achieve a physically meaningful low dimensional 

representation for an effective and accurate classification. For 

each input feature, a probability distribution is constructed 

based on SNE, and then we alternatively solve SNE and learn 

the optimal combination coefficients for different features in 

optimization. The linear transformation for MSNE feature 

mapping is achieved by linear regression in order to deal with 

out-of-sample problem in HSI classification. Experiment on the 

classification of ROSIS hyperspectral data sets demonstrate that 

the proposed approach could explore the complementary 

properties of different features and find an optimal low 

dimension representation for classification. The effect of the 

combination weights of each feature are also investigated. Our 

future work will explore how to select the optimal parameters in 

MSNE feature combination and reduction to obtain the best 

subsequent hyperspectral remote sensing classification accuracy. 
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