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ABSTRACT:

We propose a framework for operator guidance during the image acquisition process for reliable multi-view stereo reconstruction. Goal
is to achieve full coverage of the object and sufficient overlap.
Multi-view stereo is a commonly used method to reconstruct both camera trajectory and 3D object shape. After determining an initial
solution, a globally optimal reconstruction is usually obtained by executing a bundle adjustment involving all images. Acquiring
suitable images, however, still requires an experienced operator to ensure accuracy and completeness of the final solution.
We propose an interactive framework for guiding unexperienced users or possibly an autonomous robot. Using approximate camera
orientations and object points we estimate point uncertainties within a sliding bundle adjustment and suggest appropriate camera
movements. A visual feedback system communicates the decisions to the user in an intuitive way.
We demonstrate the suitability of our system with a virtual image acquisition simulation as well as in real-world scenarios. We show
that when following the camera movements suggested by our system, the proposed framework is able to generate good approximate
values for the bundle adjustment, leading to accurate results compared to ground truth after few iterations. Possible applications are
non-professional 3D acquisition systems on low-cost platforms like mobile phones, autonomously navigating robots as well as online
flight planning of unmanned aerial vehicles.

1 INTRODUCTION

Within the last few years, the field of photogrammetry and com-
puter vision highly benefited from cheap and fast hardware in per-
sonal computers, cameras and even mobile phones. Capturing de-
vices often play the role of smart sensors, as they control acquisi-
tion parameters such as focus, aperture or shutter speed, perform
image restoration tasks, or support taking panoramas. Automatic
visual reconstruction of objects and scenes is gaining interest for
industrial applications and amateur photographers. Therefore a
camera system for 3D reconstruction needs to be applicable es-
pecially for unexperienced users. We propose a framework for
operator guidance during the image acquisition process with the
goal to achieve full coverage of the object and sufficient overlap
for reliable multi-view stereo reconstruction.

Camera poses for multi-view stereo need to fulfill some require-
ments to allow for a complete and accurate reconstruction:

• Scene points have to be captured from different viewing di-
rections in order to achieve high enough accuracy and relia-
bility.

• Views need to be linked with sufficiently many common
points in order to allow for a joint estimation of all parame-
ters.

Those requirements often are not fulfilled in case the images are
captured by an unexperienced operator. Moreover, there are no
simple and applicable rules for ensuring overlap and accuracy.

We propose an automatic, interactive camera system that guides
the operator through the scene. Based on video image stream

the system automatically detects key frames and captures high-
resolution images to be used for final bundle adjustment. To do
so, it reconstructs both camera trajectory and scene structure in
real-time in order to make decisions about how and where to
move next. Those decisions are passed to the operator in form
of visual advices.

In contrast to many other works on localization and mapping we
exploit the live interaction between the user and the camera sys-
tem. By guiding the operator interactively the camera system can
suggest viewing poses, position and orientation, for reconstruc-
tions of a required quality. Furthermore the system immediately
yields an approximate solution for a global bundle adjustment in-
cluding all cameras.

2 RELATED WORK

Multi-view stereo reconstruction is one of the main expertises
in photogrammetry and computer vision. In the last few years
this technique became available for large-scale photo collections
(Agarwal et al., 2009; Frahm et al., 2010). Much effort has been
put into selecting suitable images of the object of interest and
preparing an approximate solution for the final bundle adjust-
ment. For the ROME dataset used by Frahm et al. (2010) about
22 hours of computing time are needed for clustering, geometric
verification and building the iconic scene graph, before perform-
ing a dense reconstruction within 2 hours.

In these scenarios the images were available on the internet, of
course with no view on the final reconstruction whatsoever, partly
leading to weak geometries or incomplete reconstructions. When
trying to achieve full coverage and high enough accuracy, the
question arises: Can we make use of the fact that an operator
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Figure 1: Microsoft PhotoSynth application for mobile devices
as an example for an intuitive photogrammetric application for
unexperienced users. The operator is asked to turn the viewing
direction (green dot) out of the previously captured area (high-
lighted polygon). When the dot reaches the dashed line, a new
image is taken automatically, preserving enough overlap of the
new image (green rectangle) with the others (white outline) for
the post-processing image stitching. The user may take additional
photos which then are merged to the automatically taken ones.

is taking images at this instant, one image after the other, while
moving through the scene? This at the same time would allow
the reconstruction framework incrementally build a coarse recon-
struction and derive guidance instructions for the operator from a
first, coarse reconstruction.

Therefore the reconstruction framework needs to track the mov-
ing camera and reconstruct parts of the scene in real-time, as pro-
posed recently with, e. g., Parallel Tracking and Mapping (Klein
and Murray, 2007) and Dense Tracking and Mapping (Newcombe
et al., 2011). Those systems are impressively fast, robust and ac-
curate. They are, however, designed for small desktop environ-
ments and not necessarily comfortable and useful for outdoor and
large-scale scenarios.

Since we possibly want to run our system on low-powered inte-
grated camera devices, we restrict to a less complex approach for
real-time tracking. In case of loosing orientation we always can
interactively ask the operator to go back to the last known posi-
tion. Since we explicitly make use of the operator’s attention, this
is no draw-back.

In order to make such a system accessible to even unexperienced
operators, we chose to design the system as simple and intuitive
as possible. We got inspiration from the Microsoft PhotoSynth1

application for mobile devices. This software enables the user
to take panorama images by automatically triggering the cam-
era, while he is turning around himself. The game-like approach
transfers the difficult problem of taking suitable images in differ-
ent directions with sufficient overlap to a simple 2D “move the
point out of a polygon”-task (Fig. 1). Although our objective is
a bit more complex, we formulate two game-like tasks of similar
simplicity.

3 THEORY

Our proposed camera system consists of a camera, being able
to capture high-resolution images, a low-resolution video stream,

1http://itunes.apple.com/de/app/photosynth/

id430065256

scenecamera

(a) In explore mode the operator is asked to turn
around his own position in order to explore new
areas of the scene.

scenecamera

(b) In refine mode the operator is asked to move
around the currently observed area of the scene in
order to refine the scene point locations.

Figure 2: Schematic overview of the two tasks the operator needs
to fulfill by turns. The camera (left) needs to move differently
round the objects (right).

and a display for showing the live camera image and visual hints.
The video stream is used to track KLT features (Lucas and Kanade,
1981) and to determine an approximate solution for the current
camera pose and observed scene points. After significant move-
ment a high-resolution image is taken for the offline bundle ad-
justment. The significance of a movement is determined by check-
ing coverage and accuracy.

3.1 Two tasks: Explore and refine scene points

The operator needs to fulfill two tasks: First, the camera has to
capture new scene points without loosing sight of previously lo-
cated points: The operator needs to explore the scene. Second,
each new point has to be viewed from significantly different view-
ing directions in order to get an accurate location: The operator
needs to refine those points.

A significant movement is defined differently, depending on which
of these two tasks the system is currently focusing on:

Explore mode When all previously observed scene points are
sufficiently accurately determined, the systems asks the op-
erator to capture new points by turning around his own posi-
tion, e. g. around the vertical axis, as shown in Fig. 2(a). As
soon as sufficiently many new points appeared within the
field of view or a minimum number of previously located
points is reached, a new key frame is triggered.

Refine mode When some new scene points are not located ac-
curately enough, the system asks the operator to refine those
points by moving around them, as shown in Fig. 2(b). As
soon as the angle between previous and current viewing di-
rection exceeds a certain threshold, e. g. 5 degrees, a new
key frame is triggered.

A scene point is sufficiently accurately observed when all eigen-
values of its covariance matrix are below some threshold. If the
scale of the observed scene is known, e. g. via user input, this
threshold is metric and can be set to the desired reconstruction
accuracy. Otherwise the accuracy criteria can also be defined
depending on the isotropy of the point’s covariance Beder and
Steffen (2006).

After exploring new points, the system always switches into re-
fine mode. After refine mode, however, the system may remain
in that mode if changing the viewing direction by some degrees
did not sufficiently increased the accuracy of the point locations.
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Figure 3: Visualization in refine mode. A virtual cone is gen-
erated starting at one selected scene point (right) and pointing
with its circular ground surface towards the camera projection
center of the previous key frame. The opening angle of the cone
is defined by the angular threshold for the required difference of
consecutive viewing directions in refine mode, e. g. 5 degrees.
The length of the cone is not essential. It is set to some frac-
tion of the scene point’s distance to the camera. Both the selected
scene point (black dot) and the cone’s ground circle (blue circular
patch) are projected into the current camera view. As the opera-
tor approaches the required change in viewing direction, the dot is
moving out of the circle which is an intuitive feedback for solving
the refinement task.

3.2 Key frame detection

After defining the tasks the operator needs to complete, we are
now looking into the task-specific key frame detection in more
detail.

Significant baseline in refine mode In refine mode the opera-
tor is asked to move around the scene in order to change the view-
ing direction significantly. This is almost equivalent to achieving
a significant baseline between consecutive key frames, but is in-
dependent of the unknown scale and avoids movements straight
towards the scene points which does not improve the configura-
tion.

To give the operator an intuitive feedback whether he approaches
or retreats the next key frame, we visualize the threshold of 5 de-
grees change in viewing direction in form of an ellipse around
an automatically selected KLT point. The point is one that needs
refinement and is closest to the image center. The ellipse is gen-
erated by projecting a cone into the image, as depicted in Fig. 3.

When moving around the object, the operator tends to escape the
virtual cone. Within the projected image the dot is escaping the
projected circle which is the game-like task the operator needs to
solve. This is sufficient for control, as moving towards the object
does not improve the situation; the visual feedback suggests not
to continue, since the dot remains fixed within the circle. Going
back to the previous position also does not improve the camera
configuration; in the camera image the dot approaches the center
of the circle, suggesting to move into a different direction. Ro-
tating the camera moves both dot and circle, but does not lead to
solving the refinement task, since rotation does not improve the
scene point localization.

Enough new points in explore mode In explore mode the op-
erator is asked to turn around himself in order to capture new ar-
eas of the scene, but still preserving overlap with previous frames.

We display the convex hull of all old reconstructed KLT points
and highlight the newly detected points. By turning towards new
areas of the scene some old points get lost and are replaced with
new ones. The exploration task is fulfilled as soon as a certain
amount of new points is captured outside of the convex hull of the
old points. The displayed polygon of the convex hull is updated
in real-time.

Figure 4: Visualization in explore mode. The convex hull (black
polygon) of all points observed in previous frames (black dots)
is displayed. New points being observed in the current frame are
highlighted with a blue “+”. The exploration task is to turn the
camera and catch new points outside the old bounding box.

3.3 Approximate solution

In order to be able to automatically detect key frames based on the
above-mentioned criteria we need to obtain real-time solutions
for camera poses and scene point locations. While the second
camera is oriented relatively w. r. t. the first one, the next cam-
eras are oriented via spatial resectioning. Thus only the scale of
the first baseline remains unknown and propagates into the scene
points and the remaining cameras.

Relative camera orientation The relative orientation of the sec-
ond camera is determined according to (Nister, 2004). Therefore
the essential matrix is computed from multiple minimal samples
of 5 KLT tracks. We choose the solution that minimizes the sum
over the Huber-norm of the re-projection errors, see (Torr and
Zisserman, 2000).

Since KLT features are tracked quite robustly within video se-
quences, we can assume a high inlier rate of, e. g., 50 % and only
need 218 random samples with a RANSAC approach (Fischler
and Bolles, 1981) for finding a correct solution with a certainty
of 99.9 %.

Absolute camera orientation The absolute camera orientation
is determined via spatial resection with at least 3 known scene
points, again minimizing the Huber norm. We use Grunert’s di-
rect solution (Grunert, 1841) as summarized in (Haralick et al.,
1994).

In contrast to determining the relative orientation with a mini-
mal set of 5 homologous points, we need only 3 correctly tracked
points for computing the spatial resection of the current camera.
Under same assumptions as before we now need 52 random sam-
ples for finding a correct solution with a certainty of 99.9 %.

Scene points via forward intersection Scene point coordinates
are determined via forward intersection from at least two cam-
eras. Each image ray mc,i from camera c to scene point i has
to be parallel to the projection of the homogeneous scene point
Xi using the normalized projection matrix Pc = RT

c [I3 | −Zc]
of camera c specified by rotation matrix Rc and projection center
Zc:

0 = S(mc,i)PcXi. (1)

The parallelism is enforced by restricting the vector product –
formulated using the skew symmetric matrix S : S(a)b = a× b
– to be zero. Combining equations for each of the C cameras
observing one point Xi yields the point Xi as the right singu-
lar vector to the smallest singular value of the (3C × 4)-matrix
[S(mc,i)Pc], see (McGlone, 2004, eq. (11.103)).
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This way we possibly obtain points at infinity or even behind the
camera. By checking the angle between image ray mc,i and the
connection between camera projection center and scene point Xi

we identify and remove points behind on of the cameras. Since
points at infinite distance or with small intersection angles can be
handled by the following bundle adjustment, we do not have to
remove them.

3.4 Bundle adjustment

After detecting a new key frame, we run a bundle adjustment with
all cameras and scene points. Optionally one can restrict to the
last k key frames, i. e. doing a sliding bundle adjustment, leading
to constant computing time and memory requirements.

We apply a novel bundle adjustment (Schneider et al., 2011), al-
lowing for various types of cameras, even multi-camera systems
and – most importantly – points at infinity. The latter is useful
for outdoor applications, when very distant points are observed
over long periods of time, since those points yield a very stable
estimate for the camera rotation parameters.

3.5 Algorithm

Let us summarize the overall algorithm for interactively tracking
the moving camera, reconstructing scene points and guiding the
operator. A schematic description is shown in Algorithm 1.

Initially we start with a first key frame and define the correspond-
ing camera pose to be at the origin of the global coordinate sys-
tem. The scene point cloud is empty.

Until a new key frame is detected, the program remains repeating
three steps:

1. Image points are observed. Therefore new coordinates for
tracked KLT features are read from the video camera mod-
ule. Depending on the current mode, lost KLT tracks are
allowed or disallowed to be replaced.

2. The camera is oriented approximately. For the second key
frame the orientation is computed relatively to the first cam-
era. Later we compute an absolute orientation w. r. t. previ-
ously forward intersected scene points.

3. The program decides, whether a new key frame is detected.
In refine mode the baseline, or the change in viewing direc-
tion respectively, is checked. In explore mode we count the
number of new KLT points outside the convex hull of old
KLT points.

After detecting a new key frame, we forward intersect new scene
points and run a bundle adjustment with all observations made
so far. We repeat waiting for new key frames and updating the
reconstructed scene, until the operator manually interrupts this
process.

3.6 Implementation details

We implemented the proposed framework for MathWorks2 Mat-
lab. KLT points, however, are detected and tracked in a separate
thread, maintained from a C++ routine via the MEX-interface.
This allows to run the feature tracker with about 30 Hz, while the
processing of one frame within the Matlab routines can take more
time, e. g. 2 to 5 Hz, without delaying the real-time tracking.

2http://www.mathworks.com/

// initialize

set first camera to origin;
allocate empty scene point cloud;

// infinite loop

repeat

// wait for new key frame

repeat

// observe image points

if refine mode then
track KLT features, do not replace lost features;

else if explore mode then
track KLT features, replace lost features;

// orient current camera

if second key frame then
compute relative orientation to first camera;

else
compute absolute orientation;

// detect key frame

if refine mode then
if significant baseline then key frame detected;

else if explore mode then
if enough new points then key frame detected;

until new key frame detected ;

// update scene

forward intersect new points;
run bundle adjustment;

until user interruption ;

Algorithm 1: Overview of the proposed camera framework. See
Section 3.5 for a detailed description.

4 EXPERIMENTS

We run two kinds of experiments. First we simulate tracking
and reconstruction with a synthetic camera, enabling quantita-
tive comparisons to ground truth orientation parameters. Second
we connect a hand-held camera to our tracking framework and
investigate our system with real images.

4.1 Simulating camera motions with a passive robot arm

For testing and evaluation purposes we engineered a novel, in-
teractive system for simulating controlled camera motions. We
built a simple robotic arm with three rotary sensors, i. e. three
degrees of freedom in the 2D plane (Fig. 5). The sensors are
connected to a control unit and accessible from our Matlab im-
plementation. For building the robotic arm we used the LEGO
Mindstorms NXT3 system and a Matlab interface from the Insti-
tute of Computer Vision4 at RWTH Aachen University.

From these three sensor values we compute ground-truth projec-
tion matrices, generate image points of virtual scene points and
disturb these perfect observations with errors of known stochas-
tic properties. Contrary to pre-computing a fixed trajectory with
camera poses at each instance of time, we can manually steer this
virtual camera in real-time and interactively react on visual ad-
vices the interactive camera framework is giving us. This way we

3http://mindstorms.lego.com/
4http://www.lfb.rwth-aachen.de/
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(a) Photo of the robotic arm (b) Rendering in Matlab

Figure 5: Photo (left) and rendering (right) of the robotic arm.
Rotation angles of the three orange sensors are transferred via the
control unit at the bottom to the Matlab implementation of our
tracking and reconstruction framework. The pose of the virtual
camera at the end of the arm is computed from the three angles
and can be used as ground truth camera orientation. Image points
are then generated by projecting a virtual scene point cloud into
the virtual camera and adding Gaussian noise.

can develop and evaluate the camera tracking modules and the
high-level control framework without the need for perfect feature
tracking results.

4.2 Real video camera

After successfully testing the camera framework with a simulated
camera, we ran the software for a video stream coming from a real
hand-held camera (Fig. 6).

4.3 Quantitative evaluation

The following evaluation is based on the approximate solution or
– in case of the simulated camera – ground truth data. Since the
absolute position, rotation and scale of relatively oriented cam-
eras and scene points is arbitrary, we transformed both scenes into
one common coordinate frame using a spatial similarity trans-
form using all common scene points.

Finally we computed three characteristic measures for the evalua-
tion: (1) mean angles between the camera axes, (2) mean distance
of camera projection centers and (3) mean distance of scene point
locations. Angles are converted to degrees for easier interpreta-
tion. In order to obtain distances independent of the unknown
scale factor, we converted distances to percent relative to the co-
ordinate range of all camera projection centers.

For both synthetic and real cameras we assume an observation
accuracy of 0.021 degrees. This corresponds to an image point
accuracy of 0.3 pixels at 820 pixels focal length. In the following
we evaluate two synthetic and one real data set. All of them are
summarized in Table 1. While SYNTH1 was created with very
slow and careful movements, SYNTH2 is characterized by a fast
and hectically moving camera, often leading to very few overlap-
ping points between key frames.

Quality of approximate solution with synthetic camera Com-
paring the reconstructed scenes before and after performing the
bundle adjustments indicates the quality of the algorithms for

(a) Camera view in refine mode. Red dots show inaccurate scene points.
The blue cross highlights the points to be focused on right now (pupil of
the cat’s right eye). This point needs to be brought out of the blue circle,
depicting the viewing cone of the previous frame, in order to achieve a
significant change in the viewing direction.

(b) Camera view in explore mode. Black dots show old scene points,
i. e. observations from previous frames. A black polygon visualizes their
convex hull. Newly observed points are marked with a blue “+”. While
the operator is turning, points on the cat’s head are lost and replaced with
observations on their back but also an other objects like the tree. The points
on the back do not count, since they lie within the convex hull of the old
points. But as soon as there are enough new points on the tree, the task is
fulfilled.

Figure 6: The proposed camera framework on a real example in
both possible modes. The camera image is overlaid with task-
specific annotations. The status bar displays the task for the op-
erator and the progress he is doing.

generating approximate values. For SYNTH1 we observe devi-
ations for projection centers and scene points of less than 1 %.
Rotation angles deviate in the order of the observation accuracy
of 0.021 degrees. Thus the approximate reconstruction is very
close to the best estimate, allowing fast conversion of the bundle
adjustment within few iterations. See Table 2 for more details on
this experiment.
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# cameras # scene points # rays motion
SYNTH1 24 479 2005 careful
SYNTH2 24 473 1921 rough
REAL 14 452 2400

Table 1: Overview of the three evaluated data sets.

minimum median maximum
camera pitch 0.006◦ 0.037◦ 0.232◦

camera yaw 0.004◦ 0.019◦ 0.338◦

camera roll 0.010◦ 0.041◦ 0.334◦

camera centers 0.095 % 0.382 % 6.335 %
scene points 0.104 % 0.284 % 2.654 %

Table 2: Deviations of three estimated camera orientation an-
gles, camera projection centers and scene point locations of the
SYNTH1 data set w. r. t. the approximate solution. Locations are
in percent compared to the coordinate range of all cameras.

Quality of final estimation with synthetic camera Our syn-
thetic camera setup allows to compare the final estimation with
ground truth data. For SYNTH1 we observe larger deviations of
the estimation to the ground truth than to the approximate solu-
tion, mostly due to quasi systematic errors caused by the local
definition of the coordinate system. After capturing enough key
frames, however, we obtain a stable configuration with angles
better than 0.1 degrees and positions better than 1 %.

Quality of final estimation with real camera For the data set
REAL, captured with a real hand-held camera, we obtain approxi-
mate values closer than 1 degree and 10 % to the final estimation.
The comparably large deviations in the positions of the cameras
can be explained by the small bases between consecutive key
frames. During refine mode there are some more extreme de-
viations up to 5 degrees for angles and 50 % for locations. In
explore mode, however, the system recovers again to a more sta-
ble reconstruction. See Table 3 for more detailed numbers on this
experiment.

minimum median maximum
camera pitch 0.112◦ 0.810◦ 4.794◦

camera yaw 0.109◦ 0.829◦ 3.827◦

camera roll 0.182◦ 1.021◦ 6.003◦

camera centers 0.834 % 8.390 % 54.931 %
scene points 0.251 % 2.563 % 21.379 %

Table 3: Deviations of three estimated camera orientation angles,
camera projection centers and scene point locations of the REAL

data set w. r. t. the approximate solution. Locations are in percent
compared to the coordinate range of all cameras.

Influence of operator behaviour For our synthetic camera setup
we did another test SYNTH2 with faster, more careless move-
ments and smaller overlaps between key frames. The approxima-
tion is up to 4 times worse than for SYNTH1. The final estimation,
however, yields almost same accuracies.

5 CONCLUSION

We proposed a camera framework for capturing a 3D scene that
is able to track the camera in real-time, extracts key frames au-
tomatically and gives intuitive tasks to the operator in order to
improve the quality of a post-processing multi-view reconstruc-
tion. A Matlab implementation is running at 2 to 5 Hz, without
slowing down the C++ KLT tracker running at 30 Hz in a separate
thread.

For testing and evaluating the system we developed a novel robotic
interface to manually steer a virtual camera based on a robotic

arm with three rotary sensors yielding ground truth camera poses
in real-time.

In future work we will try to improve the KLT point selection
in order to avoid small clusters with many points and large areas
without any. Currently the program stops when the connection
to previous frames gets lost, i. e. when not enough homologous
points are observed. Furthermore we plan to include inertial sen-
sors for improving robustness and accuracy of the approximate
solution.
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