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ABSTRACT: 
 
Digital cultural heritage documentation in 3D is subject to research and practical applications nowadays. Image-based modeling is a 
technique to create 3D models, which starts with the basic task of designing the camera network. This task is – however – quite 
crucial in practical applications because it needs a thorough planning and a certain level of expertise and experience. Bearing in mind 
todays computational (mobile) power we think that the optimal camera network should be designed in the field, and, therefore, 
making the preprocessing and planning dispensable. The optimal camera network is designed when certain accuracy demands are 
fulfilled with a reasonable effort, namely keeping the number of camera shots at a minimum.  
In this study, we report on the development of an automatic method to design the optimum camera network for a given object of 
interest, focusing currently on buildings and statues. Starting from a rough point cloud derived from a video stream of object images, 
the initial configuration of the camera network assuming a high-resolution state-of-the-art non-metric camera is designed. To 
improve the image coverage and accuracy, we use a mathematical penalty method of optimization with constraints. From the 
experimental test, we found that, after optimization, the maximum coverage is attained beside a significant improvement of positional 
accuracy. Currently, we are working on a guiding system, to ensure, that the operator actually takes the desired images. Further next 
steps will include a reliable and detailed modeling of the object applying sophisticated dense matching techniques.  
 
 

1. INTRODUCTION 
 

   The creation of realistic 3D models and their visualization is 
becoming more common nowadays and became part of the 
modern digital age (Quan, 2010) especially in cultural heritage 
documentation, restoration, conservation and the development of 
research in this field. 
   According to the demands of portability, low cost, fast 
acquisition, and accuracy, images represent a successful source to 
create these reality 3D models by the techniques of Image – 
Based Modeling (IBM). Automatic techniques can be used to 
track the image features and solve it mathematically by using 
Structure from Motion SfM techniques, which refer to the 
computation of the camera stations and viewing directions 
(imaging configuration) and the 3D object points from at least 
two images.  
   Although automatic techniques for measuring image coordinate 
and camera orientation are achievable nowadays, automatic 
devising of accurate and highly detailed 3D models still need a 
well-designed camera network. Camera network design needs 
many efforts in planning and a high degree of proficiency, which 
is a costly operation, and it is mainly concerned with finding the 
suitable placements for the minimum number of imaging 
cameras.  
   The optimal imaging configuration provides a high imaging 
accuracy and coverage. Kiamehr (2003) defined that the main 
purpose of network optimization is the design of an optimal 
network configuration and optimal observing plan in the sense 
that these optimal locations will meet the network quality 
requirement at a minimum cost. During the last three decades, 
Different mathematical techniques were used to solve the 
problem of camera network optimization (Fraser, 1984; Mason, 
1995; Olague, 2002; Saadatseresht et al., 2005). 
   The papers of Mason (1995,1997) focused on classifying the 
object of a pre-designed CAD model into geometrical primitives 

(planes, cylinders, etc.) and then designing a generic camera 
network, consisting of four cameras, to image each plane and 
then connecting the planes with additional cameras.  Olague 
(2002) and Olague and Dunn (2007) were focusing on optimizing 
the accuracy of the total camera design according to the 
categorization of Grafarend and Sanso (1985) and the setting of 
target control points to solve the problem for industrial 
environment with robotic arms. Moreover, Saadatseresht et al. 
(2005) used the fuzzy logic to solve for the camera network 
configuration problem. The experience of taking enough 
preliminary shots, fixing control points and the proper setting and 
adjusting of the fuzzy inference system were the crucial factors. 
For 3D reconstruction of cultural heritage and in contrast to the 
previous literature that focused on industrial application, wide-
base imaging is not preferred despite the highly accurate 
geometric ray intersection (Remondino et al., 2008). However, to 
design a short-base (dense) imaging network, the computational 
cost to orient these images, increases with the square of the 
number of images (Barazzetti et al., 2010), which leads to a time-
consuming process.    
   The objective of our research is to find the optimal camera 
network for 3D modeling of cultural heritage objects like 
buildings and statues based on a rough point cloud as obtained 
from state-of-the-art SfM techniques. The optimal network is 
acquired by finding at first, the sufficient number of imaging 
cameras for each object point and then optimizing the network 
accuracy by the Interior Penalty Function technique (Byrd et al., 
1999). Furthermore, if the actual images are, then taken from the 
proposed locations and in the proposed directions, i.e. when 
optimal configuration is realized, the processing time for 
automatic orientation of images will be decreased; because 
approximate camera locations are known, the matching of 
conjugate points is expected to be more reliable and faster. In 
addition, the bundle adjustment will benefit the knowledge of 
approximate camera locations.(Mason, 1997) 
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   In this paper, the first steps, namely the computation of the 
initial, rough point cloud and the computation of optimal camera 
locations for a subsequent high-resolution image acquisition are 
described. The actual usage of the high-resolution images is 
subject to future work. 
 

2. METHOD 
 
The research will solve the optimal camera network problem in 
three successive steps: 

- Computation of a rough point cloud and setting up an 
initial dense imaging block. 

- Finding the minimum number of cameras, by filtering 
the initial dense imaging block.  

- Optimizing the filtered block of images. 
  
2.1 The creation of rough point cloud 
  
   The developed algorithm of optimal camera network in the 
research starts with the creation of an initial point cloud for the 
study object because of the need to identify the rough shape, 
size, and geometry.  Since we want to be independent of 
existing geometric information on the object, like CAD models, 
this point cloud is derived from SfM methods, using a video 
image stream taken around the object, and including all parts of 
interest. See e.g. (Dellaert et al., 2000). 
   For objects like buildings, the point cloud should be 
segmented into adjacent planes (sub-clouds), which are the 
building facades. We will design an imaging block for each 
facade point cloud and then connect them by additional cameras 
in a similar way to (Mason, 1995).  
 
2.2 Initial designs of the camera network  
 
   The network design is usually formed in a block shape where 
overlapped images are designed in multiple overlapped strips. 
In close range photogrammetry, a block can be designed in 
either an ordered image sequence or unordered sets of images. 
The first method has a linear computational cost with respect to 
the number of images. For unordered (sparse) sets of images, it 
is necessary to check all possible image pair combinations to 
determine the ones sharing sufficient correspondences 
(Barazzetti et al., 2010). Therefore, each image must be 
compared with all the others, leading to a high computational 
cost. For this reason, we used in this research the ordering 
imaging block type. 
   The same overlap percentage in aerial blocks of 60% endlap 
and 20% sidelap can be used in terrestrial blocks (Matthews, 
2008). However, in this research, the accessible heights, that the 
camera operator can occupy, is chosen to be in the range of (.5 – 
2 meters). Therefore, we will have a block design of images in 
most of the cases to capture, perfectly, the object in stereo as 
will be shown in the tests.  
The viewing angle ߱ of the cameras toward the object will be 
computed for each strip according to the difference in height 
between the object and the camera as shown in Figure 1. 

 
Figure 1. The relation between the camera accessible heights 

and object height 

   The distance between the camera and the study object 
 is an important parameter in the camera placement (݄ݐ݁ܦ)
objective, and this is influenced by many factors like the camera 
field of view, user defined resolution, the free space available 
between the camera and the object, positional accuracy, and 
depth of field (Saadatseresht et al., 2005).  
   The required object minimum resolution or ground sample 
distance (GSD) is a key factor in determining the maximum 
depth distance between the camera and the object.  
   Another essential factor relates to the accuracy requirements. 
However, in the camera network design, the minimum depth 
distance will be selected, as the designing distance to maintain 
both demands of resolution and accuracy. 
   After setting all the requirements of the imaging block design, 
the camera exterior orientation parameters are defined initially 
by setting the camera locations	ܶݔ, ,	ݕܶ  while setting ,ݖܶ	݀݊ܽ
߱,߮ and ߢ as the initial rotation angles. Figure 2 illustrates the 
relationship between this simulated camera system ሺݔ, ,ݕ  ሻ andݖ
object coordinate system	ሺܺ, ܻ, ܼሻ. 

 
Figure 2. Camera and object coordinate systems  

 
   As mentioned earlier, study objects are represented initially by 
a rough point cloud created automatically from video imaging. 
We assume in the research that these rough point clouds are 
accurate and without blunders. However, this assumption relies 
on the high redundancy offered by the video imaging and the 
efficiency of the blunders detection and removal. 
 
2.3 Visibility requirement  
 
   The point cloud, which is generated automatically by the SfM 
technique, is to be tested for visibility from the designed camera 
locations. Therefore, we create a triangulation surface and 
compute the normal vector for each point. These normal vectors 
are used to test the visibility of points in each camera as shown 
in Figure 3 for a simulated building facade example. 

 
Figure 3. Visibility by using the triangular surface normal 
vectors   
 
   Accordingly, the decision of considering points as visible or 
invisible, is depending on the absolute difference between the 
orientation of the camera optical axis ݉ܽܥௗ	and the normal 
vector direction	 ௗܰ. This difference is compared to a threshold 
to decide the visibility status. However, it must be noted that by 
using only this technique, we are not able to detect occluded 
areas. Such a method will be developed in the future. 
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2.4 Accuracy assessment 
 
   To validate the positional accuracy ሺߪ, ,ߪ  ሻ of the pointߪ
cloud before and after the camera optimization, a simulation 
computation is used by evaluating the covariance matrix of 
unknown points	ܳ. 
   The exterior orientation parameters 	߱, ߮, ,ߢ ,ݔܶ ,ݕܶ  	ݖܶ
and the image coordinates ݔ,ݕ	are considered as observations 
while the object coordinates are considered as 
unknowns	 ܺ , ܻ , ܼ. This assumption will allow the propagation 
of the expected errors from the exterior orientations and image 
coordinates back to the object points.  
   The errors assigned to the exterior parameters, and the image 
coordinates are assumed to be the same in all cases. To compute 
the covariance matrix ܳ	for each point in the cloud, we can 
use the following equation (1): 
 
 
	ܳ ൌ                                                    (1)			ሻିଵܣ௧ܳܣଶሺߪ	
 
 
Where ܣ is the design matrix, ܳ is the weight coefficient 
matrix, and ߪଶ is the variance of unit weight. 
 
2.5 Minimum numbers of cameras 
 
   The aim of this research as mentioned earlier is to find the 
minimum number of cameras in an optimal configuration, 
which guarantees the sufficient coverage and accuracy. Fraser 
(1989) states that the high accuracy can be achieved with a large 
base imaging (Base/Depth ratio); however, it is not useful if the 
aim is a highly detailed 3D model, this would require a short 
base-imaging network according to (Haala, 2011). 
Consequently, the strategy of finding the minimum number of 
cameras is based on designing a dense imaging block, and then 
tries to filter out the cameras that are redundant in the sense of 
coverage. Finally, optimization is applied to modify and adjust 
the camera orientation and placement to minimize the expected 
errors in the point cloud.  
   The diagram in Figure 4 summarizes the research procedure 
emphasizing on finding the minimum number of cameras. 

 
Figure 4. Flowchart of the research methodology 

 
The steps in details are:    

1- Divide the derived point cloud from video imaging into 
over covered and fair covered.  Over covered points are 

the points that appear in more than three cameras while 
fair covered points refer to the points that appear in three 
cameras. 

2- The algorithm starts by arranging the cameras involved in 
imaging over-covered points according to their coverage 
in an ascending order. The reason for this arrangement is 
to cancel the redundant cameras that are imaging a less 
numbers of points. 

3- Canceling the camera that is involved in imaging the over 
covered point group, but never contribute in imaging fair 
covered points.     

4- The network configuration is tested again according to the 
coverage after the camera cancelation and the point cloud 
is re-classified into over covered and fair covered. 

5- The same procedure of step 3 is followed, and a new 
camera is cancelled. The filtration is continued until no 
more redundant cameras involved in imaging only over-
covered points. In future work, camera removal will also 
consider the reconstruction accuracy. 

6- The filtered camera configuration is optimized for 
accuracy by using nonlinear constrained minimization. 
Optimization will be discussed in the following section. 

7- The final camera configuration is statistically tested by 
assessing the positional accuracy for each point in the 
cloud as mentioned in section 2.4 previously. The 
coverage assessment is also tested by back projecting the 
points into the optimized images by collinearity 
equations.   

 
2.6 Optimum camera network  
 
   To compute the optimum camera network for 3D modeling, it 
is important to discuss the mathematical optimization overview 
before setting up the objective function and necessary 
constraints for the camera placement. 
   Optimization techniques are used to find a set of design 
parameters,	ݔ ൌ ሺݔଵ, ,ଶݔ … .  ሻ, that can in some way beݔ
defined as optimal. In a simple case this might be minimization 
or maximization of some system characteristic that is dependent 
on	ݔ. In a more advanced formulation the objective function 
݂ሺݔሻ to be minimized or maximized ,might be subject to 
constraints in the form of equality constraints, ݄ሺݔሻ ൌ 0	ሺ݅ ൌ
1, … . ,݉ሻ, inequality constraints,	ܩሺݔሻ  0	ሺ݅ ൌ ݉ 
1,… ,݉ሻ; and/or  parameter bounds, ݔ,  .௨ (Matlab, 2010)ݔ
   The objective function and constraints can be nonlinear 
functions of the design variables and is called Nonlinear 
Programming (NP) problem. This problem is mathematically 
challenging as in this case of the camera placement problem.  
The condition that the gradient must be zero at the minimum is 
well known in algebra. However, for a nonlinear large scale 
minimization problem, an analogous condition called the 
Karush-Kuhn-Tucker (KKT) conditions must be fulfilled to find 
the optimum solution for this problem and guarantee a global 
optimum (Rao, 2009). 
   The mathematical challenge to solve such kind of problems is 
mainly in the existence of inequality nonlinear constraints as in 
our case for camera optimization. In this research the technique 
of interior point (Byrd et al., 1999) is used which gives reliable 
results as will be shown in the applications.  
   According to the literature, this approach has enjoyed great 
successes and proved to be effective for a variety of problem 
classes due to their regularization effects on the constraints. 
Interior-point methods have become the workhorse in large-
scale optimization due to their Newton-like qualities, both in 
terms of their scalability and convergence behavior (Curtis, 
2011). The interior point algorithm is to solve a sequence of 
approximate minimization problems, as shown in equation (2), 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

9



 

and essentially implemented by using a barrier method (Byrd et 
al., 1999): 
 
 

ఓ݂ሺݔ, ሻݏ ൌ௫,௦		
 ݂ሺݔሻ௫,௦		

 െ ∑ߤ ln	ሺݏሻ

ୀଵ   

	:ݐ	ݐ݆ܾܿ݁ݑܵ
݄ሺݔሻ ൌ 0,																݅ ൌ 1,… . , ݉ 
݃ሺݔሻ  ݏ ൌ 0,								݅ ൌ ݉  1,… . ,݉                                (2) 
 
 
Where ߤ is the barrier parameter and where the slack 
variable	ݏ	(variables that is added to an inequality constraint to 
transform it into equality) is assumed to be positive to keep 
ln	ሺݏሻ bounded. As ߤ decreases to zero, the minimum of ఓ݂ 
should approach the minimum of		݂. To update the unknown 
parameters (camera exterior orientation	ݔ) and the slack 
variables	ݏ, a step length must be determined and added to the 
initial values of these parameters ሺݔ  ݀௫, ݏ  ݀௦ሻ in an 
iterative way. These steps can be solved either by a direct 
(linear) search or by a conjugate gradient CG technique 
(Matlab, 2010). At each iteration, the algorithm decreases a 
merit function to determine whether the total step is acceptable. 
This is done by checking if the attempted step does not decrease 
the merit function, and in that case, the algorithm rejects the 
step and attempt a new step until the stopping tolerance 
satisfied. In this research the optimization toolbox of Matlab 
2010 (Matlab, 2010) is used to implement this technique 
through the use of the function (fmincon). 
   The following subsections will discuss the formulation of the 
objective function and the necessary constraints to model the 
camera network optimization in this research. 
 
2.6.1 The formulation of the camera optimization problem:        
   we need to define precisely the input and output parameters to 
solve the optimization problem with camera placement. This is 
necessary to formulate the objective function 	݂ሺݔሻ	that can 
guarantee the final goal of optimum camera placement.  The 
input and output parameters can be listed as follows: 
The input parameters: 

- Point cloud (ܺ, ܻ, ܼ) coordinates acquired from video 
tracking. 

- The initial exterior orientation parameters for each 
possible (suggested) camera, which is acquired 
from the initial filtered imaging block. 
ሺ߱

, ߮, ,ߢ ݔܶ
, ݕܶ

, ݖܶ
ሻ				݅ ൌ 1,2	, … .݉.  

These exterior orientation parameters will be collected in 
one vector (0ݔ) which represents the initial guess of 
unknowns for the next optimization iteration step. 

The output parameters: 
- The optimal exterior orientation parameters 
߱, ߮, ,ߢ ,ݔܶ ,ݕܶ  .i	for each camera	ݖܶ

   In this research, the objective function is formulated as shown 
in equation (3). This will guarantee the maximum accuracy 
(Fraser, 1989) by the optimal minimum number of cameras. 
 
  

݂ሺݔሻ ൌ ݉݅݊	 ቀ
௧	ொ

ଷ
ቁ	                       (3) 

 
 
   This function is expressed by minimizing the computed 
average error in (ܺ, ܻ, ܽ݊݀	ܼ) for each point in the cloud of ݊ 
unknown object point, which is computed according to the 
collinearity equations model. This is meant to improve the 
precision of the global project and thus, a larger number of 
images in which the same point is visible improves (Barazzetti 
et al., 2010).  

   At this stage, the input parameters are defined and set for the 
next step of optimization. Moreover, the camera optimization 
problem is a non-linear problem and needs to be constrained to 
get real results that satisfy the final goal for the 3D modeling of 
the object. The next section will explain the necessary 
constraints involved in the camera network optimization for 3D 
modeling.     
 
2.6.2 The constraints on optimum camera placement: The 
camera placement problem is influenced by many design and 
geometric constraints, which can be listed as follows:   

- The lower and upper bounds of the estimated 
parameters for each designed camera. 

- The distance between the camera and the object: 
This constraint is formulated by determining the maximum 
allowable distance between the cameras and the study object, 
which is subject to the user-defined resolution, accuracy, and 
the camera angular field of view. 

- The distance between the designed cameras:  
The distance between any two cameras in the designed network 
must be constrained according to the allowed Base/Depth ratio, 
which may guarantee the possibility for the effective dense 
reconstruction and accurate ray intersection. 

- The inequality constraint of the image coordinates:   
This constraint is formulated in order to force the points, which 
are imaged by a certain initial camera in the block, to remain 
observed in that image after optimization. 

-  The equality constraints of the image coordinates:   
This means to force the average of the image coordinates (in 
p.p. system) to equal zero. This constraint is useful to distribute 
the image points uniformly around the image center as possible. 
Consequently, this is supposed to improve the final accuracy 
since more points will appear in the optimal images besides 
supporting the previously mentioned inequality constraint.  
 

 
3. EXPERIMENTS  

 
   To test the developed technique, we implement two 
experiments on automatically derived point clouds by the SfM 
technique of a building facade, and a statue. These point clouds 
are scaled into ground truth dimensions during the derivation 
process; however, a local coordinate system is adopted in the 
two cases. The imaging is simulated with an 18mm HD camera 
with a (22.3*14.9) mm2 frame size. The designed B/D ratio was 
.12 and .36 respectively. 
Facade case  
   The first test as shown in Figure 5 is applied on a building 
facade point cloud consisting of 847 points and the surface 
triangulated mesh is prepared by using Meshlab open source 
software (Meshlab, 2010) and provide the face normals for 
visibility purpose. A simulation of 32 cameras block is designed 
automatically with a depth distance of 11.48 meters to satisfy 
the resolution and accuracy demands of 10mm. 

 

 
Figure 5. The facade case and its initial imaging block 
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Statue case 
   The second test was implemented on a statue point cloud (396 
point) as illustrated in Figure 6, which is generated 
automatically by SfM technique from the video imaging stream 
of the statue by using Boujou software (Vicon, 2010). We 
transformed the triangular mesh into grid mesh and then 
conclude the statue points, and face normals. This will assure 
that the cameras will not miss any part of the statue because of 
the possible gaps in the rough point cloud. A simulation of 50 
cameras block of two strips is designed around this statue in a 
circular domain with a depth distance of 2.5 meters to satisfy 
the required accuracy of 1mm. 

 
Figure 6. The statue case and its initial block 

 
 

4. RESULTS 
   
   The developed methodology is applied in both experiments of 
the building facade and the statue, and the results are reported in 
the following sections. 
   For the facade, the dense camera network is filtered according 
to coverage requirements of minimum three cameras and results 
with the imaging configuration of Figure 7a, which consists of 
12 cameras after cancelling 20 redundant cameras. The 
optimization algorithm is followed to find the final optimal 
imaging configuration, which satisfies all the aforementioned 
constraints as shown in Figure 7b.  

 
            a)                                               b) 

Figure 7. Imaging configuration of the facade 
  
   To validate the network reliability, error estimation is 
computed for each point in the cloud and plotted as an 
exaggerated ellipsoid of errors as illustrated in Figure 8. We can 
notice that the errors resulted from the dense and filtered 
networks near the edges and corners of the facade are larger 
than the required threshold (plotted in orange). This is because 
of the poor viewing geometry in the upper areas despite 
sufficient coverage. 

 
Figure 8. The error ellipsoid plot    a) dense network                 
b) minimum coverage network   c) optimal network 

 

  For the statue, as in the previous test, the algorithm runs by 
considering the minimum coverage to cancel one redundant 
camera iteratively, which for this test, stopped after the filtration 
of 31 cameras, and leaves only 19 necessary cameras. The 
continuing cameras guarantee the minimum of three intersecting 
rays for each point. The optimization algorithm is followed to 
find the final optimal imaging configuration, which satisfies all 
the aforementioned constraints as shown in Figure 9.   

 
a)                        b) 

Figure 9. Statue imaging network   a) before optimization         
b) after optimization  
 
  To validate the network strength, error assessment is computed 
for each point in the cloud of the filtered network and the 
optimal network. The plot of an exaggerated ellipsoid of errors 
is illustrated in Figure 10, and reported in Table 1.   

 
a) 

b)                     c) 
Figure 10. The error ellipsoids for the statue points in three 
cases a) dense network b) filtered network  c) optimal 
network     

 
   It’s worth to mention that for the statue case, if the 
optimization runs for a 10000 function count as shown in Figure 
11, then it spent 82 minutes for processing on Hp Elitebook 
8530 model with Intel processor Core2Duo 2.8GHz CPU. 
However, the optimization-computing engine in both cases was 
efficient in minimizing the objective function and looks to be 
stable after reaching (1500) function count, which consumes 12 
minutes for processing.  

 
Figure 11. The log plots of optimization run of the statue 
 

a)

c)b) 
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The summarized results of both cases in accuracy, mean 
coverage and the number of cameras are illustrated in  Table 1.  

Type Cameras  
Average  
Accuracy 

Average  
coverage 
(cameras) 

Facade case study 
Dense block 32  9.4 mm 11.4 
Filtered network 12  38.1 mm 3.3
Optimal network 12  7.1 mm 5.4 

Statue case study 
Dense block 50  0.9 mm 10.8
Filtered network 19  1.6 mm 3.7 
Optimal network 19  1.1 mm 5.3 

Table 1. Summary of results 
 
 

5. DISCUSSION AND CONCLUSIONS 
 

   In this research, we developed a method to find the optimal 
camera network configuration for the 3D modeling of cultural 
heritage objects for the purpose of documentation, restoration, 
conservation, and virtual museums.  
   We started with a straightforward iterative camera 
filtering procedure where dense, short base camera network 
is initially designed according to the imaging standards, 
which is then filtered, to reach the minimum number of at least 
three cameras (Fraser, 1989; Luhmann T. et al., 2006) for each 
point. Then we used the nonlinear constrained optimization 
techniques, to improve, the positional accuracy of the point 
cloud by adjusting the camera initial locations and orientation 
until reaching the desired accuracy. 
   We tested two cases of a facade and a statue, and the tests 
indicated a significant reduction in the number of the simulated 
initial dense camera networks. In the first case of the facade, the 
cameras reduced from 32 to 12 and in the statue case, the 50 
cameras reduced to 19 as shown in Figure 7 and Figure 9. This 
strategy is beneficial to have a higher covered 
imaging configuration with a minimum number of short base 
cameras. Consequently, it is shown in Table 1 that the 
accuracy is degraded from (9mm) to (38mm) and from (.9mm) 
to (1.6mm) in the two case studies respectively. 
   It can be seen that the proposed model indeed improved this 
deteriorated accuracy after filtration by using optimization 
techniques, which gives, an improved point cloud accuracy 
and average coverage as shown in Table 1. The error in the first 
experiment was 8 mm and in the second experiment was 1mm, 
which is complying with the required accuracy of 10mm, and 1 
mm respectively. 
   Conversely, there are few limitations in this proposed 
technique, which is first; the created point cloud derived from 
video stream images, which might be a costly operation. 
Secondly, the technique is also depending on the efficiency of 
the optimization algorithm, which is also a time consuming 
processing technique. Occlusions between the camera and 
the object like trees beside the buildings are also not considered 
in this research. 
   Future work will focus on designing a guiding system for the 
actual, high-resolution image acquisition at estimated camera 
locations and attitudes. Ultimately, the development of the 
optimal camera network will contribute to an improvement of 
the image processing steps necessary for the high-resolution 
images. Not only, the search space for corresponding image 
points will be reduced because of the knowledge on initial 
camera location; also better approximations for bundle 
adjustment are offered, making that step faster and more reliable 
compared to the case when no prior information is available.  
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