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ABSTRACT:

Novel image acquisition tools such as micro aerial vehicles (MAVs) in form of quad- or octo-rotor helicopters support the creation of
3D reconstructions with ground sampling distances below 1 cm. The limitation of aerial photogrammetry to nadir and oblique views in
heights of several hundred meters is bypassed, allowing close-up photos of facades and ground features. However, the new acquisition
modality also introduces challenges: First, flight space might be restricted in urban areas, which leads to missing views for accurate
3D reconstruction and causes fracturing of large models. This could also happen due to vegetation or simply a change of illumination
during image acquisition. Second, accurate geo-referencing of reconstructions is difficult because of shadowed GPS signals in urban
areas, so alignment based on GPS information is often not possible.
In this paper, we address the automatic fusion of such partial reconstructions. Our approach is largely based on the work of (Wendel
et al., 2011a), but does not require an overhead digital surface model for fusion. Instead, we exploit that patch-based semi-dense
reconstruction of the fractured model typically results in several point clouds covering overlapping areas, even if sparse feature cor-
respondences cannot be established. We approximate orthographic depth maps for the individual parts and iteratively align them in a
global coordinate system. As a result, we are able to generate point clouds which are visually more appealing and serve as an ideal
basis for further processing. Mismatches between parts of the fused models depend only on the individual point density, which allows
us to achieve a fusion accuracy in the range of ±1 cm on our evaluation dataset.

1 INTRODUCTION

Novel image acquisition tools such as Micro Aerial Vehicles (MAVs)
in form of quad- or octo-rotor helicopters support the creation of
3D reconstructions with ground sampling distances below 1cm
and gain importance in photogrammetry (Eisenbeiss, 2004) (Eisen-
beiss, 2009). The limitation of aerial photogrammetry to nadir
and oblique views in heights of several hundred meters is by-
passed, allowing close-up photos of facades and ground features.

Next to several benefits, the new acquisition modality also intro-
duces challenges: First, geo-referencing of 3D reconstructions is
often difficult because of shadowed GPS signals in urban areas,
so accurate alignment purely based on GPS information is not
possible. However, proper alignment to a world coordinate sys-
tem is not only beneficial to applications where the model should
be set into context, for instance in industrial applications such
as construction site monitoring (Kluckner et al., 2011), but cru-
cial if further algorithmic steps depend on it as in automatic view
planning (Schmid et al., 2012). Second, flight space might be
restricted in urban areas, which leads to missing views for ac-
curate 3D reconstruction and causes fracturing of large models.
This could also happen due to vegetation or simply a change of
illumination during image acquisition.

In this paper, we address the automatic fusion of such partial
Structure-from-Motion (SfM) 3D reconstructions and aim on gen-
erating a single, larger and denser 3D model of a scene. Our ap-
proach is largely based on the work of (Wendel et al., 2011a) who
addressed the issue of geo–referencing partial reconstructions. In
contrast, our approach does not require an overhead digital sur-
face model for model fusion. Instead, we exploit that patch-based
semi-dense reconstruction of the fractured model typically results
in several point clouds covering overlapping areas, even if sparse

feature correspondences cannot be established. We approximate
orthographic depth maps for the individual parts and iteratively
align them in a global coordinate system. As a result we are able
to generate point clouds which are visually more appealing and
serve as an ideal basis for further processing.

We evaluate our approach using two outdoor scenes, consisting
of several partial reconstructions with more than a million points
each. We demonstrate that our approach can not only fuse recon-
structions from airborne imagery, but also closes the gap between
aerial and terrestrial photos. Mismatches between parts of the
fused models depend only on the individual point density, which
allows us to achieve a fusion accuracy in the range of ±1 cm on
our evaluation dataset. Figure 1 shows a typical fusion of two
partial reconstructions.

2 RELATED WORK

The problem of aligning 2D images or 3D models to a 3D struc-
ture is well studied, especially in the context of large-scale city
modeling. (Frueh and Zakhor, 2003) present an algorithm to fuse
close–range facade models acquired at ground level with a far–
range DSM recorded by a plane. The models are created using
both ground-based and airborne laser scanners, as well as digi-
tal cameras for texturing. Their approach is based on registering
the edges of the DSM image to the horizontal scans of a ground
model using Monte-Carlo-Localization. Similarly, (Strecha et
al., 2010) register facades segmented from a 3D point cloud to
building footprints. Their approach combines various visual and
geographical cues in a generative model, which allows robust
treatment of outliers. However, both approaches are focused on
large-scale city models with flat facades to both sides, resulting in
fairly clean edges. In contrast, our approach takes the height over
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(a) Western facades missing (b) Eastern facades missing (c) Fusion result

Figure 1: Typical results for the automatic fusion of two partial reconstructions, based on MAV imagery. Best viewed in color.

ground into account and therefore even benefits from complex
structures.

(Wang and You, 2009) and (Wang and You, 2010) tackle the prob-
lem of registering images of 2D optical sensors and 3D range
sensors, without any assumption about initial alignment. Their
approach is based on region matching between optical images
and depth images using Shape Context (Belongie et al., 2002).
They extract regions from an ortho projection of the scene us-
ing an adjusted segmentation step, and connected regions of the
same heights from a DSM. Again, this works well for large-scale
city models, but would not work for partial SfM models. Addi-
tionally, 3D models created from ground level hardly show large
regions which could be matched to a nadir view.

A popular approach to aligning and fusing SfM point clouds is to
use random sample consensus (RANSAC)-based geometric ver-
ification (Fischler and Bolles, 1981). A typical issue is the esti-
mation of a reasonable inlier threshold, however this has been re-
solved in recent work (Raguram and Frahm, 2011). Still, such an
approach is not feasible for our purpose as on the one hand feature
correspondences cannot be established and the algorithm would
have to solve a huge combinatoric problem. On the other hand,
we want to align data with significant variations of the ground
sampling distance which would not be possible either.

Another well known method of aligning two point clouds is the
Iterative Closest Points (ICP) algorithm (Zhang, 1994). ICP esti-
mates a transform to minimize the overall distance between points
by iteratively assigning closest points as correspondences and
solving for the best rigid transform. While ICP is mainly used
for registering 3D laser scans, (Zhao et al., 2005) use it to align
dense motion stereo from videos to laser scan data. However, 3D
ICP can take very long and suffers from getting stuck in local
minima due to its typically small convergence radius. In other
words, a good initialization is necessary for ICP to converge. Our
evaluation in Section 5 shows that simply applying ICP is not suf-
ficient for our challenging datasets; however, 3D ICP can still be
exploited on top of our method to improve the results.

(Kaminsky et al., 2009) use 2D ICP to compute the optimal align-
ment of a sparse SfM point cloud to an overhead image using an
objective function that matches 3D points to image edges. Ad-
ditionally, the objective function contains free space constraints
which avoid an alignment to extraneous edges in the overhead
image. While their approach is suitable to align many 3D mod-
els obtained from ground level, it has problems with points on
the ground and would therefore fail to align the models acquired
using our micro aerial vehicle.

Our fusion approach builds on previous work of (Wendel et al.,
2011a). This approach has shown to work in complex scenar-
ios with models acquired in different seasons where sparse fea-
ture correspondences could not be established. Given a sufficient
point density in the reconstruction, the approach is less prone to
errors caused by objects on the ground than previous work, it im-
plicitly follows a free-space constraint and it works with models
covering a small area. In the following we demonstrate how the
approach can be extend for automatic fusion of partial reconstruc-
tions without the need for an overhead digital surface model.

3 OBTAINING THE 3D MODELS

For 3D model reconstruction we rely on a Structure from Motion
(SfM) approach that is able to reconstruct a scene from unorga-
nized image sets. Structure from Motion deals with the problem
of estimating the 3D structure of a scene and camera orientations
from 2D image measurements only. Our solution to the 3D recon-
struction problem is based on the work of (Irschara et al., 2010)
and (Wendel et al., 2011b). It is widely applicable since no prior
knowledge about the scene is necessary (i.e. no sequential or-
dering of the input images has to be provided) and can therefore
be applied to terrestrial as well as aerial imagery. To accelerate
the computations we take advantage of graphic processing units
(GPUs) for efficient parallelized computing (Frahm et al., 2010).

In particular our framework consists of three processing steps,
namely feature extraction, matching, and geometry estimation.
First, we extract SIFT features (Lowe, 2004) from each frame.
We then match the keypoint descriptors between each pair of im-
ages and perform geometric verification based on the Five-Point
algorithm (Nistér, 2004). Since matches that arise from descrip-
tor comparisons are often highly contaminated by outliers, we
employ a RANSAC (Fischler and Bolles, 1981) algorithm for ro-
bust estimation. The matching output is a graph structure de-
noted as epipolar graph EG, that consists of the set of vertices
V = {I1 . . . IN} corresponding to the images and a set of edges
E = {eij |i, j ∈ V} that are pairwise reconstructions. Our SfM
method follows an incremental approach (Snavely et al., 2006)
based on the epipolar graph EG. We initialize the geometry as
proposed in (Klopschitz et al., 2010). Next, for every image I
that is not reconstructed and has a potential overlap to the current
3D scene (estimated from the EG graph), 2D–to–3D correspon-
dences are established. A three-point pose algorithm (Haralick et
al., 1991) inside a RANSAC loop is used to insert the position of
a new image. When a pose can be determined (i.e. a sufficient
inlier confidence is achieved), the structure is updated with the
new camera and all measurements visible therein. A subsequent
procedure expands the current 3D structure by triangulation of
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(a) (b) (c)

Figure 2: Scene reconstruction. (a) Original view of the scene. (b) Sparse model obtained by structure from motion reconstruction.
(c) Semi-dense point model obtained by refining the sparse model with PMVS and fusing it using the proposed algorithm.

new correspondences. Bundle adjustment (Triggs et al., 2000)
is used to globally minimize the reprojection error over all mea-
surements. The triangulated points are then back-projected and
searched for in every image. To this end we utilize a 2D kd-tree
for efficient correspondence search in a local neighborhood of
projections. This method ensures strong connections within the
current reconstruction. Whenever a number ofN images is added
(we use N = 10), bundle adjustment is used to simultaneously
optimize structure and camera pose. The sparse reconstruction
result can be seen in Figure 2(b).

We further rely on the publicly available patch–based multiview
stereo (PMVS) (Furukawa and Ponce, 2009) reconstruction soft-
ware to densify aerial and terrestrial reconstructions. Since PMVS
requires textured surfaces for densification, it does not guarantee
a constant ground sampling distance and therefore the reconstruc-
tion of weakly textured surfaces may fail. The semi-dense PMVS
reconstruction result, fused from two partial reconstructions us-
ing our approach, is depicted in Figure 2(c).

4 AUTOMATIC FUSION

Our approach to the automatic fusion of partial reconstructions
is based on the alignment of 2D depth maps showing the scene
in a nadir view, rather than 3D point clouds. We can thus handle
geometric configurations where ICP fails due to local minima, as
well as significant differences in appearance because there is no
need to establish sparse feature correspondences. Instead, we ex-
ploit that patch-based semi-dense reconstruction of the fractured
model typically results in several point clouds covering overlap-
ping areas. We automatically rotate all available partial recon-
structions into a common coordinate system and project them to
a plane parallel to the ground. Additionally available GPS in-
formation might be used to roughly align the models within that
plane; however, the user’s knowledge about acquiring the models
at roughly the same place is also good enough. Finally, the partial
reconstructions are iteratively aligned to each other by correlat-
ing the successively improving depth map stored in the plane with
the individual depth maps generated from the models. This cor-
rects for the initial alignment uncertainties and results in precisely
fused models. In the following paragraphs a detailed description
of our approach is given.

4.1 Iterative Processing Scheme

We employ an iterative processing scheme for fusing partial re-
constructions. Similar to the original approach by (Wendel et
al., 2011a) we store information about surface heights in a plane
parallel to the ground. However, in contrast to using the digital
surface model (DSM) we initialize these heights to be undefined

and successively improve the depth map with every alignment of
a partial reconstruction. In other words, the first partial model is
only roughly projected to the plane, but all further iterations can
resort to the evolving surface model. While we do not require the
initial DSM information for fusion anymore, it can still be used
to improve geo–referencing as in the original approach.

In our processing scheme we represent all coordinates in a lo-
cal Earth-centered, Earth-fixed (local ECEF) coordinate system.
While the global ECEF coordinate system has its origin at the
center of the Earth, with the x axis passing through the equator
at the prime meridian and the z axis passing through the north
pole, local ECEF employs a tangent plane to the Earth’s surface
at a reference point. By definition, the x axis heads East, the y
axis North, and the z axis up into the sky (Snyder, 1987). Storing
data in local ECEF format has two advantages over the original
method proposed by (Wendel et al., 2011a): First, the plane for
creating depth maps over ground is inherently given and all co-
ordinates in this plane have metrical values. This is useful for
defining parameters in the alignment process. Second, the is-
sue of storing huge numerical values as in ECEF format and the
resulting inaccuracies are resolved by subtracting the local refer-
ence point.

4.2 Rough Alignment

Structure from Motion (SfM) pipelines typically store resulting
models in the coordinate system of the first camera. As a result,
the axes of partial reconstructions do not align at all and have to
be rotated to a common ground plane. We employ a reasonable
assumption to approximate this plane, namely that the horizontal
axis in every image coordinate system is approximately parallel
to the ground plane, which is the case when taking upright pho-
tographs from the ground, but also when taking nadir and oblique
pictures on a micro aerial vehicle. The approach of (Szeliski,
2006) can then be used to compute the ground plane normal and
the corresponding rotation.

If GPS coordinates corresponding to the centers of the cameras
used for reconstruction are available (as for our aerial data), they
can be incorporated to position the model in a world coordi-
nate system. In this case our approach is to robustly solve for
a 2D similarity transform between the camera positions in the
SfM model and the GPS coordinates in local ECEF format using
RANSAC (Fischler and Bolles, 1981). As GPS coordinates are
noisy, this only results in a rough alignment. If GPS coordinates
are not available but all partial reconstructions result from recon-
structing the same structure, rough alignment can be achieved by
placing all models in the origin and adjusting the parameters for
the following precise alignment step. However, this only works if
the models are of sufficient complexity (i.e., a model of a single
corner is too ambiguous) so using GPS data is preferred.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

83



(a) GPS Alignment (b) Ggsd=1.0m (c) Ggsd=0.5m (d) Ggsd=0.2m

(e) GPS Alignment & ICP (f) Ggsd=1.0m & ICP (g) Ggsd=0.5m & ICP (h) Ggsd=0.2m & ICP

Figure 3: Alignment accuracy. Red points have a Hausdorff distance larger than 10 cm. Blue points are closer than 1 cm to the second
model. (a)-(d) Accuracy after alignment using different ground sampling distances for Ggsd without ICP. (e)-(h) Remaining error after
solving Equation 3 with subsequent ICP. Note that points present in only one part of the reconstruction by definition have a Hausdorff
distance of more than 10 cm and are thus colored in red. Best viewed in color.

4.3 Precise Alignment

Given the rough alignment, we use correlation for precise align-
ment. We project the semi-dense 3D point cloud into the pixel
grid of the evolving DSM image, storing only the maximum height
value per pixel. Pixel clusters with a radius r ≤ 2px are removed
using morphological operations to get rid of reconstruction out-
liers. The model template M0 is finally created by cropping an
axis-aligned box containing the defined values.

As the uncertainty of the rough alignment can introduce rotation
and scale errors next to the translational uncertainty ∆T , we ro-
tate the model by the angles ∆φ, ∆θ, and ∆ψ (roll, pitch, yaw)
and scale it with a factor s = 1.0 ± ∆s to generate the model
templates Mt. We cover the search space using the coarse–to–
fine approach by (Kaminsky et al., 2009) to speed up computa-
tion, and crop the ground template Ggsd from the evolving DSM
image according to the pyramid level gsd.

The score of template t is finally computed by normalized cross-
correlation of ground and model templates,

d(t) =
1

nt − 1

∑
x,y

(Ggsd(x, y)−Ggsd)(Mt(x, y)−Mt)

σGgsdσMt

,

(1)
where nt is the number of defined pixels for every template t, and
Ggsd, σGgsd , Mt as well as σMt are computed only for defined
pixels. Additionally, we introduce a term for penalizing align-
ments which contain a large amount of undefined pixels,

r(t) =
nt

Nt
, (2)

whereNt is the number of all pixels in template t. The best height
map alignment is then associated with the best model template

tbest = arg maxt d(t) + λr(t). (3)

In contrast to (Wendel et al., 2011a), we found the mode of the
difference between the ground template and the best model tem-
plate to be more robust for estimating the translation along the
vertical axis.

The previous step delivers a translation, rotation, and scaling which
is used to transform the partial reconstruction to the iteratively
growing point cloud. While the discrete correlation approach
successfully avoids getting stuck in local minima, continuous op-
timization can nearly always improve the final result. We thus
further improve the accuracy by applying 3D ICP (Zhang, 1994).
Given the already very good alignment, a sparse set ofNicp points
is selected and ICP typically converges within seconds. Finally,
the point cloud is projected to the evolving DSM and serves as a
basis for alignment of the next partial reconstruction.

5 RESULTS

In order to demonstrate the accuracy of our alignment and fu-
sion approach, we perform experiments on two different datasets.
We compare the accuracy of our fusion algorithm to a standard
3D ICP registration method and demonstrate that our approach
is able to fuse reconstructions obtained from airborne images as
well as from images acquired on the ground level.

The first dataset (Figure 1) shows a large office building which
is reconstructed from 400 images acquired by a manually con-
trolled MAV. Due to limited power supply, images were acquired
in two different flights resulting in two partial reconstructions
with 2 million and 1.3 million 3D points, respectively. The sec-
ond dataset consists of two partial reconstruction where one part
is reconstructed from 35 nadir images taken by our MAV at a
height of 60 m above the building (see Figure 4(a)). The other
partial model (Figure 4(b)) is reconstructed from 44 images ac-
quired at ground level.

We obtained all images using a Panasonic DMC-LX3 camera at
a resolution of 3968×2232px, both at ground level and airborne
using an Ascending Technologies Falcon 8 octo–rotor MAV. Ad-
ditionally, the MAV is equipped with a consumer–grade GPS,
which allows rough geo–referencing of the reconstructions. The
distance between the object and the camera position varies be-
tween 20 m and 60 m which results in a ground sampling dis-
tance (GSD) of 8 mm to 24 mm per pixel; however, as our recon-
structions are only semi-dense the resulting point clouds are often
sparser if texture is missing.
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(a) Aerial MAV imagery (b) Terrestrial imagery (c) Fused model

Figure 4: Fusion of two models computed from airborne and ground–level images. (a) Reconstruction obtained by nadir images at
60 m height. (b) Model obtained from ground images. (c) Both models fused by our approach.

We reduce the search space for precise alignment according to
the expected uncertainty of the rough GPS alignment, with a
translational uncertainty ∆T = ±5m, roll ∆φ = ±10◦, pitch
∆θ = ±10◦, yaw ∆ψ = ±20◦, and scale s = 1.0±0.2. A brute
force approach for checking all combinations is not feasible due
to the huge amount of required templates. Therefore, we exploit
a coarse–to–fine scheme that iteratively increases the GSD of the
evolving DSM for every pyramid level Ggsd. We weight the pe-
nalizing term with λ = 0.1 and set the number of sampled points
for subsequent ICP to Nicp = 1000.

In our first experiment, we align both reconstructions using the
available GPS information as described in Section 4.2 and mea-
sure the alignment error by evaluating the Hausdorff distance
from the smaller to the larger part (Huttenlocher et al., 1993).
Figure 3(a) shows the resulting pseudo color visualization, where
red points have an error larger than 10 cm and blue ones have an
error smaller than 1 cm. After the previous rough alignment, we
perform 3D ICP to reduce the error. However, ICP gets stuck in a
local minimum and therefore the alignment is far away from the
desired registration (Figure 3(e)). This experiment demonstrates
that, due to the small convergence radius of ICP, a consumer–
grade GPS alignment is not sufficient to obtain an accurate fusion
using a standard 3D ICP algorithm. On a closer look, we also ob-
serve that the scale estimated by the rough GPS alignment differs
considerably between the two parts. Therefore, a proper fusion
method has to estimate the scaling between the parts.

In the second experiment, we apply our proposed algorithm as
described in Section 4.3 to the first dataset. As shown in Fig-
ure 3(b)-3(d), the alignment error reduces with increasing resolu-
tion of the ground templateGgsd. On a scale level ofGgsd=0.5m,
the fusion method already allows the subsequent ICP to converge
to the global optimum. For most points, the remaining alignment
error is smaller than 1 cm. Points that are present in only one
part of the reconstruction have a Hausdorff distance of more than
10 cm which is obvious since they do not have a corresponding
counterpart. Since we correctly estimate the scale difference of
∆s = 0.04, the result does not show errors in scaling. This obser-
vation is confirmed by Figure 3(h) which shows a constant error
over the entire surface. Subsequently applying ICP has shown
to converge within seconds and mainly corrects for rotational er-
rors introduced by the discrete search space of our approach. The
entire fusion process requires less than 5 minutes on any of our
evaluation datasets for finding the correct transformation with an
accuracy in the range of ±1 cm. This corresponds to the point
density of the model.

Our method also bridges the gap between reconstructions com-
puted from airborne and ground–level imagery. Figure 4(a) shows

Figure 5: Fusion and geo–referencing of partial reconstructions.
The medieval clocktower in front has been fused and aligned to
the geo–referenced, approximated DSM of the city in the back-
ground.

the partial reconstruction of a building that is obtained from nadir
images taken by our MAV at a height of 60 m, and thus does
not show facade details. The reconstruction of the same build-
ing from ground–level images is shown in Figure 4(b). Due to
the weakly textured surfaces, the utilized densification algorithm
does not perform very well and the GSD of the model varies.
Even using such challenging data, our algorithm fuses both parts
to a comprehensive model. The resulting Figure 4(c) demon-
strates that we can merge reconstructions obtained from very dif-
ferent viewpoints and with highly varying GSD to an accurate 3D
model.

Of course, our approach can also be used in conjunction with
the original approach of (Wendel et al., 2011a) to geo–reference
several partial reconstructions in a world coordinate frame given
an accurate (i.e. aerial triangulation based) or approximated (i.e.
OpenStreetMap based) DSM. An example can be found in Fig-
ure 5.

6 CONCLUSION

We have presented a novel technique for the automatic fusion
of partial 3D reconstructions based on the correlation of ortho-
graphic depth maps. We can handle complex cases where previ-
ous methods had problems, including models which do not share
any appearance features and models with considerably different
ground sampling distances. This allows not only to fuse data ac-
quired by an MAV, but also combining aerial and terrestrial data
sources. Our qualitative and quantitative evaluation using two
outdoor scenes shows that we can achieve a fusion accuracy in
the range of±1 cm, and that we are able to generate point clouds
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which are visually more appealing and serve as an ideal basis for
further processing.

In future work we plan to adjust our MAV image acquisition strat-
egy according to the findings of this work. We will first acquire
nadir imagery for creating an initial DSM, and then fuse further
oblique aerial and terrestrial views into the model. As a result,
the spatial area which can be represented in a single model is
increased even further.
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