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ABSTRACT: 
Existing matching algorithms aim to match conjugate points among overlapping satellite scenes acquired from the same orbit and 
can generally achieve good matching performance. Unfortunately, no algorithm can avoid the difficulty of simultaneously 
processing the data sets of long-strip imagery acquired from different orbits. In this paper, the combined matching algorithm we 
propose introduces the LBP/C operator, which, when combined with existing feature detectors for the first time, can make possible 
the extraction of more stable interest points and candidates. At the same time, based on the typical characteristics of Chinese 
satellite imagery, we improved the filter method and achieved an effective combination of several image matching algorithms. A 
comparison among several kinds of matching transfer modes was presented; and to evaluate this algorithm, Chinese Mapping 
Satellite-I data are used as the reference data.  
 
 

1. INTRODUCTION 

Image matching was a key technology related to many 
problems in computer vision and photogrammetry, including 
object recognition, motion tracking, digital surface model 
(DSM) generation, etc. (Lowe, 2004). In the past 20 years, 
research related to processing satellite imagery has become a 
key focus. Due to the position and attitude information under 
fixed sampling intervals, the current matching algorithms are 
focused on area-based algorithms, especially the approximate 
epipolar geometric constraints (Heipke, 1996). These existing 
algorithms can achieve satisfactory matching results in the case 
of overlapping scenes acquired from the same orbit, but they 
cannot solve the following problems: 1) how to match with 
multiple long-strip satellite imagery simultaneously 2) how to 
eliminate the radiometric and geometric differences between 
adjacent orbits and achieve high-accuracy results. Moreover, 
the typical characteristics of imagery acquired from Chinese 
satellites (e.g., ambiguity in smooth areas, low direct geo-
referencing accuracy, and obvious differences in contrast) bring 
more challenges to image matching. Consequently, finding 
solutions for the above-mentioned problems in photogrammetry 
was an urgent issue. 
In this study, we developed a practical matching algorithm 
based on the approaches in the literature. First, we divided the 
reference strip of imagery in each orbit into independently 
overlapping image patches; then, each patch was filtered to 
enhance the existing texture patterns and improve the noise-
signal ratio (Baltsavias, 1991). After the generation of image 
pyramids, we combined the Harris-Z detector (Bellavia, 2008) 
with the LBP/C operator (Timo, 2002) to extract stable interest 
points. At the same time, the Förstner interest operator 
(Förstner, 1986) was used to refine these interest points.  Then, 
through the global digital elevation model (Global DEM), the 
approximate geography scope covered by each image patch was 
computed. Moreover, the Geometrically Constrained Cross-
Correlation (GC3) algorithm (Zhang, 2005 and 2006) was 
extended to match multiple long-strip imagery; and finally, 

several strategies were proposed to detect and eliminate the 
mismatches. By comparing the results of several matching 
transfer modes, we determined the optimal manner in which to 
optimize the matching speed and reduce the number of 
mismatches. 
In the second part, the new matching algorithm is described in 
detail, and the validity of the proposed matching algorithm is 
verified with Chinese Mapping Satellite-I data. 
 

2. METHODOLOGY 

In this paper, the proposed algorithm includes four parts: 1) 
Image Pre-Processing; 2) Image Matching Procedure; 3) 
Mismatch Detection and Elimination. 

 
2.1 Image Pre-Processing 

Image pre-processing method includes two parts: 1) Modified 
Wallis Filter; 2) Interest Points and Candidates Detection and 
Extraction 

 
2.1.1 Modified Wallis Filter 
Compared with aerial imagery and close-range imagery, the 
characteristics of satellite imagery generally include the 
following: 1) low spatial resolution, 2) unsymmetrical contrast 
of light and shade, 3) fuzzy texture structure. These factors 
seriously affect the reliability of feature extraction and image 
matching. 
To solve these problems mentioned above, the Wallis filter is 
introduced. It can force the mean and contrast of an image to fit 
some given values effectively. Baltsavias (1991) used this filter 
to enhance the image texture pattern and eliminate radiometric 
difference. The general form of the Wallis filter is given by: 

                01x y x y r r w ( , ) ( , )g g
                            (1) 
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In Equation 1, x yw ( , )g  and x y( , )g  are the filtered and 

original image respectively, 0r  and 1r  are the additive and 

multiplicative parameters, gm
 and gs

 are the mean and 

standard deviation of the original image, fm
 and fs

 are the 

target values for the mean and standard deviation, c  was the 

contrast expansion constant, and b  was the brightness forcing 
constant. 
However, the existing Wallis filter has some problems: 1) the 
edges of roofs tend to expand, which causes deviations from 
their geometrical position; and 2) the image noise is partially 
enhanced, which hurts the positioning accuracy of the features 
extracted and has a detrimental effect on image matching. 

We found that the additive parameter 0r  causes the above 
problems. Owing to its restrictions on the gray level, 

unreasonable selection of 0r  causes the excessive loss of gray 

information for the following reasons. First, 0r  is mainly 

dependent on parameter b ; secondly, the multiplicative 

parameter 1r  can change image contrast, whose value is 

dependent on parameter c ; and lastly, the high texture fidelity 
and enhance image contrast must be kept under the filter’s 
capacity. In this study, we used the following method to 
improve the Wallis filter. 
A highly adaptive parameter determination strategy: In the case 
of an image f(x,y), we classified all pixels of this image into 
two sets (C1,C2). 
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2

x y T
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c : f( , )

c : f( , )
                                       (3) 

Where T  was a classified threshold, 1c
 means the set of 

low-pass, and 2c  means the set of high-pass. Then, b  and c  
were calculated by the following equation: 
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In addition, the classified threshold T  was a key point, which 

was critical to the validity of b  and c : 
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In the above equation, 1  was the number of set 1c
, 1m  and 

2

1  were the mean value and variance of 1c
, 2  were the 

number of set 2c , 2m  and 
2
2  were the mean value and variance 

of 2c , and m  was the mean value of the gray level of the 
image. 
 
2.1.2 Interest Points and Candidates Detection and 
Extraction: 
Strong relationships exist between the probability of the 
correct matching and the texture information content. Although 
detailed rules differ by surface variation, it has been shown 
that a successful rate of matching increases the probability of 
enriched texture information. 

 
As a powerful tool for texture classification, the Local Binary 
Pattern (LBP) operator was an excellent measure of the spatial 
structure of local image texture. Ojala (2002) developed the 
LBP operator, which allows for detecting “uniform” patterns in 
circular neighborhoods of any quantization of the angular space 
and spatial resolution. Moreover, he enhanced the performance 
of the LBP operator through combining it with a rotation 
invariant local contrast (LC) measure that characterizes the 
contrast of local image texture. 

In the case of an image, texture T  was the joint distribution of 
the gray levels: 

                     0 1c PT g g g  ( , , ..., )t
                              (7) 

Where P (P>1) was the number of neighboring pixels, gray 

value cg was the center pixel of the local neighborhood, and 

Pg  was the neighboring pixel on a circle of radius R, as shown 

in Fig. 2. The coordinates of Pg  were calculated using 
Equation 8, and the gray values of neighbors which were not 
exactly in the center of the pixels were estimated by 
interpolation. 
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Figure 1: Circularly symmetric neighbor sets for different (P, 

R)(Ojala, 2002) 
 

In fact, without losing information, the signed differences 

between the gray value of cg
 and Pg

 (P=0,…P-1) were not 
affected by variation in the mean luminance. Hence, the joint 
difference distribution was invariant against the grayscale 
shifts. By considering the signs of the differences, instead of 
their exact values, the operator could achieve the scale 
invariance: 

          0 1 1c c P cT g g g g g g   ( ( ), ( )..., ( ))t s s s
       (9) 
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By assigning a binomial factor 2P
 for each sign P cg g( )s , we 

transformed Equation 9 into a unique LBP value. In this study, 
we set (P=12,R=1.5): 
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Ojala designated patterns that have U values of at most 2 as 
“uniform” and proposed the following operator for grayscale 

and rotation invariant texture description instead of ,P RLBP
: 
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The 
2

,
riu

P RLBP
 operator was a grayscale invariant measure.  It 

was an excellent measure of the spatial pattern, but it 
discarded contrast. So a rotation invariant measure was 
introduced to characterize the contrast of the local image 
texture:          
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,P RLC  was an invariant against shifts in grayscale. Since 
2

,
riu
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 and ,P RLC

 are complementary, their joint 

distribution
2

, ,/riu

P R P RLBP LC
, was expected to be a very 

powerful rotation invariant measure of local image texture. 
When we compared feature detectors, Harris-Z was found to be 
more suitable to detect the interest points for large data sets of 
satellite imagery in our study. We also introduced the Förstner 
detector at this point and the surface fitting approach to get 
sub-pixel positioning. In this study, we combined Harris-Z 
with LBP/C to detect the stable interest points and candidates 
that optimize the validity of matching, which included the 
following five steps: 
1) To ensure uniform distribution of the interest points, we 
used the grid of the feature extraction as a region unit, and a 
fixed number of features were extracted in each unit 
independently. 
2) The interest strengths and LBP/C values in a region unit 
were calculated by the Harris-Z detector and the LBP/C 
operator. 
3) Some points were saved when their LBP/C values were in a 
certain range.  Then, we chose the point with the local 
maximum interest strength as the interest point that 
corresponded to the region unit. As a candidate, we chose the 
point with the maximum interest strength without 
consideration for its LBP/C value. 
4) We used the Förstner detector and the surface fitting 
approach to obtain the sub-pixel positioning of the interest 
point and candidate. 
5) Once the interest point failed to match or the accuracy of 
this match was low, the candidate was matched rather than the 
interest point; and the match with the higher accuracy was 
saved. 
2.2 Image Matching Procedure 

Due to linear pushbroom imaging mode, we can calculate the 
exterior orientation corresponding to every scanline through 
lagrangian interpolation. Thereby, in this paper, the proposed 
matching algorithm is based on the geometrically constrained 
cross-correlation. The algorithm includes the following several 
studies: 
 
2.2.1 Automatic Computation for Approximate Elevation 
Range and Elevation Step through Global DEM 
According to the position and attitude information of the scan 
lines, we use a hypothesis height to the frontal-project four 
corners of the corresponding reference image patch onto the 
ground. The approximate geography scope covered by the 

image patch was determined, and the maximum elevation Hmax  

and the minimum elevation 
Hmin  are achieved through 

retrieval from Global DEM. 

Then, we frontal-projected an interest point extracted onto 

the ground using 
Hmax  and 

Hmin , and back-projected these 
object space points onto all of the search strips. The 

corresponding image coordinates (
ixmax ,

iymax ), (
ixmin ,

iymin ) 
then could be determined, where i was the index of the 
different search strips. After that, we calculated the elevation 

step 
iHpitch  with the following equation: 

( ) /i iH H H Length pitch max min                    (15) 

 Where    
2 2( ) ( )

ii i i iLength x x y y   max min max min            (16) 

It was an iterative process: once 
iHpitch  was an invalid value, 

we had to repeat the above procedure using another interest 
point. 
2.2.2 Geometric and Radiometric Distortion Procedure 
There were geometric and radiometric distortions in the case of 
strips acquired from different camera lenses. When the 
correlation window is defined in the reference image, this kind 
of distortion leads to an irregular and discontinuous shape of 
the corresponding window in the search images, which cannot 
be matched in a straightforward manner. 
Gruen and Baltsavias (1985) extended the LSM method, which 
compensates this distortion and relaxes the strict geometric and 
radiometric assumption for normal cross-correlation methods. 
So, we introduced this method to eliminate the window 
warping: 
1) In the reference image, we defined a correlated window Л 
and a search window Г in which an interest point or candidate 
was central, then the corresponding pixel coordinates of the 
four corners and the center of Г were achieved by projection in 
the search image, which formed an irregular polygon Г’, as 
shown in Fig. 2. Accordingly, we calculated the parameters of 
the affine geometric transformation and linear radiometric 
transformation between these images. 

                   2 0 1 2x a a x a y  
                               (17) 

                   2 0 1 2y b b x b y  
                                (18) 

             0 1 2 2 2( , ) ( , )g x y h h g x y 
                        (19) 

Where 0a , 1a , 2a , 0b , 1b , 2b  were the parameters of the 

affine geometric transformation; 0h
, 1h

 were the parameters 
of the linear radiometric transformation. 
2) Through Equations 17 and 18, the relationship of each pixel 
between Г and Г’ was determined. The gray values in Г’ were 
interpolated by bilinear interpolation, and these gray values, 
recalculated by Equation 19, were assigned to the 
corresponding pixel in Г. 
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Figure 2. The principle of the affine geometric transformation 
and linear radiometric transformation between the reference 

image and search image 
 
3) Once the angle θ was greater than 90 degrees on the very 
steep terrain surface, as shown in Fig. 3, W’ became zero and 
mafe the procedure impossible. In this case, we found that 
when we iteratively computed the parameters of the 
transformation, the convergent speed was slow, and even the 
computation was divergent. So once the threshold of iteration 
times was crossed, we considered θ≥90 and excluded it. 

 

W W ’The 
Reference 

Image

The 
Search
 Image

?=90  
Figure 3. Image selection or exclusion based on the terrain 

slope and the sensor geometry. The size of the corresponding 
correlation window in the search image depends on the angle θ 
between the normal vector of the local object surface and the 

corresponding imaging ray. 
 
4) The correlation window and search window are both square 
as shown in Fig. 4. Therefore, we could do a straightforward 
match and reduce the computational cost. 
 
2.2.3 Extended Geometrically Constrained Cross-
Correlation Strategy 
Based on the area-based matching techniques, Zhang 
developed GC3 (Geometrically Con-strained Cross-Correlation) 
algorithm. With the GC3 matching procedure, multiple images 
can be matched simultaneously and the epipolar constraint is 
integrated implicitly. As a similarity measure, SNCC (Sum of 
Normalized Cross-Correlation) greatly decreases mismatches  
caused by approximate texture distinction and occlusion 
problem. However, this algorithm causes high computational 
costs in determining the correct height value and has 
redundance for its quality measuring procedure. Basically we 
extended this algorithm and save the computational costs: 
1) For each reference image patch, the approximate elevation 
range and elevation step can be determined. After pre-
processing the reference image patch, for each interest point or 
candidate, the corresponding approximate epipolar lines in the 
search strips can be further determined. 
2) According to the position of approxi- mate epipolar lines, 
we define the search image patches, and pre-process them. 
3) Based on geometric and radiometric distortion procedure, 
we calculate the parameters of affine geometric transformation 
and linear radiometric transformation between the defined 
windows. 
4) We combine a coarse-to-fine hierarchical approach with the 
efficient implementation of the epipolar geometry to match 
each point on the approximate epipolar lines. Once normalized 
cross-correlation coefficient in the certain level of pyramids is 
lower than threshold, we repeat the above procedures with 
different elevation in the certain range. 
5) Until accomplishing the matching procedure, we compute 
the SNCC of all matching candidates. 

6) Determine the sites of local maxima of the SNCC function 
and fit a smooth quadratic function for each local maximum 
with a local neighborhood of that maximum value. 
7) If the second SNCC peak is less than half or one third of 
that of the first SNCC peak, the peak that have the largest 
SNCC value should represent the correct match. If not, we 
match inversely and if the difference between the two matches 
is less than 1.5 pixels in image space, the candidate should be 
the correct match. 
8) Repeat 1)-7), until all interest points and candidate are 
matched. 
2.3 Mismatches Detection and Elimination 

After finishing the image matching procedure, there are 
inevitably some blunders that do not conform to the 
geometrical relationship in an object space, which we call 
mismatches. To maintain the matching accuracy, we must 
eliminate mismatches as accurately as possible. Thus, we 
classify all of the matches into two types, interior matches and 
adjacent matches. In this section, we present two strategies to 
eliminate mismatches 
 
2.3.1 Mismatches Elimination Strategy within Orbit: In 
this study, we introduce the multi-rays forward intersection 
principle to eliminate mismatches and realize the object fusion 
for the matching results. The implementation strategy was as 
follows: 
1) If an interest point or candidate finds multiple 
correspondences on the search strips, we assume that the 
exterior orientation elements corresponding to each image are 
known.  We take the 3D coordinates of all matches in the 
object space as unknown; and based on the collinearity 
equations, we then list the error equations: 

                 11 12 13x xV a dX a dY a dZ l   
                         (20) 

                 21 22 23y yV a dX a dY a dZ l   
                         (21) 

Where 11a
, 12a

, 13a
, 21a , 22a

, 23a
 are the parameters related to 

the line elements of the exterior orientation; xl
, yl

 are 
differences between observations and approximations. 
2) If the number of the correspondences is n, we can list (2n+2) 
error equations. To solve the iterative computation for 
unknown numbers, the least square adjustment was introduced. 
In the iterative procedure, we set the weights of each 
observation of the image points through a hypothesis test of the 
posterior variance component. If there are grosses in the 
candidates, the observation weights of the candidates become 
smaller and smaller until 0 was reached, which makes no sense 
in the adjustment process in order to eliminate the effect of a 
false match on the calculation of effectiveness. 
3) After iterative convergence was achieved or the iterative 
times exceed the limited value, the root mean square (RMS) 
value was calculated. Once the RMS exceeds the given 
threshold, the corresponding matches are eliminated. 
 
2.3.2 Mismatches Elimination Strategy between 
Adjacent Orbits  
Once the position and attitude parameters acquired from 
different orbits exhibited obvious system shift, the matches 
between the adjacent orbits could not be intersected together in 
the object space. If we used the above strategy, we would face 
the problem of iterative computation convergence. Therefore, 
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we introduced an Object Space Shift (OSS) strategy to 
eliminate mismatches between the adjacent orbits: 
1) The correspondences P1, P2, …, Pn between the adjacent 
orbits were intersected within each orbit, and the shift of each 
point in the object space were calculated ( X△ 1, Y△ 1, Z△ 1), 
( X△ 2, Y△ 2, Z△ 2), …, ( X△ n, Y△ n, Z△ n). Then, the mean 

shift xA
, yA

, zA
 were calculated in Equation 22: 
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1 2 3
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A Z Z Z Z n

       

        

                          (22) 

The mean square values in each direction xm
, ym

, zm
 were 

calculated in Equation 23, and the RMS errorm
 between the 

adjacent orbits were calculated in Equation 24. 
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( )error x x y y z zm m m m m m m    

                      (24) 

2) Once the shift iT  was more than triple errorm , we deemed 
this correspondence as a mismatch. 
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3. EXPERIMENTS AND ANALYSIS 

3.1 Test Data Description 

Figure 4 shows the real data for experiment, which consists of 
two long strips of imagery acquired by Chinese Mapping 
Satellite. These data are imaged on October, 2010, which 
covers Harbin in China, the coverage area is about 25000km2. 
The satellite sensor works in pushbroom mode, and the stereo 
module consists of three lenses with one CCD line scanner for 
each, which provide a forward-, a nadir- and a backward-
looking view. The degree of overlapping within orbit is about 
98%, and the degree between adjacent orbits is about 10%. 
The parameters of CCD line sensors are shown in table 1. 
 
Table 1. Camera parametres of the three linear array sensor for 

Chinese Mapping Satellite 

Parameter  Forward-View Nadir-View Backward-View 

Focal Length (mm) 717 650 717 

GSD (m) 5.0 5.0 5.0 

Intersection Angle 
(deg) 

25.0 0.0 -25.0 

Pixel Size (mm) 0.0065 0.0065 0.0065 

Scan Line Width 
(pixel) 

12000 12000 12000 

Length of Strip 
(pixel) 
 

142862 238100 142862 

Geographical Scope 
(km2) 

42858.6 71430.0 42858.6 

Data Volume (GB) 4.46 7.31 4.46 

Base-Height Ratio 0.9323 
 

 

 
Figure 4. The Nadir-looking strips in the adjacent orbits: (a) 
The nadir-looking strip acquired from the first orbit; (b) The 
nadir-looking strip acquired from the second orbit; (c) The 
enlarged drawing of the overlapping area between the two 

strips 
 

For testing and verifying the accuracy and reliability of the 
proposed algorithm, the geographical region covered by the test 
data includes not only farms and forests which have strong 
texture repeatability, but also residential quarters, mountain 
countries and smoothly open areas which are known as difficult 
terrain for matching. In addition, in order to analyze the 
matching accuracy quantitatively, the test data includes 33 
planar control points and 15 elevation control points. After 
finishing the matching procedure, the ground control points are 
measured interactively on the test imagery, and then the bundle 
block adjustment is performed with matching points and 
control points.  

 
3.2 Image Matching Testing 

In order to improve the performance of the proposed matching 
algorithm, we compare different parameters in two ways: the 
number of pyramid levels and the size of the relative window 
at the top level. 

 

       
(a) 

       
(b) 

Figure 5. The successful rate of matching using the number of 
pyramid levels and the size of the relative window at the top 
level: (a) the effect of different number of pyramid levels; (b) 

the effect of different size of relative window at top level 
 

(a) (b)  

 

(c)  
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Figure 5 shows the results in which the number of pyramid 
levels and the size of the relative window at the top level are 
varied. In graph (a), when the number is 3, the successful rate 
of matching is the highest toward the different terrain types. In 
graph (b), it is poor at the successful rate when the relative 

windows is set 7×7 pixels, but the results are not improved 

till 13×13 pixels. After that, a larger size of relative window 
can actually hurt the matching. Although the successful rate for 

13×13 is a little lower than 11×11 and 9×9 on mountain 
countries and farms respectively, the overall successful rate is 
optimum. Therefore, through this experiment, we generate 
three pyramid levels and set the size of the relative window 

R×R as 13×13. Moreover, the relative window is shrank to 
(R-2)×(R-2) level to level, and the corresponding search 
window is (2×R-1)*(2×R-1). The matching results are listed in 
table 3. 
 

Table 3. Matching accuracy quantitative evaluation for 
different types of terrain 

Terrai
n Type 

Image 
Patch 

Inter
est 
Point
s 

Pyra
mid 
Level 

 
Correct 
Matches/Succe
ssful Rate 

 
RMS/Max 
Res (Pixel) 

1_001 106 3 
94 / 88.6% 0.27 / 1.76 

1_003 112 3 
96 / 85.7% 0.34 / 2.12 

1_005 108 3 
97 / 89.8% 0.29 / 1.41 

2_002 119 3 
108 / 90.7% 0.41 / 1.02 

 

 

Farm 

2_003 84 3 
70 / 83.3% 0.44 / 1.37 

1_007 65 3 
50 / 76.9% 0.65 / 4.6 

Forest 

2_001 52 3 
41 / 78.8% 0.74 / 2.7 

1_006 103 3 
80 / 77.6% 0.32 / 2.3 Reside

ntial 
Quarte
r 

2_004 94 3 
78 / 82.9% 0.47 / 2.15 

1_002 106 3 
97 / 91.5% 0.26 / 1.21 

1_004 106 3 
93 / 87.7% 0.21 / 3.24 

Smoot
hly 
Open 
Area 2_005 96 3 

91 / 94.7% 0.33 / 4.82 

Mount
ain 
Countr
y 

2_006 114 3 95 / 84.1% 0.74 / 17.46 

 
Table 3 illustrates the statistics of image matching for the test 
date on five types of terrain, through analysis for the matching 
results, we can see that: 
1) For farms and forests which have strong texture 
repeatability, the range of the successful rate of matching is 
from 76.9% to 90.7%. Especially in areas covered by farms, 
the RMS error is within 0.5 pixel, which means that the 
proposed algorithm can avoid mismatching problem caused by 
texture repeatability. 
2) For residential quarter and smoothly open areas, there are a 
few false matches, but most of matches are fine, the range of 
the successful rate is from 77.6% to 94.7%, the range of RMS 
error is from 0.21 to 0.47 pixel. Thus, the matching result is 
satisfactory. 
3) For mountain countries, because of the rise or descend on 
terrain greatly, there are some obviously false matches, which 
greatly affect the precision of matching. But the RMS error is 

still 0.74 pixel, which proves that the matching algorithm can 
be applied to this terrain. 

4. CONCLUSION 

In this study, we develop a practical algorithm for matching 
with large data sets of long-strips of satellite imagery. Through 
some experiments using real data set from Chinese Mapping 
Satellite, the proposed algorithm are proved to be valid, and 
the satisfactory accuracy is achieved under fully automatic 
computation.  
At the present stage, the proposed methods mostly focus on 
multi-view matching with long strips of satellite imagery 
acquired from different orbits. In the futhre, we will keep on 
this research and realize the matching algorithm that support 
various satellite sensors, even various imaging modes. 
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