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ABSTRACT: 

Subsidence, resulting from underground coal mining can alter the structure of overlying rock formations changing hydrological 

conditions and potentially effecting ecological communities found on the surface. Of particular concern are impacts to endangered 

and/or protected swamp communities and swamp species sensitive to changes in hydrologic conditions. This paper describes a 

monitoring approach that uses UAVs with modified digital cameras and object-based image analysis methods to characterise swamp 

landcover on the Newnes plateau in the Blue Mountains near Sydney, Australia. The characterisation of swamp spatial distribution is 

key to identifying long term changes in swamp condition. In this paper we describe i) the characteristics of the UAV and the sensor, 

ii) the pre-processing of the remote sensing data with sub-decimeter pixel size to derive visible and near infrared multispectral 

imagery and a digital surface model (DSM), and iii) the application of object-based image analysis in eCognition using the multi-

spectral data and DSM to map swamp extent. Finally, we conclude with a discussion of the potential application of remote sensing 

data derived from UAVs to conduct environmental monitoring. 
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1. INTRODUCTION 

1.1 Overview 

Subsidence, resulting from underground coal mining can alter 

the structure of overlying rock formations changing 

hydrological conditions (Booth et al., 1998; Karaman et al., 

2001) potentially effecting ecological communities found on the 

surface. Of particular concern are impacts on endangered or 

protected swamp communities and swamp species sensitive to 

changes in hydrologic conditions. Vegetation communities are 

likely to undergo significant changes as a result of hydrological 

changes (Prosser and Melville, 1988). An additional focus of 

concern is on the supply security, quantity and quality of 

surface and groundwater sources. Monitoring to ensure 

appropriate management decisions for these environmental 

impacts is required with a high degree of confidence. 

 

Changes to local hydrology resulting from underground mining 

is of particular concern in NSW, Australia, where coal is found 

in seams relatively close to the surface along the eastern and 

western edges of the Sydney-Gunnedah Basin (Australian Mine 

Atlas, 2011) underlying wetland communities of conservation 

value. These wetland communities include Montane bogs and 

fens and coastal heath swamps (Keith, 2004) found in high 

altitude temperate uplands. Upland swamp communities are 

often a focus of conservation effort due to their restricted 

geographic distributions and the wide range of vegetation 

species assemblages (Keith et al., 2010) resulting from the 

unique hydrologic and soil characteristics (Raulings et al., 

2010). These broad floristic groups include communities that 

are listed by the federal government as endangered ecological 

communities and contain rare, threatened and endangered flora 

species. 

 

Monitoring of potential impacts is currently undertaken by 

ecologists using plot based field ecological measurements of 

vegetation composition and condition. However, the 

biodiversity and spatial heterogeneity of these swamp 

communities results significant differences between plots within 

individual swamps as well as between swamps. Furthermore, 

these swamps undergo continual change as a result of the inflow 

of organic and inorganic material and erosion following 

disturbance (Keith et al., 2006; Tomkins and Humphreys, 2006) 

and drought and seasonal differences. This creates a constantly 

changing mosaic of vegetation cover and composition within 

and between swamps. Subsidence impacts can result in subtle 

shifts in topography or large visible impacts resulting from 

cracking in the bedrock and complete draining of swamps. As 

these swamps are highly heterogeneous both in space and time 

and the impacts tend to be spatially heterogeneous, often point 

source, the sample sizes required to identify impacts from 

natural variability using field based measurements can be very 

large and in some cases logistically impossible. Thus, field 

based monitoring by itself may not provide the degree of 

confidence required to monitor impacts on these communities. 

 

Remote sensing provides an alternative or may be used in 

combination with field based methods as its total coverage can 

characterize spatial heterogeneity of the whole swamp and 

provides data describing the spatial extent of features unlike 

plot data. GPS guided Unmanned Aerial Vehicles (UAV) have 

the capacity to obtain very high spatial resolution / hyperspatial 

(<10cm) imagery of particular landscape features with revisit 
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times determined by the operator as opposed to fixed satellite 

revisit time. While imagery is surficial in nature and provides 

less information than plot based field monitoring, UAV derived 

imagery can provide a total sample of a study area and thus 

describe spatial patterns outside of plots. 

 

In recent years the application of unmanned vehicles by military 

organizations has resulted in the increasing availability of 

second tier vehicles and hardware for environmental research 

application (Hardin and Jensen, 2011; Hervoue et al., 2011; 

Lopez-Granados, 2011) and archaeology (Chiabrando et al., 

2011). The advantages of UAV over existing remote sensing 

platforms is the potential to take site based imagery at near 

unlimited spatial (Laliberte and Rango, 2009, 2011) and 

temporal resolutions. Furthermore, the ability to capture 

imagery concurrently with field observation addresses a 

common remote sensing problem resulting from differences in 

the acquisition of ground and remote sensing data. Currently, 

the use of remote sensing with automated classification methods 

to classify small upland swamps is uncommon as the spatial 

resolution of common remote sensing sensors is too coarse for 

these communities because of they are often small with 

convoluted boundaries (Jenkins and Frazier, 2010). Mapping of 

swamp patches is commonly conducted with Aerial Photo 

Interpretation. This project utilised the hyperspatial resolution 

capacity provided by the UAV platform along with object based 

image analysis (OBIA) methods to investigate the utility of 

these two emerging remote sensing technologies for the 

classification of upland swamp communities. 

 

Hyperspatial sub-decimetre imagery acquired using UAV 

platforms is commonly analysed using OBIA classification 

methods (e.g. Laliberte and Rango, 2009; Laliberte and Rango, 

2011). When using hyperspatial resolution the target feature is 

usually larger than the pixel size, however the converse is true 

for medium and low spatial resolution imagery acquired by 

satellites such as Landsat or MODIS. Pixel based remote 

sensing classifiers (i.e. Maximum, likelihood classifiers) using 

spectral information are used with medium and low resolution 

imagery and are often unsuitable for classifying hyperspatial 

data. High spatial resolution data classified with pixel based 

classifiers can result in a lower overall classification accuracy 

(Blaschke and Strobl, 2003). As spatial resolution becomes 

finer, variance in observed spectral values within landcover 

classes increases making spectral separation between landcover 

classes more difficult (Blaschke and Strobl, 2003; Marceau and 

Hay, 1999). This is a result of the interrelationship of a number 

of scale dependent factors: the information classes desired, the 

method to extract the information and the spatial structure of the 

scene itself (Woodcock and Strahler, 1987). A key driver for the 

development of OBIA methods is addressing these scaling 

issues through segmenting high spatial resolution pixels into 

image objects made up of multiple neighbouring pixels sharing 

similar spectral values (Blaschke, 2009). 

 

1.2 Aim 

The aim of this study was to classify swamp vegetation derived 

from a UAV with modified digital cameras and OBIA remote 

sensing classification methods. In this paper we describe i) the 

characteristics of the UAV and the sensor, ii) the pre-processing 

of the remote sensing data to derive visible and near infrared 

multi-spectral imagery and a digital surface model (DSM), and 

iii) the derivation of swamp vegetation extent. Finally, we 

conclude with a discussion of the potential of remote sensing 

data derived from UAVs to conduct environmental monitoring 

with reference to upland swamps. We specifically focus on the 

characteristics of UAV remote sensing that distinguish it from 

other remote sensing platforms and sensors. 

 

2. METHODS 

2.1 Study Area 

The study area is found on the Newnes plateau in the Blue 

Mountains west of Sydney (Figure 1). Development of flora 

monitoring methodology for assessing the impact of subsidence 

on swamp communities has been conducted by the Centre for 

Mined Land Rehabilitation at Centennial Coal’s operations on 

the Newnes Plateau since 2009 (Erskine et al. 2009). From this 

work a single swamp was selected: Barrier swamp. This swamp 

is larger than other swamps in the area and contains a wide 

diversity of species and hydrological features.  Barrier swamp is 

found within the MU50 - Newnes Plateau Shrub Swamp 

floristic community (DEC, 2006). MU50 is of primary concern 

to regulators as it is federal and state listed and is considered an 

ecologically endangered community (DEC, 2006).  

 

 
Figure 1.  Location of Newnes plateau study location. 

 

2.2 Characteristics of the UAV, sensor and acquired 

imagery 

The unmanned aircraft system (UAS) used in this study 

includes a ground station and UAV with on board camera 

(Figure 2). The UAV is a GPS guided, electric powered Kahu 

Hawk with a 2m wingspan weighing approximately 3.9kg 

(www.kahunet.co.nz). It is controlled by a small ground station 

made up of a single laptop and transmitter allowing for 

communication and control of the UAV. Flight paths are 

commonly uploaded before take-off, however the UAV can be 

guided manually. Imagery is acquired using a single Sony 

NEX5 micro-DSLR camera with a 16mm lens. This system 

includes two cameras: i) a regular camera for acquiring imagery 

in the visible spectrum and ii) a modified full spectrum camera 

with a near infrared filter. The imagery in this study covered an 

area of approximately 26ha at 121m above ground level. It took 

approximately 45 minutes to complete this flight. 

 

a) b)  c)  
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Figure 2.  a) Kahu Hawk UAV. b) UAV ground station. c)  

Sony NEX5 micro-DSLR camera with 16mm. 

2.3 Pre-processing  

Pre-processing of remote sensing data was conducted using the 

pix-4D software in order to produce a digital surface model and 

orthophoto mosaic of both true colour and near infrared 

imagery (see www.pix4d.com). UAVs provide less stable 

platforms than manned flights and the orthorectification and 

mosaicing of these images with smaller extents can be difficult 

(Rango and Laliberte, 2010). Rango and Laliberte (2010) 

concluded that existing photogrammetric software is not 

commonly suited for this task. We tested the use of the pix-4D 

software that has been specifically developed with UAV 

imagery in mind. 

The UAV took ~300 separate images that were then ortho-

rectified and stitched together with the pix-4D software. Ortho-

correction is required to correct for features that appear oblique 

due to the wide angle and low altitude photography. The first 

step in ortho-rectification requires the development of a digital 

surface model (DSM) made of a 3D point cloud from pixels 

matched in overlapping images. The DSM by-product produced 

as part of the development of the orthophoto mosaic was also 

used in the analysis. For this study we used 80% forward 

overlap and 50% side overlap. The pixel size of the final 

orthophoto mosaic was 4cm for the NIR and True colour 

imagery. The DSM used in the study was based on the NIR, as 

the NIR image had a higher contrast and thus resulted in high 

quality pixel matching required for the creation of a high quality 

DSM.  

 

2.4 Object based image analysis 

The image was classified using OBIA techniques with the 

eCognition v8 software. The first step in the process involved 

the segmentation of objects that could be used as the mapping 

unit to classify the image into two separate landcover classes: 

Eucalypt and Swamp (Figure 3). Two segmentation scales were 

used to segment the image using two different segmentation 

methods. First, a quadtree segmentation algorithm was used to 

divide the image into homogenous square objects of multiple 

sizes (at scale = 100). The second segmentation method was the 

multi-resolution region growing algorithm on the ‘Fractal Net 

Evolution Approach’ (Baatz et al., 2002) with the following 

parameters: scale = 100, shape = 0.1 and compactness = 0.5. 

Using this combination allowed for more compact objects than 

would have been produced using the multi-resolution 

segmentation approach alone. For both segmentation methods 

only the true colour imagery was used. 

 

 
 

Figure 3.  OBIA ruleset created in eCognition. 

 

In the next step objects were classified into swamp and eucalypt 

landcover classes to determine swamp extent:  

i) Swamp: This wetland landcover class is dominated 

by a combination of shrubs and sedges. It does not 

include large trees such as Eucalypts. 

ii) Eucalypt: Barrier swamp is surrounded by tall 

closed Eucalypt woodlands with tree height often 

greater than 20m. 

The boundary between swamp vegetation for Barrier swamp is 

represented by the interface between the surrounding Eucalypt 

woodlands and the swamp. For the majority of its perimeter this 

boundary is quite discrete. 

 

A classification ruleset was developed based on the surface 

height determined by the DSM. The classification was 

conducted using a tiling approach. Within each tile a quantile 

value was calculated based on the maximum DSM pixel value 

within each object. In tile 1 the quantile value was 22 and in tile 

two it was 25. Areas with objects with a maximum DSM pixel 

value less than the quantile value were classified as swamp and 

objects above the quantile value were classified as Eucalypt. 

 

After the initial classification based on the DSM further 

refinement of the classification was conducted. Single objects or 

small clusters (less than 30,000 pixels) of objects in the 

minority were reclassified to the enclosing class objects. Next, 

neighbouring objects classed as Eucalypt next to the already 

classified swamp objects were merged based on a mean object 

green pixel value greater than 175. Finally a 10 pixel buffer was 

applied to the swamp classes then applied to the eucalypt class 

to smooth the edge between eucalypt and swamp classes. In the 

final refinement steps single objects or small clusters of objects 

in the minority surrounded reclassified to the enclosing class 

again. 

 

A global accuracy assessment was conducted using a point 

based method with 20 randomly located points for each tile to 

confirm the quality of the classification. At each point the 

accuracy of the classified imagery was assessed visually using 

the original true colour UAV imagery. Due to the high spatial 

resolution of the imagery visual inspection is very reliable for 

assessing accuracy.  

 

3. RESULTS 

For this paper we will describe the results of OBIA of two tiles 

which represent two subsets from upstream and downstream 

areas within the Barrier Swamp (Area 1 and 2 Figure 4). Figure 

4 describes the two orthophoto mosaic products created by the 

pix-4D software. 

 

In study area 1 the classified areas of Eucalypt and Swamp 

qualitatively demonstrated a good match between classified 

landcover and the original aerial imagery (Figure 5) and the 

classification accuracy was 95%. The inset demonstrates that 

large trees that include spectrally different features such as 

trunks, branches and leaves have been successfully segmented 

into a single image object and finally classified correctly as 

Eucalypt.  
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Figure 4.  Study area 

 

 
Figure 5.  Segmentation and classification of Area 1. 

 

A similar level classification success could be seen in Area 2 

(Figure 6). The classification accuracy for this tile was 100%. 

The inset shows an area within the image where tree canopy 

cover is sparse but has been correctly classified as Eucalypt. 

Also within the inset, tree trunks on an angle can be clearly seen 

indicating that the orthorectification did not perform so well in 

this part of the image. 

 

 
Figure 6.  Segmentation and classification of Area 2. 

 

4. DISCUSSION 

4.1 Discussion 

Hyperspatial resolution remote sensing data classified using 

OBIA approach has the potential to provide solutions for 

monitoring environments which contain features that are 

potentially difficult to classify using spectral information 

contained within the pixel alone. A key issue with high spatial 

resolution data is that the components that make up the feature 

class can be found as separate pixels. For example, eucalypt 

trees are made up of branches, trunk, and leaves each with 

unique spectral characteristics. At the fine scales described by 

UAV imagery variance in observed spectral values within 

landcover classes increase in proportion to variance between 

classes making spectral separation between landcover classes 

more difficult (Blaschke and Strobl, 2003; Marceau and Hay, 

1999). Segmenting pixels into objects that correspond with 

landcover classes is a key part of the solution to classifying high 

spatial resolution imagery for the derivation of vegetation 

landcover classes. In this study there are numerous examples of 

where eucalypt tree canopies could be discerned within a single 

object containing both canopy, branch and ground cover.  

 

A range of classification methods were trialled, but only the 

OBIA ruleset was presented in this paper, as it was able to 

accurately classify the swamp boundary. Other OBIA 

classification methods using texture based information derived 

from the imagery, thresholds based on mean object spectral 

values and supervised classification using spectral information 

within objects were trialled unsuccessfully. Eucalypt versus 

swamp could not be classified with these methods in the study 
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site. The final classification ruleset relied on global context 

information from the DSM. Further, refinement of the ruleset to 

identify plant assemblages within swamps is likely to rely on the 

use of such context information along with spectral and textural 

information. 

 

Classification of swamp areas is difficult because of the lack of 

spectral contrast between different vegetation types within and 

between swamp vegetation and the surrounding vegetation. 

Swamp mapping is unlike other remote sensing mapping tasks 

where there are large spectral differences between landcover 

classes e.g. urban versus agriculture or forest versus desert. In 

the Barrier swamp environment there were no distinct peaks in 

the distribution of intensity values for each band (Figure 7). 

Peaks in the distribution are a good indication that landcover 

classes may be identified spectrally, where each peak 

corresponds potentially to a different landcover class. 

Homogeneity in spectral signatures of landcover of vegetation 

in swamps potentially may be overcome through gathering data 

at other wavelengths, especially infrared wavelengths. 

Hyperspectral data have been shown to be successful in 

identifying different vegetation species from each other (e.g. 

Martin et al., 1998).   

 

 
Band 1 Blue 

 

 
Band 2 Green 

 

 
Band 3 Red 

 

 
Band 4 Near Infrared 

 

Figure 7.  Histogram of distribution of pixel intensity values (0-

255) for the whole orthophoto mosaic for each band. 

 

Several other issues arise from using hyperspatial resolution 

imagery that are related to the small pixel size of the imagery 

affecting the spectral response from features within segmented 

objects. Firstly, there is problem when the conceptual 

boundaries of the information class is inconsistent with 

boundaries found on the ground (Lang, 2008). The sparse 

canopy of Australian native eucalypt trees means proportionally 

more ground is visible through the canopy than European trees 

and denser shrubby ground cover. Thus, while the object being 

classified might be a tree vegetation class, the feature that 

dominates the area on the ground is often the ground cover (e.g. 

Figure 5 inset). A similar phenomenon was exhibited by the 

swamp vegetation where within object spectral reflectance was 

affected by the ground water and soil moisture. In some areas 

the visual patterns in the swamp that could readily be discerned 

in the image was the result of differences in soil moisture not 

differences in vegetation cover. For the development of the 

OBIA ruleset we initially trialled a multiresolution 

segmentation approach in the first step of the segmentation 

process instead of quadtree segmentation. This resulted in the 

creation of numerous sinuous objects that followed patterns 

visible in the image unrelated to the information class we were 

trying to extract, such as shadows between tree crowns and 

hydrological features such as small streams, rills and subsurface 

ground water movement. Finally, in high spatial resolution data 

each pixel within an information class bounded by an object 

may not be related directly to the information class, as pixels 

within objects will always show some heterogeneity as a result 

of irregular shadows and shade (Ehlers et al., 2006). The 

shadow effect was especially obvious between tree canopies. In 

this study we were able to address many of these problems 

through the use of the quadtree segmentation. It is likely, 

however, that these issues would have been significantly worse 

if a pixel based classifier would have been used. The “salt and 

pepper” classification effect, for example, is common to pixel-

based classification methods (Ivits and Koch, 2002). 

 

4.2 Implications for monitoring 

The boundary between the swamp and surrounding Eucalypt 

woodlands can be used as a key indicator for monitoring swamp 

condition and thus the impacts of underground mining. As 

hydrological conditions change, this can in some cases result in 

a drying out of swamps with less drought tolerant swamp 

vegetation making way for eucalypt trees. Changes in 

boundaries of swamps can be used as a key indicator of wetland 

health (Keith et al., 2010). Thus the accurate mapping of swamp 

extent through the classification technique developed in this 

study is key to monitoring long-term changes in wetland 

condition. 

 

While there are still many hurdles to overcome in demonstrating 

the operational capabilities of UAV derived hyperspatial 

imagery and OBIA methods for upland swamp monitoring, 

there are many other practical reasons why such methods are 

useful and need to be pursued. Firstly, monitoring using UAVs 

is more practical and cost effective than field methods. For 

example it takes half a day to conduct field sampling of two 

20m x 20m plots in the barrier swamp due to access issues 

compared to the 1 hour flight time of the UAV. These plots 

only cover a small fraction of the total swamp area. Remote 

sensing technologies also remove physical interaction with the 

study site, minimising the risk of impacts resulting from the 

monitoring activities and potentially improved access to remote 

and rugged sites. Small UAVs require minimal baggage and 

thus are very portable. This allows for the collection of suitable 

imagery at near real time, coinciding with field surveys or in 

response to irregular events such as flooding. Finally, the 

successful capture of imagery is maximized as image collection 

can occur under cloud cover due to low flight altitude.  

 

5. CONCLUSION  

The results of this study demonstrate how the combination of 

two new remote sensing technologies in the form of UAVs and 

OBIA methods can be successfully combined to classify swamp 

vegetation extents. These more recent remote sensing 

technological developments show great promise. Further work 

on Barrier swamp and other swamps on the Newnes plateau will 

continue with the aim of developing a suitable remote sensing 

platform, orthophoto-mosaicing techniques and classification 

method that can provide the appropriate spatial and temporal 

resolutions for effective monitoring of swamp vegetation 

communities. Successful development of these techniques will 

provide confidence to miners, regulators and the public that 

impacts are identified in a timely manner across all potentially 

impacted sites. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-4, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

105



 

6. ACKNOWLEDGEMENTS 

This project was supported by ACARP grant C20046. We 

would like to acknowledge the support of Rene Redmond, Lew 

Woods and Tim Brooks at Skycam UAV NZ and the Pix 4D 

developers Christoph Strecha, Olivier Kung and Julia Jesse. 

 

7. REFERENCES 

Australian Mine Atlas, 2011. Fact sheet. 

Baatz, M., Benz, U., Dehghani, S., Heynen, M., Holtje, A., 

Hofmann, P., Lingenfelder, I., Mimler, M., Sohlbach, M., 

Weber, M., Willhauck, G., 2002. ECognition User's Guide. 

Blaschke, T., 2009. Object based image analysis for remote 

sensing. ISPRS Journal of Photogrammetry and Remote 

Sensing In Press, Corrected Proof. 

Blaschke, T., Strobl, J., 2003. What’s wrong with pixels? Some 

recent developments interfacing remote sensing and GIS. GIS 6. 

Booth, C.J., Spande, E.D., Pattee, C.T., Miller, J.D., Bertsch, 

L.P., 1998. Positive and negative impacts of longwall mine 

subsidence on a sandstone aquifer. Environ. Geol. 34, 223-233. 

Chiabrando, F., Nex, F., Piatti, D., Rinaudo, F., 2011. UAV 

and RPV systems for photogrammetric surveys in archaelogical 

areas: two tests in the Piedmont region (Italy). J. Archaeol. Sci. 

38, 697-710. 

DEC, 2006. The Vegetation of the Western Blue Mountains 

(including the Capertee, Cox’s, Jenolan and Gurnang Areas) 

Volume 2: Vegetation Community Profiles (Final V1.1). 

Department of Environment and Conservation (NSW). 

Ehlers, M., Geehler, M., Janowsky, R., 2006. Automated 

techniques for environmental monitoring and change analyses 

for ultra high resolution remote sensing data. Photogrammetric 

Engineering and Remote Sensing 72, 835-844. 

Hardin, P.J., Jensen, R.R., 2011. Introduction-Small-Scale 

Unmanned Aerial Systems for Environmental Remote Sensing. 

GISci. Remote Sens. 48, 1-3. 

Hervoue, A., Dunford, R., Piegay, H., Belletti, B., Tremelo, 

M.L., 2011. Analysis of Post-flood Recruitment Patterns in 

Braided-Channel Rivers at Multiple Scales Based on an Image 

Series Collected by Unmanned Aerial Vehicles, Ultra-light 

Aerial Vehicles, and Satellites. GISci. Remote Sens. 48, 50-73. 

Ivits, E., Koch, B., 2002. Landscape connectivity studies on 

segmentation based classification and manual interpretation of 

remote sensing data. eCognition User Meeting, October 2002, 

München. 

Jenkins, R.B., Frazier, P.S., 2010. High-Resolution Remote 

Sensing of Upland Swamp Boundaries and Vegetation for 

Baseline Mapping and Monitoring. Wetlands 30, 531-540. 

Karaman, A., Carpenter, P.J., Booth, C.J., 2001. Type-curve 

analysis of water-level changes induced by a longwall mine. 

Environ. Geol. 40, 897-901. 

Keith, D., 2004. Ocean shores to desert dunes: the native 

vegetation of New South Wales and the ACT Department of 

Environment and Conservation (NSW), Hurstville. 

Keith, D.A., Rodoreda, S., Bedward, M., 2010. Decadal change 

in wetland-woodland boundaries during the late 20th century 

reflects climatic trends. Global Change Biology 16, 2300-2306. 

Keith, D.A., Rodoreda, S., Holman, L., Lemmon, J., 2006. 

Monitoring change in upland swamps in Sydney's water 

catchments: the roles of fire and rain. Sydney Catchment 

Authority Special Areas Strategic Management Research and 

Data Program. Project No. RD07, Sydney. 

Laliberte, A.S., Rango, A., 2009. Texture and Scale in Object-

Based Analysis of Subdecimeter Resolution Unmanned Aerial 

Vehicle (UAV) Imagery. IEEE Trans. Geosci. Remote Sensing 

47, 761-770. 

Laliberte, A.S., Rango, A., 2011. Image Processing and 

Classification Procedures for Analysis of Sub-decimeter 

Imagery Acquired with an Unmanned Aircraft over Arid 

Rangelands. GISci. Remote Sens. 48, 4-23. 

Lang, S., 2008. Object-based image analysis for remote sensing 

applications: modeling reality – dealing with complexity 

Object-Based Image Analysis, in: Blaschke, T., Lang, S., Hay, 

G.J. (Eds.). Springer Berlin Heidelberg, pp. 3-27. 

Lopez-Granados, F., 2011. Weed detection for site-specific 

weed management: mapping and real-time approaches. Weed 

Res. 51, 1-11. 

Marceau, D.J., Hay, G.J., 1999. Remote Sensing Contributions 

to the Scale Issue. Canadian Journal of Remote Sensing 25, 

357-366. 

Martin, M.E., Newman, S.D., Aber, J.D., Congalton, R.G., 

1998. Determining forest species composition using high 

spectral resolution remote sensing data. Remote Sens. Environ. 

65, 249-254. 

Prosser, I.P., Melville, M.D., 1988. Vegetation communities 

and the empty pore space of soils as indicators of catchment 

hydrology. CATENA 15, 393-405. 

Rango, A., Laliberte, A.S., 2010. Impact of flight regulations on 

effective use of unmanned aircraft systems for natural resources 

applications. J. Appl. Remote Sens. 4. 

Raulings, E.J., Morris, K., Roache, M.C., Boon, P.I., 2010. The 

importance of water regimes operating at small spatial scales 

for the diversity and structure of wetland vegetation. Freshw. 

Biol. 55, 701-715. 

Tomkins, K.M., Humphreys, G.S., 2006. Technical Report 2: 

Upland Swamp development and erosion on the Woronora 

Plateau during the Holocene. Report to SCA by Macquarie 

University, Ryde. 

Woodcock, C.E., Strahler, A.H., 1987. The Factor of Scale in 

Remote-Sensing. Remote Sens. Environ. 21, 311-332. 

 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-4, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

106


