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ABSTRACT:

Due to the dynamic character of urban land use (e.g. urban sprawl) there is a demand for frequent updates for monitoring, modeling,
and controlling purposes. Urban land use is an added value that can be indirectly derived with the help of various properties of land
cover classes that describe a certain area and create a distinguishable structure. The goal of this project is to extract land use (LU)
classes out of a structure of land cover (LC) classes from high resolution Quickbird data and additional LiDAR building height models.
The study area is Rostock, a German city with more than 200.000 inhabitants. To model the properties of urban land use a graph based
approach is adapted from other disciplines (industrial image processing, medicine, informatics). A graph consists of nodes and edges
while nodes describe the land cover and edges define the relationship of neighboring objects. To calculate the adjacency that describes
which nodes are combined with an edge several distance ranges and building height properties are tested. Furthermore the information
value of planar versus non-planar graph types is analyzed. After creating the graphs specific indices are computed that evaluate how
compact or connected the graphs are. In this work several graph indices are explained and applied to training areas. Results show that
the distance of buildings and building height are reliable indicators for LU-categories. The separability of LU-classes improves when
properties of land cover classes and graph indices are combined to a LU-signature.

KURZFASSUNG:

Aufgrund des dynamischen Charakters von Stidten (Suburbanisierung/Zersiedelung) entsteht ein Bedarf an regelméBiger Aktualisie-
rung urbaner Landnutzungsdaten fiir Modellierungs-, Uberwachungs- und Kontrollzwecke. Urbane Landnutzung stellt einen Mehrwert
dar, der mit Hilfe von spezifischen Eigenschaften von Landbedeckungsklassen, die ein bestimmtes Gebiet beschreiben und eine er-
kennbare Struktur bilden, indirekt abgeleitet werden kann. Das Ziel des Projektes ist die Extraktion stiddtischer Landnutzungstypen
aus Landbedeckungsklassen, die aus hochaufgelosten optischen Quickbird-Satellitendaten und einem LiDAR-Oberflichenmodell ab-
geleitet wurden. Das Untersuchungsgebiet Rostock ist eine deutsche Stadt mit mehr als 200.000 Einwohnern. Um die Eigenschaften
der Stadtstrukturen zu modellieren wurde ein graphenbasierter Ansatz, der bereits in anderen Wissenschaftszweigen (industrielle Bild-
verarbeitung, Medizin, Informatik) eingesetzt wird, adaptiert. Ein Graph besteht aus Knoten, die die Landbedeckung reprisentieren,
und Kanten, die die Eigenschaften zu benachbarten Objekten definieren. Um die Adjazenzmatrix zu berechnen, die beschreibt welche
Knoten und Kanten miteinander verbunden sind, wurden verschiedene Distanzbereiche und Hohenangaben getestet. Dariiber hinaus
wurde der Informationswert planarer und nicht-planarer Graphen analysiert. Nach der Graphenbildung wurden spezifische Indikato-
ren berechnet, die beschreiben wie kompakt oder zusammenhéngend der Graph ist. In diesem Paper werden einige dieser Indikatoren
beschrieben und auf Trainingsgebiete angewandt. Die Ergebnisse zeigen, dass Gebdudedistanzen und Gebdudehohen zuverlédssige In-
dikatoren fiir bestimmte Landnutzungskategorien sind. Die Trennbarkeit urbaner Landnutzungstypen kann verbessert werden, indem
man die Werte der Graphenindikatoren unterschiedlicher Strukturgraphen eines Gebietes zu einer Landnutzungssignatur verbindet.

1 INTRODUCTION lations, low transport costs, availability of roads et cetera (Euro-
pean Environment Agency, 2010). Therefore there is a need for
urban LU as an important information for various planning appli-
cations, for political decision making as well as for the monitor-
ing of ecosystem changes, disaster management, or the analysis
of quality of living. Urban LU-types are “characterized by the
arrangements, activities and inputs people undertake in a certain
land cover type to produce, change or maintain it” (Di Gregorio,
2005). Currently urban LU-types are collected from surveying,
mapping, digitizing of aerial imagery, population statistics, or in-
quiries. The benefits of a derivation from satellite images are the
high temporal resolution coincidental with a constant coverage
and an area wide availability. The trained human eye can distin-

The UN Habitat announced in their annual report in 2010 that
52% of the global population is living in cities. By 2030 it is fore-
casted that 60% of the world will be urban (UN Habitat, 2011).
Urbanization is the least reversible human dominated LU-type.
The consequences range from land cover change to climate im-
pacts, habitat loss, or extinction of species. Additionally it influ-
ences transportation developments, energy demand, or the auto-
mobile market (Seto et al., 2011). The main drivers in Europe,
mentioned by the European Environment Agency, are e.g. popu-
lation increase, rising living standards and improvement of qual-
ity of life, economic growth and globalization, policies and regu-
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guish between a residential area, an industrial area, or a city core
in high resolution satellite images. This is because the human per-
ception works in a holistic way. The Gestalt-theory defines rules
that describe how the human brain interprets complex structures.
Proximity and similarity for example suggest patterns. Further-
more we try to simplify complex objects into basic geometrical
shapes. The capability of the human brain can handle many of
the rules at the same time. The challenging part is the imple-
mentation and combination of Gestalt rules and the emulation of
the human brain for automated image interpretation. Antrop and
Van Eetvelde (2000) analyzed landscape metrics in suburban ar-
eas with regards to holistic characteristics. The aim of the project
described in this paper is the extraction of urban LU-categories
using holistic land cover properties for graph generation and anal-
ysis. Graphs, containing nodes and edges, are an abstract concept
of real world phenomena representing objects and their relation-
ship among each other. Land cover objects (e.g. building, tree,
impervious surface) define the nodes while the edges are the con-
nection in relation to properties like distance, area or perimeter,
building height, etc.. After the description of the study site and
the available datasets the graph theory is introduced. Some graph
indices that characterize the connectivity or complexity of the
graph are defined followed by a description how the graphs in the
study area are computed and analyzed. The results are discussed
and the future work is suggested.

2 RELATED WORK

Medicine and informatics disciplines concerning image process-
ing and interpretation have been dealing with graph theory for
structural analysis and classification approaches for a long time.
Deuker et al (2009) described various graph metrics of complex
networks relating to the application in human brain networks.
Magnetoencephalography (MEG)-Images from human brains in
a resting state and solving a memory exercise were analyzed.
Different frequency interval networks were generated and global
graph metrics were calculated (clustering coefficient, path length,
small-worldness, assortativity, hierarchy, etc.) and divided into
first and second order graph metrics. Gunduz, Yener, and Gul-
tekin (2004) accomplished a classification of brain cancer cells
(glioma) based on topological properties in the tissue image. The
graphs were created using an exponential function of the Eu-
clidean distance and the Waxman model. Diverse graph metrics
and an artificial neural network (ANN) classification were per-
formed resulting in the classes: healthy, cancerous, and inflamed.
Graph based derivation of urban LU-types was established by
Barnsley and Barr (1997). They developed the data model named
XRAG (eXtended Relational Attribute Graph) which consists not
only of nodes and edges but also of properties associated with the
nodes (area, perimeter) and edges (distance, direction) as well as
labeling of the land cover, grouping, and the probability of the
assigned land cover class. The approach was based on raster data
of a topographic map where land cover classes and their prop-
erties were derived. Morphological, relational, and spatial prop-
erties were analyzed to distinguish between several urban areas
with buildings from different decades. Bauer and Steinnocher
(2001) used XRAG implemented in SAMS (Structural Analyzing
and Mapping System) as a prerequisite for the definition of rules
within eCognition software (Benz et al., 2004) to derive LU on
a rule based method. De Almeida, Morley, and Dowman (2007)
describe a graph based approach to analyze topological structures
of urban regions. LiDAR data was triangulated and the slope of
the resulting triangles was computed, followed by a classifica-
tion of flat and steep polygons. Afterwards, depth-first search
(DFS) and breadth-first search (BFS) algorithms were used to an-
alyze how informative the graph-trees for the topological prop-
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erty of containment are. Anders, Sester, and Fritsch (1999) pre-
sented a graph clustering technique to infer higher level structures
from detailed cadastral map data. A relative neighborhood graph
(RNG) was computed by using a Delaunay Triangulation (DT)
and outlier edges were removed. Furthermore the local neigh-
bor density was calculated by using the size of the Voronoi cell
around a node and the mean distance from the DT of linked nodes
as an estimator.

3 STUDY SITE AND DATASET

The study area is Rostock, a German Hanseatic city with more
than 200.000 inhabitants built along the Warnow river until its
embouchure in the Baltic Sea. A cloud-free 16-bit Quickbird
satellite image with four channels (blue, green, red, and near-
infrared) from September 2009 was used (Figure 1). After at-
mospheric corrections a pan-sharpening of the multi-spectral im-
age data was accomplished, resulting in a spatial resolution of
60 cm per pixel at the ground. LiDAR data from 2006 with a
point density of two points per square meter was normalized with
the digital elevation model to obtain the relative building and veg-
etation heights (nDSM). Additional cadastral parcel and building
polygons from January 2011 and an urban land use map, dig-
itized from orthophotos from 2007, were beneficial for testing
the methods on ideal training areas and will be helpful for the
validation of the results . The Quickbird Ortho Ready Standard
Imagery product did not include topographic correction and had
a CE90 (Circular Error with 90% level of confidence) of 23 m
or higher, depending on the terrain and the viewing angle (Cheng
et al., 2003). For this reason a projective transformation with 30
well distributed ground control points from the cadastral building
polygons and 3D information from the LiDAR elevation model
was accomplished. In the first step ideal test areas for the differ-
ent LU-classes were chosen. Therefore the essential land cover
classes were combined from cadastral building polygons and a
fusion of classes from the land use map and the nDSM. The fol-
lowing land cover categories were derived: Built up, low built up,
paved, trees, shrub, grass, water, and open land.

Figure 1: Quickbird satellite image with superimposed borders
of Rostock ((©DigitalGlobe, Inc., 2011)
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4 GRAPH THEORY

Graph theory is a branch of mathematics that had its initiation
most likely in 1736 when Euler abstracted the problem of the
”Bridges of Konigsberg” into a simple graph and proved that a
walk around Konigsberg crossing every bridge uniquely is impos-
sible. It is an interdisciplinary science with various applications
e.g. routing problems (shortest path algorithms, Traveling Sales-
man problem), social and cognitive networks, technological net-
works like the Internet, cell networks or ecological networks, in-
frastructure networks, flow models, minimal costs computation,
and many more. A graph consists of vertexes (nodes) and edges
(links) (Caldarelli, 2007). A graph can be described with an ad-
jacency matrix. The rows and columns of the adjacency matrix
represent the vertexes while the entries denote if the vertexes are
connected (1) or not (0). Graph indices represent structural prop-
erties of graphs. The beta index (1) is a measure of connectivity
and is computed by the ratio of edges (e) over vertexes (v) (Ro-
drigue et al., 2009).
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The gamma index is a ratio of the observed edges over the number
of maximum possible edges. Its value ranges between 0 and 1,
where 1 represents a complete graph with no subgraphs. The
formulas depend on the graph type. A planar graph (2) has no
edge intersection outside of a vertex. In a non-planar graph (3)
edge intersection must not result in a vertex followed by a higher
number of possible links (Rodrigue et al., 2009, Stuttgart, 2011).
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Figure 2 illustrate the difference between planar and non-planar
graphs of a residential detached house area. The vertexes were
generated from the centroids of the building polygons. The planar
graph is the outcome of a Delaunay Triangulation.

(a) Planar graph

(b) Non-planar graph

Figure 2: planar(a) and non-planar(b) graph of a residential de-
tached house area

Another measure for connectivity is the alpha index which spec-
ifies the redundancy of a net. It is defined as the number of cy-
cles (meshes) over the maximum possible cycles. The achieved
values vary between 0 and 1, while 1 represents a completely
connected graph. The formulas depend on the planar (5) and non-
planar (6) graph type as well. A mesh is a chain where the start

and end node are the same and does not cross a link more than
once. The number of cycles (u) (4) is estimated by a combination
of nodes, links, and number of sub-graphs (p) which are subsets
of a graph (Rodrigue et al., 2009, Stuttgart, 2011).
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More extensive graph measures that consider the internal com-
plexity of a graph could reveal structural differences between net-
works. The clustering coefficient, also referred to as transitivity
in social network analysis, specifies if the neighbors of a vertex
are also neighbors of each other. It unveils cluster or communities
which have a similar degree of links. The clustering coefficient is
divided into local and global, while the local clustering coefficient
defines the clustering of a specific node, the global describes the
clustering of the total graph. The local clustering coefficient (7)
of a node is the proportion of edges of the vertexes in its neigh-
borhood (e;) by the maximum possible edges that could occur
between them. Therefore the degree of the vertex (k;) is essen-
tial, which indicates the number of outgoing edges or the number
of adjacent nodes (Rodrigue, 2009).
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The global clustering coefficient (8) indicates the overall proba-
bility of a graph that neighboring nodes are connected. It is de-
fined as the proportion of observed number of closed triplets over
the maximum number of triplets. A triplet is a set of 3 nodes that
is connected by two (open) or three (closed) edges (Rodrigue,
2009).
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The assortativity (9) is a coefficient of the Pearson correlation
between node degrees. The derivation is well described in Cal-
darelli (2007) or Newman (2002). It refers to the preference of a
vertex to connect to vertexes of similar degree. The values range
from -1 (disassortative graph) to 1 (assortative graph). In disas-
sortative graphs nodes with very different degrees are connected
and they often occur in strong hierarchical structures while social
networks are typically assortative networks (Bassett et al., 2011,
Deuker et al., 2009, Caldarelli, 2007, Rodrigue, 2009). The net-
work assortativity function is stated as
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where j; and k; are the degrees of the nodes at the end of the ith
edge and E as the total number of edges (Newman, 2002, Bassett
etal., 2011).
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5 DATA ANALYSIS

The first goal of the project was to define urban typology and
to test the graph measures on significant training areas with the
help of the properties of ideal cadastral and topographic data. Six
meaningful urban LU-classes relevant for German urban fabric
were established and listed in Table 1. Specific characteristics
such as imperviousness or green area index were transfered from
Banzhaf and Hofer (2008) . The German Federal Land Utiliza-
tion Ordinance (Bundesministerium der Justiz, n.d.) constitutes
the upper limit of the measure of the building area (10) and of the
floor area (11). Both indices are allocated to the urban LU-classes
in Table 1.

o1 2
BAI — building area [m~] (10)

plot area [m?]

_ floor area [m?]

FAI

an

" plot area [m?]

LU-class Description

Continuous building type adjacent to the
street, high built up, vegetation mostly in
courtyard, ceramic tile roof, very high im-
perviousness (70-90%), BAI=1, FAI=3

City center(1)

Small detached houses, approximated
square form, surrounded by vegetation,
green area index 40-70%, with small
buildings used as garages, some with
pools, with access to road, ceramic tile
roof, low density and height of build-
ings, low imperviousness, BAI=0.2-0.6,
FAI=0.4-1.2

Residential
single family
houses(2)

Large rectangular buildings in simple
form and regular alignment, high built up,
low to intermediate imperviousness, green
area index 25-80%, more than 3 stories

Residential
block build-
ings(3)

Large buildings in simple form, extensive
paved areas, isolated few or no vegetation
areas, metal roofs with high reflectance,
often no clear spatial structure, BAI=0.8,
FAI=2.4

Industrial
area(4)

Detached small-area buildings, low built
up, nearly no paved area, abundant vege-
tation, BAI=0.2, FAI=0.2

Allotment(5)

Large isolated buildings in complex
forms, paved and vegetated areas alternate

Administrative
district(6)

Table 1: Urban land use classes

5.1 Analysis of planar and non-planar building graphs

To generate the graphs and compute the graph indices Matlab ®
in combination with the additional Matgraph and the Brain Con-
nectivity Toolbox were used. After importing the land cover poly-
gons the centroids, representing the graph nodes, were computed
to approximate the objects. To create planar graphs a Delaunay
Triangulation of the building centroids was performed, which
represents the spatial relationship between the building objects
and can be referred to as relative neighborhood graph (RNG).
Afterwards edges with a distance above 50 m were thinned out.

122

Non-planar graphs were generated with the help of the distance
matrix containing all distances from one building node to all other
building nodes. To compare the graph types edges above 50 m
were deleted respectively. The graph indices were computed and
the results are summarized in Table 2 and Table 3.

LU-class B8 (%) «(%) Clust.Coeff Assort.
1 2,84 94,86 92,28 0,39 —0,02
2 2,56 87,79 81,56 0,41 0,23
3 2,03 69,41 53,85 0,39 0,22
4 1,68 59,26 38,03 0,41 0,25
5 0 0 0 0 0
6 2,18 76,85 64,79 0,42 —0,12

Table 2: Graph measures of planar building graphs

LU-class B8 (%) (%) Clust.Coeff Assort.
1 12,84 1,83 3,39 0,62 0,70
2 6,34 8,81 15,30 0,59 0,49
3 2,64 3,07 3,94 0,52 0,45
4 2,13 5,76 6,61 0,61 0,65
5 0 0 0 0 0
6 4,59 12,08 20,00 0,71 0,54

Table 3: Graph measures of non-planar building graphs

The absent values for allotment areas resulted from lacking build-
ing objects over 3 m in height. Comparing graphs containing
low built up objects the allotment areas had high values of beta,
gamma, and alpha indices while most of the other LU-classes
had zero entries. Table 2 shows that the beta, gamma, and al-
pha indices correlate with each other and that the city center had
the highest values, representing the dense building structure. The
lowest values were achieved by the industrial area. This indi-
cates that the distance of 50 m is not sufficient for a well con-
nected graph. Because of the low assortativity values the planar
graphs of all LU-classes were neither assortative nor disassorta-
tive. The administrative district had the highest clustering value
for planar and non-planar graphs which denoted the occurrence
of several communities. The gamma and alpha indices of non-
planar graphs correlated while the beta index was not in line with
the other two connectivity measures. Nevertheless, the ranking
of the LU-classes regarding the values of the beta index was the
same as with planar graphs. The values for assortativity increased
immensely for non-planar graphs especially for the city center,
which is a sign for an evenly distributed node degree and a ho-
mogeneous structure.

5.2 Comparison of different distance ranges of planar build-
ing graphs

For the second approach planar building graphs were tested with
different distance ranges. After a Delaunay Triangulation of the
Centroids of the LU-training classes the distribution of the dis-
tances of the edges were visualized in a box plot (Figure 3) to
derive the distance ranges from the lower and upper quartile and
the median. The overlapping distance ranges of 0-30 m, 10-40 m,
30-60 m, and 30-80 m were achieved to allow us investigate the
separability. The edge outliers of the graphs were thinned out
and the measures were computed. Looking at the different dis-
tance ranges the graph structure changes. E.g. in the industrial
area the graph changes from a sparsely connected in the 0-30 m
range to a multiple connected graph in the 30-80 m range.

The geometric graph visualization of the industrial area during
the different ranges is shown in Figure 4.
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Figure 4: Planar graphs of industrial area: (a) distance range 0-
30 m; (b) 10-40 m; (c) 30-60 m; and (d) 30-80 m.

5.3 Using graph based measures for creating a LU-signature

Because beta, gamma, and alpha index correlate in planar graphs
just the beta index was discussed. Furthermore the idea of a beta
index-based LU-signature was introduced. In Figure 5 the beta
index of the LU-training areas for the 4 distance ranges was pre-
sented. Administrative district, city center, and residential single
family houses started with a higher beta index and showed a de-
cline in the classes with the broader distances. The beta index of
the industrial area and residential block buildings showed the op-
posite behavior and rose with broader distances. A straight line
combines the values to distinguish the separability. The approach
for the future work is to develop a land use signature for several
graph measures and to assign the LU-classes on the basis of their
membership to a specific signature.

Also the assortativity showed significant changes passing the dis-
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Beta index of planar graphs for different distance ranges
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Figure 5: Beta index of planar graphs for different distance ranges

tance ranges. Residential single family houses and residential
block building graphs appeared to have assortative behavior in
the lower distant range (Figure 6).

Assortativity of different distance ranges
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Figure 6: Assortativity of planar graphs for different distance
ranges

5.4 Significance of different roof types of planar building
graphs

Because there is potential to classify different roof types based on
reflectance values in high resolution satellite images the graphs
were investigated concerning red and dark ceramic roof tiles. Pla-
nar graphs with an edge distance of 0 to 50 m were examined and
the results of the beta index were summarized in Table 4.

LU-class red roof  dark roof
City center 2,34 2,83
Residential single family houses 1,73 2,22
Residential block buildings 1,95 1,33
Industrial area 0 1,65
Administrative district 0 2,07

Table 4: Beta index of different roof type graphs

The conclusion from the values in Table 4 was that residential
single family houses and the city center have similar densities for
red and dark roofs. The industrial area and the administrative
district appeared to have low or no red roofs. A similar study has
to be done for metallic roofs because we expect dense structures
for industrial areas.
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6 CONCLUSION AND FUTURE WORK

The introduced graph measures applied on ideal training areas
showed potential for land use class extraction. The beta index
of planar and non-planar graphs identified the city center as the
densest structure while the clustering coefficient showed the high-
est values for the administrative district. Beta, gamma, and al-
pha index correlated in planar graphs. In contrast to non-planar
graphs where gamma and alpha index correlated, the beta index
did not correlate. The assortativity values for non-planar graphs
increased compared to those from planar graphs. The city center
appeared as an assortative graph which was an indicator for an
evenly distributed node degree and hence a homogeneous struc-
ture. The beta index signature of distance range-graphs was a sig-
nificant characteristic showing the development of graphs accord-
ing to the edge attribute of distance. Single family houses and
the city center showed a decrease of the beta index with broader
distances while industrial areas and residential block buildings
have the opposite properties. The significance of red and dark
roof types was investigated revealing that all residential urban
LU-classes (single family buildings, block buildings, city cen-
ter) had similar densities for red and dark roofs. Industrial areas
and administrative areas had a denser structure of dark roofs and
an empty graph (no edges) for red roofs (denoting the absence or
isolated occurrence). A study with metallic (bright) roofs should
be performed assuming a frequent appearance in industrial areas.
Further research has to be done concerning graphs with several
node (land cover type, area, compactness, etc.) and edge (dis-
tances, orientation, weights, etc.) attributes. The indices have to
be applied on a set of reference areas as well as on derived land
cover datasets from high resolution satellite images. Additional
to the distance as a spatial attribute also the building heights, ar-
eas, and direct neighborhood will be analyzed. Allotment areas
are well distinguished with respect to the building height as a rel-
ative characteristic for graph generation. The green area index,
imperviousness, building area as well as floor area index as indi-
cated in the urban land use definitions should be converted into
graph structure characteristics. The mentioned land use signature
has to be developed further based on the combination of various
graph properties in order to achieve a better LU-class separabil-
ity. The adoption of supervised machine learning methods will
be utilized to analyze various graphs and graph measures simul-
taneously.
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