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ABSTRACT: 
 
The registration process forms an important step in the integration of Digital Elevation Models (DEMs) of differing accuracy and 
resolution. DEM registration invariably involves what is effectively an ‘image matching’ process utilising similarity measures. Of a 
number of prospective image matching approaches, Mutual Information (MI) offers potential for application to DEM registration. MI 
has proven to be a robust and accurate method of image registration, especially in the field of medical imaging. However, a lack of 
variation within the terrain models potentially limits the utility of MI for the matching of multi-resolution DEMs. This paper 
investigates the potential of MI for DEM registration, and proposes an improved Gradient-based MI (GMI) in which the matching is 
applied to raster DEMs where the elevation value at each grid point is replaced by the surface gradient magnitude at that point. 
Experimental results demonstrate that MI-based methods can outperform the often employed Cross Correlation Function (CCF). 
Furthermore, the GMI approach has been found to produce a more accurate and robust registration than MI. 
 
 

1. INTRODUCTION 

Within the integration process to form a multi-resolution Digital 
Elevation Model (DEM) from two overlapping raster DEMs of 
differing resolution and accuracy, the registration process forms 
an important step. Registration effectively constitutes a surface-
to-surface matching in which horizontal and vertical offsets 
between the two DEMs are determined. Van Niel et al. (2008) 
have reported on the impact of misregistration on DEM image 
differences and shown that image differences between DEMs 
are sensitive to even small amounts of misregistration. They 
concluded that misregistration is a source of strong correlation 
between elevation difference and aspect. 

Of the range of image similarity-based registration methods, the 
Cross Correlation Function (CCF) has often been employed for 
the registration of raster DEMs (Li & Bethel, 2008; Costantini 
et al., 2006; Roth et al., 1999). Mutual Information (MI) offers 
another similarity measure that has been adopted for a variety of 
applications (Viola & Wells III 1996), including the registration 
of medical imagery. MI is integrated within the recently 
developed semi-global matching method for DEM generation 
from aerial and space imagery (Hirschmueller, 2008, 
Hirschmueller et al., 2005 and Krauß et al., 2008). Also, the MI 
measure has been used as a local matching cost aggregated into 
a global energy function in the determination of object surface 
models from airborne video sequences (Gerke, 2008). The 
energy function was iteratively minimised in an optimisation 
process that led to optimal alignment between images.  

Although MI has been adopted for image matching, it has to 
date not been applied to the registration of DEMs. This paper 
investigates the potential of MI and a variation of it, namely 
Gradient-based MI (GMI), for horizontal registration of multi-
resolution DEMs. The CCF method is also evaluated, primarily 
for comparative assessment of the performance of MI and GMI. 
The three image similarity-based matching methods are 
described in Section 2 and the results of registering four 
different DEM datasets to a LiDAR DEM are presented in 
Section 3. 

2. METHOD 

When applied to surface models, an image similarity method 
utilises a metric to quantify the degree of correspondence 
between two Regions of Interest (ROIs) extracted from a 
reference and target DEM within the coordinate transformation 
to register the DEMs.  All the DEMS considered in the reported 
investigation were georeferenced in the same geodetic datum 
and were assumed to be rotationally aligned. Thus, the 
transformation model adopted here includes translations only 
and is identical for all similarity methods. The optimum match 
between ROIs occurs when similarity metrics reach their 
maximum values. In the following sections, similarity metrics 
and their characteristics are briefly described. 

2.1 Cross correlation function  

CCF is used as a metric to measure the degree of similarity 
between two images. It is mathematically defined as 
 

CCF(R, T) =
∑(R(r) − R�(r))(T(t) − T�(t))

�∑(R(r) − R�(r))2 ∑(T(t) − T�(t))2
         (1) 

 
where R�(r) and T�(t) denote the average intensities of the 
reference and target windows. CCF provides an effective 
measure of alignment between two images when subtle intensity 
changes between the images occur or the same area is captured 
with the same sensor at different times (Zitova & Flusser, 
2003). 
 
2.2 Mutual information  

The MI measure of two images is a combination of the entropy 
values of the images, both separately and jointly. One 
interpretation of entropy is as a measure of dispersion of a 
probability distribution. A distribution with only a few large 
probabilities has a low entropy value and maximum entropy is 
reached for a uniform distribution. One of the most commonly 
used entropy measures was introduced by Shannon (1948). 
Given n events occurring with probabilities p1... pn, the Shannon 
entropy is defined as 
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          H = ∑ pi log 1 pi⁄n

i=1                                                        (2)    
 
For an image, the entropy is calculated from the intensity 
histogram in which the entries comprise the probabilities. The 
joint entropy of images quantifies the combined information 
content in the two images. The joint entropy H (X, Y) can be 
calculated using the joint histogram of the two images. If the 
images are totally unrelated, then the joint entropy will be the 
sum of the entropies of the individual images. The more similar 
the images, the lower is the joint entropy compared with the 
sum of the individual entropies.  
 
As the images become misaligned, dispersion of their joint 
histogram increases. Therefore, image-to-image registration can 
be accomplished by minimizing the joint entropy, though MI 
proves to be a better criterion when marginal entropies H (X) 
and H (Y) are also taken into account. MI is related to joint and 
marginal entropies of two images of X and Y by the equation 
 

I (X, Y) = H (X) − H (X Y⁄ )
                             = H (X) + H (Y) − H (X, Y)                      (3) 

 
Optimal registration can be carried out by maximising the MI of 
the two images. The MI metric is robust against changes caused 
through use of different sensors, allowing registration even 
when the images have differing appearance, as long the 
intensities of overlapping pixels are statistically correlated when 
the images are registered (Olson, 2001). 
 
2.3 Gradient-based mutual information 

MI has been shown to be a robust and accurate method of image 
registration, especially in the field of medical imaging (Viola & 
Wells III, 1996). However, when applied to DEM registration it 
can sometimes fail, partly due to the lack of variation within the 
surface model, which is assumed here to be in the form of an 
intensity image. Corresponding images representing the 
distribution of surface gradient magnitudes, effectively slope 
maps, can supply supplementary ‘intensity’ information for 
inclusion in the MI process. The gradient images, formed by 
means of differential gradient operators in two orthogonal axes 
within the image, clearly indicate areas with high topographic 
variation or steepness (Figure 1). It has been shown that the use 
of gradient magnitude images used in the calculation of MI can 
improve the quality of registration (Penny et al. 1999 & Maintz 
et al. 1996). 

   
           (a)                          (b)                         (c)   
                     

   
                   (d)                         (e)                           (f) 

Figure 1. (a) and (b) show reference and target DEMs at 
30m post spacing at the size of 70×80 pixels; (c) and (e) 
show gradient magnitude images of the reference DEM 
in x and y directions; and (d) and (f) display gradient 
magnitude images of the target DEM in x and y 

directions. Gradient magnitude images are normalised 
within [0, 1]. 

Given a 2D image 𝐹 with intensity f(x, y), its spatial gradient 
field GF(x, y) can be computed by 
  

GF(x, y)  =  
∂f(x, y)
∂x  ı�⃗  +  

∂f(x, y)
∂y  j�⃗                              (4) 

 
where ı⃗ and j⃗ are the unit vectors along the x and y axis, 
respectively. Since it is assumed that DEMs are rotationally 
aligned, the orientation of gradient vectors is ignored. Instead, 
gradient magnitude images of the reference and target DEMs in 
the x and y directions, denoted by fxR, fxT, fyR and fyT, are used to 
calculate MI measures. To avoid computational complexity, the 
reference and target DEMs should have identical post spacing. 
Thus, the reference DEM, which is often of higher horizontal 
resolution, has to first be resampled to the target DEM grid size.  
 
GMI is the resultant of MI measures of gradient magnitude 
images, separately in x and y directions.  In mathematical terms, 
GMI is defined as 
 

GMI = I (fxR, fxT) + I (fyR, fyT)                                          (5) 
 

Figure 3 shows the behaviour of the magnitude of the similarity 
functions described above on a DEM image when the image is 
translated separately in the x, y and diagonal directions. The 
sharper peak from a lower similarity base value indicates that 
the GMI function is more stable and will thus lead to a more 
accurate registration.  
 

 
                        (a)                                               (b) 

   
                          (c)                                             (d) 

Figure 3. (a) DEM image; (b) ,(c) and (d) show the trace 
of CCF, MI and GMI functions while translations are 
applied along the x, y and diagonal directions. 
Horizontal axes show translations in pixels. 

The CCF has a wider range about the global maximum 
compared to the MI and GMI measures, indicating that in the 
case of adopting an optimisation strategy to minimise an energy 
function (Hirschmueller, 2008 and 2005), the function can be 
initialised at a large distance from the global peak. This 
characteristic gives flexibility to the initialisation. However, it 
does not affect the quality of the registration because the search 
to find the global maximum covers the entire area. 
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Figure 4 shows, for a 24×24 pixel template within the LiDAR 
DEM, an example of where the CCF and MI methods 
determined erroneous matching positions within an SRTM 
DEM, but GMI found the correct matching position. The main 
reason for the success of GMI in this case is that it makes use of 
gradient magnitude information, which is dominant and ignores 
other information that contributes little to describing the shape 
of the terrain.  
 

     
          (a)               (b)                (c)               (d)               (e) 
 

Figure 4. (a) LiDAR DEM and marked template; (b) 
LiDAR template; (c) and (d) Erroneous patches found 
incorrectly by the CCF and MI; and (e) Correct DEM 
window found via GMI.  

3. RESULTS AND EVALUATION 

The outline of the test areas and the corresponding reference 
LiDAR DEM to which four different DEM datasets are to be 
registered are shown in Figure 5. The area at the top (Area 1) is 
hilly and has a coverage of dense coastal forest, and that below 
(Area 2) comprises low-lying urban terrain. Both areas have a 
size of 18 km2. The specifications for the target DEMs, along 
with their quality measures as quantified by representative RMS 
elevation discrepancy values relative to the reference LiDAR 
DEM, are shown in Table 1. 
 

   
                     (a)                       (b)                         (c) 
 

Figure 5. (a) Outline of the two test areas; with 
corresponding LiDAR DEMs displayed in (b) and (c). 

 
 

Table 1. Target DEMs, with resolution and representative 
vertical accuracy (RMS) compared to LiDAR reference DEM.  

 

Dataset Technology Grid 
size (m) 

RMS (m) 
Area1 Area2 

SRTM Space-borne 
IfSAR 30 6.1 3.4 

SPOT5 Space 
photogrammetry 30 6.6 5.8 

InSAR Air-borne IfSAR 5 2.1 1.8 

ADS40 Aerial 
photogrammetry 8 2.2 1.9 

 
In order to assess the accuracy and robustness of DEM 
registrations conducted, the four target DEMs were first 

translated by 30m with respect to the reference DEM. Then, 
within the experimental registrations, two template sizes of 0.4 
x 0.4km and 1 x 1km were selected. In each template size 
category, the entire reference DEM was sampled at the template 
size interval, resulting in 83 and 10 samples for Area1, and 90 
and 16 for Area2. These sampled templates move over the 
target DEMs at one-pixel increments and CCF, MI and GMI 
measures between the sampled template from the reference 
DEM and its target counterpart are computed. The measures are 
accumulated in a so-called global similarity matrix until the 
entire test area has been searched.  
 
The maximum value of the global similarity matrix generated 
for each similarity metric corresponds to the best achievable 
alignment between the templates for that metric. If the ground 
coordinate discrepancies of the template centres fall within the 
tolerance range of [-1.5, 1.5] pixels at their respective grid size, 
the translations in x and y are maintained. The translations 
estimated for each matching method at each template size are 
then averaged and used to transform the target DEMs. The 
transformed DEMs were subsequently compared to the LiDAR 
DEM for quality assessment (Table 2). The success rate, SR%, 
of each method was computed to quantify robustness, with 
SR% being defined as the percentage of matched templates to 
the total number of reference templates. 
 
The results summarised in Table 2 demonstrate that GMI 
achieved a higher overall success rate than both MI and CCF. 
The robustness of all matching approaches generally increased 
in proportion to the template size, since larger templates contain 
more information, whether it is intensity or gradient values. The 
difference in success rates is more significant in the following 
cases: 

a) When significant terrain variations or gradient 
information exist allowing for a higher success rate for 
GMI. This is seen in Area 1 where SR% values of five to 
ten times those computed for the CCF and MI are 
obtained by GMI for the SRTM DEM with the larger 
template size (1 km2).  In contrast, in Area 2 the measures 
are roughly the same because the terrain is relatively flat. 

b) For DEMs with low horizontal resolution, which do not 
(and cannot) exhibit fine-scale variations in surface 
topography. Thus, the information content required for a 
correct matching via MI or CCF does not exist. In Area1, 
with the SPOT5 dataset and a 1×1 km2 template size, the 
success rate of GMI is 3 - 4 times that obtained with MI 
CCF, but for the higher resolution ADS40 and InSAR 
DEMs, GMI shows only a 15% higher average success 
rate than MI. 

The results listed in Table 2 reveal that, for the smaller template 
size, MI was unable to achieve a matching of the reference and 
target templates in the low resolution DEMs in Area1, whereas 
CCF found correct matches, but only for a few samples. This 
highlights the fact that GMI outperforms both CCF and MI, 
particularly in the registration of low-resolution DEMs. 
However, the performance of MI improves in proportion to 
horizontal resolution, such that MI produces similar results to 
GMI in Area 2 for the ADS40 DEM, for both template sizes. 

Computed estimates for the translation parameters were 
consistent with the true datum shift in x and y directions for all 
three methods. The imposed 30m horizontal translation is 
equivalent to one pixel for the SRTM and SPOT5 DEMs, six 
pixels for the InSAR DEM and four pixels for the ADS40 
DEM.  
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Table 2. Accuracy evaluation results against the reference DEM after the registration. SR% indicates the success rate, xmean and ymean 
are the computed translations in pixels, and RMS is the root mean square height discrepancy value after registration 

 

Site DEM Method 
Template size (km2) 

0.4*0.4 1*1 
SR% xmean ymean RMS (m) SR% xmean ymean RMS (m) 

Area 1 

SRTM 
CCF 5 1.5 1.0 6.1 20 0.0 0.0 6.1 
MI - - - - 10 2.0 0.0 6.1 

GMI 12 1.2 0.6 6.0 100 0.8 0.4 6.0 

SPOT5 
CCF 2 1.0 2.0 6.3 30 1.0 0.7 5.6 
MI - - - - 20 1.5 1.0 5.8 

GMI 14 1.4 1.7 6.1 90 1.1 1.0 5.6 

InSAR 
CCF 1 7.0 6.0 1.6 - - - - 
MI 39 6.9 7.2 1.5 30 7.0 7.3 1.5 

GMI 39 7.0 7.1 1.5 40 6.8 7.5 1.6 

ADS40 
CCF 2 3.0 3.0 2.0 10 3.0 5.0 2.0 
MI 7 4.0 4.0 1.7 80 3.5 4.0 1.8 

GMI 18 3.6 3.6 1.8 100 3.4 4.0 1.9 

Area 2 

SRTM 
CCF 6 0.8 1.0 2.7 56 0.9 0.8 2.7 
MI 17 0.7 1.1 2.7 75 0.3 1.1 2.8 

GMI 27 0.7 1.1 2.7 69 0.5 1.2 2.7 

SPOT5 
CCF 13 0.8 1.0 5.3 69 0.9 1.5 5.3 
MI 29 0.8 1.4 5.3 81 0.5 1.0 5.3 

GMI 39 0.8 1.5 5.3 75 0.4 1.3 5.3 

InSAR 
CCF 8 6.6 7.3 1.0 25 6.3 6.3 1.0 
MI 36 6.5 7.1 1.0 50 6.2 7.0 1.0 

GMI 11 6.6 7.0 1.0 42 6.8 6.8 1.0 

ADS40 
CCF 9 4.4 3.9 1.0 33 4.3 4.0 1.0 
MI 12 3.9 3.5 1.1 92 4.4 3.8 1.0 

GMI 10 4.5 4.0 1.0 92 4.4 3.8 1.0 
                             

Improvements in the quality of registration indicated by the 
RMS elevation discrepancy values relative to the reference 
DEM for Area 2, as shown in Table 2, over the equivalent 
values in Table 1, were 0.7, 0.5, 0.8 and 0.9 m for the SRTM, 
SPOT5, InSAR and ADS40 datasets, respectively. The 
difference in RMS values for each target DEM obtained through 
the use of different matching criteria, namely CCF, MI and 
GMI, was negligible. For Area1, however, except for high 
resolution ADS40 and InSAR DEMs where MI and GMI both 
outperformed CCF, the GMI method produced a more accurate 
registration, this being 0.1 m and 0.2 m superior to that from MI 
for SRTM and SPOT5 DEMs, respectively.   
 
 

4. CONCLUSION AND OUTLOOK 

An investigation into the potential of mutual information-based  
horizontal registration of multi-resolution DEMs has been 
reported, the motivation for the research being in part due to the 
proven success of the MI approach for registration of multi-
sensor medical imagery. Both the MI and GMI methods have 
been shown to produce robust and accurate results in the 
registration of four raster DEM datasets, with post spacings 
ranging from 5 to 30m, to a 1m LiDAR DEM. The performance 
of the MI-based methods was also compared with the CCF 
approach and MI and GMI were shown to yield more robust 
registrations. Furthermore, the registration success rate was 
significantly improved under the GMI method, particularly for 
the lower resolution DEMs.  
 
In the reported MI-based registration approach, the entire test 
area was scanned in the template localisation process. However, 

a more efficient search strategy could restrict the search area to 
only templates with rich information content. For example, a 
surface roughness criterion could be used to assess whether 
sufficient terrain information is available to support robust MI-
based matching.  
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