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ABSTRACT: 
 
Accurate and reliable estimation of biomass in tropical forest has been a challenging task because a large proportion of forests are 
difficult to access or inaccessible. So, for effective implementation of REDD+ and fair benefit sharing, the proper designing of field 
plot sampling schemes plays a significant role in achieving robust biomass estimation. The existing forest inventory protocols using 
various field plot sampling schemes, including FAO’s regular grid concept of sampling for land cover inventory at national level, are 
time and human resource intensive. Wall to wall LiDAR scanning is, however, a better approach to assess biomass with high 
precision and spatial resolution even though this approach suffers from high costs. 
Considering the above, in this study a sampling design based on a LiDAR strips sampling scheme has been devised for Ghanaian 
forests to support field plot sampling. Using Top-of-Atmosphere (TOA) reflectance value of satellite data, Land Use classification 
was carried out in accordance with IPCC definitions and the resulting classes were further stratified, incorporating existing GIS data 
of ecological zones in the study area. Employing this result, LiDAR sampling strips were allocated using systematic sampling 
techniques. The resulting LiDAR strips represented all forest categories, as well as other Land Use classes, with their distribution 
adequately representing  the areal share of each category. In this way, out of at total area of 15,153km2 of the study area, LiDAR 
scanning was required for only 770 km2  (sampling intensity being 5.1%). We conclude that this systematic LiDAR sampling design 
is likely to adequately cover variation in above-ground biomass densities and serve as sufficient a-priori data, together with the 
Land Use classification produced, for designing efficient field plot sampling over the seven ecological zones. 
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

In the light of recent global climate changes, issues relating to 
Reducing  Emissions from Deforestation and forest Degradation 
(REDD, or REDD+) in developing countries have become 
critical because changes in land use and land cover pattern  
have significant impacts  on the amount of greenhouse gas 
emissions, biodiversity, biogeochemical and hydrological 
cycles. In order to monitor emission reductions from 
deforestation and forest degradation, countries need to establish 
Reference Levels (RLs) and carbon accounting systems 
(Angelsen, et al, 2011a;b) with required standards for 
harnessing REDD+ benefits. Furthermore, the international 
community has increasingly realised the significant role of 
forest conservation and sustainable forest management that 
involves and respects the livelihoods and land use rights of 
indigenous people / local communities (Larson, 2011),  and the 
enhancement of forest carbon stocks in developing countries as 
an important measure to mitigate global climate change. 
 
Forestry in Ghana is playing an important environmental role 
including biodiversity, ecosystem services, maintaining river 
flow and natural water bodies, and other related issues at 
regional level (MEST, 2002). The total land area of Ghana is 
238,000km2 and according to the FAO forest definition the area 

of forest is estimated to be 49,400km2 (FAO, 2010) of which 
3,950km2 is classified as primary forest that is amongst the 
most diverse ecosystems on the planet. Deforestation rate in 
Ghana was approximately 1.9% per annum in the period 1990 
to 2005 and this rate is thought to have increased in the period 
2005-2010 to about 2.1%. The current rate of deforestation in 
Ghana clearly shows the need for devising forest management 
and conservation plans that includes a  REDD+ mechanism. 
Furthermore, Ghana has a number of legislative instruments 
that guide the management and utilization of the nation’s forest 
and wildlife resources, under the auspices of the Forestry 
Commission (FC) of Ghana (GOG, 1992; MLF, 1994; MLF, 
1999), since the national forest policy seeks to ensure the 
sustainable utilization and development of the natural resources. 
Currently the FC is building its technical capabilities for 
mapping, monitoring and forest inventory to assess land 
use/land cover change and estimation of biomass with known 
accuracy to realise the twin goal mentioned above.  
 
Previous large-scale forest inventories in Ghana have been 
based, primarily, on field data collection campaigns, which 
typically are time and human resource intensive activities. For 
example under the FC’s Forest Inventory Project during 1985-
88 and FAO’s Forest Reserve Inventory Project during 1980-83 
(Wong, 1989), the inventory covered only the south-
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westernpart of Ghana. Recently, under the national level forest 
assessment program, FAO is mostly using the field plot 
sampling technique, employing 1km x 1km systematic grid 
based sampling location, for forest inventory, e.g., Bangladesh 
National Forest and Tree Resources Assessment project 
conducted during 2005-2007 (Altrell et al, 2007).  
 
Satellite Remote Sensing is a primary information source for 
Land Use and Land Cover and forest assessment as it provides 
images of wider areas in a relatively faster and more cost-
efficient manner anywhere in the world. Since the 1970s, after 
the launch of Landsat Earth Observation Satellite, several 
satellites (with both optical and SAR sensors) have been 
launched and the trend is continuing at present, with several 
others planned to be launched in future; with time, spatial 
resolution has also improved to a large extent. Recent high 
resolution satellites, such as ALOS (Advanced Land Observing 
Satellite) and AVNIR-2 (Advanced Visible and Near Infrared 
Radiometer type 2), imagery can be used for analysis of present 
forest cover status (Nonomura et al, 2010; Soyama et al, 2010). 
AVNIR-2 imagery can be conveniently used for the six IPCC 
Land Use (LU) categories (Bickel et al, 2006) classification 
followed by further categorization of land cover refined by 
other criteria, such as ecological zone.  
 
Though there have been major advances in satellite remote 
sensing technologies during the last decade, it remains difficult 
to detect forests with high above-ground biomass 
concentrations and changes due to degradation by relying on 
them. Airborne LiDAR (Light Detection-and-Ranging) sensors 
emit laser pulses that penetrate even through a dense multi-
layered canopy and the return pulses backscattering from 
vegetation and ground can be used to measure canopy height 
and density very accurately. There is a strong statistical 
correlation between the spatial distribution of return pulses and 
aboveground biomass. LiDAR-based modeling results in 
average biomass estimation Root Mean Square Error (RMSE) 
of better than 15% for a hectare land unit. 
 
Although wall to wall LiDAR scanning gives high accuracy it 
comes with high cost and is therefore not feasible at large scale 
project level, once the resource value remains low and 
enhanced precision does not compensate the cost of data 
procurement. The LiDAR-Assisted Multisource Programmes 
(LAMP) for carbon stock assessments usually rely on a 5-10 % 
LiDAR transect sample, field plot measurements and wall-to-
wall satellite datasets over the project area. Implementation of a 
LAMP approach helps to lower necessary field sampling 
intensity and LiDAR data provides a prior information basis for 
objective and efficient field plot sampling. Besides it allows 
generation of numerous extra biomass sample plots, referred to 
as surrogate sample plots, by means of regression models that 
rely on LiDAR metrics (Gautam et al, 2010) for different broad 
forest types.  
 
The objective of this study is to demonstrate how LiDAR 
sampling transects can be validated by using detailed LU 
classification derived with wall to wall high resolution satellite 
imagery and secondary source GIS data in Ghanaian high forest 
zones.  
 

2. STUDY AREA AND DATA 

2.1 Study Area 

The study area (15,153 km2) is located in the western border of 
Ghana, spanning the Western, Ashanti and Brong Ahafo 
Regions, as shown in Figure 1. The study area was selected 
with due consideration for the inclusion of all dominant 
ecological zones in the high forest zone of the country, thus 
representing all major forest types for formulating 
representative biomass estimation models at national level. 
   
 

 
 
Figure 1. Map of Ghana Showing the Study Area, which 
Covers the Brong Ahafo, Ashanti and Western Regions 
and Includes all Major Ecological Zones 

 
 
2.2 Satellite Data 

ALOS AVNIR-2 satellite data (spatial resolution 10m) were 
used to extract latest LU classification in this study. The areas 
where AVNIR-2 data were lacking or covered by clouds were 
complemented by a scene of Disaster Monitoring Constellation 
(DMC) satellite data with 22 m resolution. The AVNIR-2 is one 
of three sensors equipped in ALOS and collects data in 4 bands: 
Blue, Green, Red, and Near Infra-Red. DMC satellite data has 3 
bands; Green, Red, and Near Infra-red. In this study, seven 
AVNIR-2 scenes with acquisition date between 28th January, 
2010 and 2nd January, 2011 and one DMC with acquisition 
date 19th January, 2011 were used. 
 
2.3 Secondary Source GIS Data 

In order to further stratify the LU classification from satellite 
data, GIS data of ecological zones were used. According to Hall 
and Swaine, 1981, there are 10 broad ecological zones in Ghana 
and seven (7) of them occur within the study area with 
prevalent high forests.  The forest types, based on the ecological 
zoning, are as follows: 
 
1) Savannah (S) 
2) Dry semi-deciduous (fire zone) (DSD-F) 
3) Dry semi-deciduous (inner zone) (DSD-I) 
4) Moist semi-deciduous (north west subtype) (MSD-NW) 
5) Moist semi-deciduous (south east subtype) (MSD-SE)  
6) Moist evergreen (ME) 
7) Wet evergreen (WE) 
 

Study Area

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-4, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

222



 

The forest types remaining outside are upland evergreen, 
southern marginal and mangrove forests.  
 

3. METHODOLOGY 

The general workflow of this study is presented in Figure 2. In 
brief, after carrying out pre-processing, such as ortho-
rectification (to the target coordinate system UTM, WGS84, 
Zone 30N), LU classification was performed, which was further 
stratified by incorporating existing GIS data of the ecological 
zone. Then, the final LU result was used in designing LiDAR 
sampling strips. 
 
 

Satellite Imagery Pre-processing (standard procedure)

Land Use Classification  (PASCO Semi-automatic tool)

Land Use Stratification  (Overlaying GIS data)

LiDAR Sampling Strips (Systematic sampling)

GIS Data input

Satellite Imagery Pre-processing (standard procedure)

Land Use Classification  (PASCO Semi-automatic tool)

Land Use Stratification  (Overlaying GIS data)

LiDAR Sampling Strips (Systematic sampling)

GIS Data input

 
 

Figure 2. General Workflow 
 
 
3.1 Land Use Classification and Stratification 

With respect to LU classes, all the six principal IPCC LU 
classes were included, namely: Forest Land, Cropland, 
Grassland, Settlements, Wetlands, and Other Land. As per 
IPCC definition, Forest Land includes all land with woody 
vegetation consistent with thresholds used to define Forest Land 
in the national greenhouse gas inventory. It also includes 
systems with a vegetation structure that currently fall below, but 
in situ could potentially reach the threshold values used by a 
country to define the Forest Land (Bickel et al, 2006). In 
addition, two sub-categories of forest canopy cover used by the 
Forestry Commission of Ghana, i.e., Forest Land (Closed 
canopy > 60%), and Forest Land (Open canopy < 60%), were 
considered. Thus, altogether seven (7) LU classes were 
included in the LU classification.  
 
The LU classification was carried out using PASCO ToolTM 
employing all 4 bands of ALOS AVNIR-2 and 3 bands of DMC. 
The major steps employed were: 
 

- Conversion of DN to Top-of-Atmosphere (TOA) reflectance. 
- Estimation of Normalised Difference Vegetation Index 

(NDVI). 
- Slicing the image using NDVI threshold and band 3 TOA 

reflectance to know the gross area for vegetation and non-
vegetation. 

- Masking satellite image with above mask area and then 
running “Unsupervised classification” for 20 classes. 

- Recoding the resultant classes to the appropriate one of 7 
LU classes considering the ground truth data and then 
compiling them together. 

- Lastly, carrying out the manual editing. 
 
The above methodology required less manual editing (Sah et al, 
2010). The resulting classified data were further stratified by 
overlaying the GIS data of the ecological zones.  

 
3.2 Validating LiDAR Sampling Design  

As a preliminary step the final LU classification product was 
resampled from 10m to 100m pixel resolution by applying a 
majority rule. This was mainly due to the field observation 
protocol for 55 independent ground spots visited over different 
LU types and all the ecological zones. Land use, basal area, 
diameter at breast height (1.3 m) of the basal area median tree 
and height of the basal area median tree were recorded from the 
centre of each spot. Additionally, 4 forest view photos and 5 
canopy view photos were taken 10 m apart from the centre 
towards cardinal points (North, East, South and West).  
 
The resampled classification data were inputted for validating 
the systematic LiDAR strips sampling design. In this study, 
‘Pearson's chi-squared test’ has been applied to assess the 
sampling representativeness of Forest Land classes in relation 
to other classes both at ecological zone level. .  
 

4. RESULT AND DISCUSSION 

4.1 Land Use Classification 

From the ALOS AVNIR-2 (Figure 3(a)), LU classification with 
seven classes was achieved. The distribution of these LU 
classes is presented in Figure 3(b) and their areal extent in 
Table 1. The LU classification was verified against the 
observations from every second ground spot. This accuracy 
assessment proved the classification to meet the international 
standards, at minimum 80% of pixels being classified correctly 
(GOFC-GOLD, 2011). As is clear from Table 1, Forest Land 
with closed canopy is 4,177.1 km2 and that with open canopy is 
6,035.4km2, covering altogether 10,212 .5 km2 (that is, 67.4%) 
of the study area. In the cropland major crops are cocoa, maize, 
banana with the cocoa plantation mainly in the lower half of the 
study area. Similarly, available wetlands are all lake, reservoir, 
or river and these can be also recognized as Water body. 
 
 

Land Use Class Area (in Km2) Area (in %)

Forest Land (Closed
canopy)

4,177.1 27.6

Forest Land (Open
canopy)

6,035.4 39.8

Cropland 3,006.2 19.8

Grassland 1,625.6 10.7

Settlements 268.3 1.8

Wetlands 4.6 0.0

Other Land 35.9 0.2

Total 15,153.0 100.0  
  

Table 1: Area of Land Use Classes 
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Legend:

Study area boundary

Forest Land (Closed canopy)
Forest Land (Open canopy)
Cropland
Grassland
Settlements
Wetlands
Other Land

 
 
Figure 3 (a) Satellite Imagery (Bands 4, 3, 2 as R, G, B) and (b) 
result of Land Use Types Classification. 
 
 
Figure 4 illustrates the distribution of LU categories over the 
study area. The proportion of the closed canopy forests is 
largest within ME (45.6% of the area), MSD-NW (37.6%), and 
MSD-SE (31.9%) zones. In S, DSD-F and DSF-I zones the 
dominating LU/LC classes are grassland (49.8%, 22.8% and 
10.5%), cropland (15.5%, 31.5% and 40%) open canopy forests 
(27.7%, 43.8% and 46.1%), respectively. 
 
 

 
Figure 4. Land Use (LU) Classification Statistics over the 
Ecological Zones within the Study Area. 
 
 
4.2 LiDAR Sampling Strips 

Three systematic north-east – south-west strips were generated 
and the reference strip location was randomly sampled, as 
shown in Figure 5. These LiDAR strips, with 1km width and 

additional 100m buffer, are to provide an unbiased sample of 
the broad ecological forest types existing within the study area.  
 

 
 
Figure 5. Systematic LiDAR Strip Sample. 
 
 
The LiDAR scanning was conducted during December 2011. 
On average, a swath width of 644 m for each of the 3-4 parallel 
scanning transects were scanned to cover 1.1km wide sample 
strips. More detailed metadata for LiDAR data is given in Table 
2. The LiDAR point cloud data was processed and classified 
into default, ground and error classes. A sample processed data 
has been illustrated in Figure 6, which shows the scanned 
LiDAR sampling strips captured desired land use variability in 
the study area. 
 
 

Total Coverage  770km2 
Aerial Platform  Fixed wing aircraft 
Flying altitude,  above-ground 
level  (AGL) 

1300m / +-100m  

Flying speed   120 knots 
Sensor Leica ALS50-II 
Sensor pulse rate  81.100 kHz  
Sensor scan speed  47.6 Hz  
Nominal outgoing pulse 
density, at ground level  

2 returns /m2  

Scan Field-of-View  27 degrees 
Swath width, at ground level 644m 
Beam footprint, at ground level  31cm /e2 

 
Table 2. Airborne LiDAR Scanning Parameters.  

 
 

LiDAR Sampling Strips

Ecological Zones 
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Figure 6. A Sample View of the Acquired LiDAR Data 

 
 
Disregarding the ecological zones, the systematic LiDAR 
sample design captures different LU classes over the study area 
efficiently (Figure 7). The same applies to closed and open 
canopy forest classes when different ecological zones are 
studied independently (Figure 8). Within the DSD-I zone the 
sampling rate (0.8%), for closed forests, remain remarkably 
below the average prevalence ratio of 4.9% for this zone. The 
Pearson’s Chi-Squared test results indicate that the sample 
proportion of closed and open forests is significantly lower than 
expected at 95 % confidence level in case of DSD-I and WE 
(Table 3).  
 
 

 
Figure 7. Land Use (LU) Class Proportions, Study Area vs. 
LiDAR Sample 
 
 
 

 
Figure 8. Proportional LiDAR Sampling Intensity per Land Use 
(LU) class.  
 
 
 
 
 

 
Ecological 

Zone 
Sample Area 

(km2) 
P-value 

S 58.2 0.9831 
DSD-F 142.9 0.1876 
DSD-I 39.6 0.0210 

MSD-NW 344.6 0.5792 
MSD-SE 34.7 0.1972 

ME 140.1 0.0535 

WE 9.8 0.0103 

 
Table 3. The Pearson’s Chi-squared Test Results to Assess 
the Sampling Representativeness of Two Forest Land 
Classes in Relation to other LU Classes. 

 
5. CONCLUSION 

The Land Use classification carried out in this study provided 
latest condition regarding the extent and distribution of LU 
classes as defined by IPCC with acceptable accuracy. The 
further stratification with the help of existing data of ecological 
zone resulted in more detailed classification and this remained 
very useful source of information for designing the LiDAR strip 
sample . It is important to validate the systematic strip sample 
design using recent LU classification especially in cases where 
the geographical area of strata is small or there is only a low 
proportion of forest land in relation to other LU classes. 
 
The systematic LiDAR sampling design, presented in this paper, 
is likely to cover variation in above-ground biomass densities 
and serve as sufficient a-priori data together with the produced 
LU classification when designing efficient field plot sampling 
over the seven ecological zones. In that case, up to 50 field 
sample plots per ecological forest type are needed to train the 
regression models based on LiDAR pulse data derived metrics 
(Maltamo et al, 2010), once the above-ground biomass is the 
primary forest attribute to be estimated. 
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