ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume I-4
https://doi.org/10.5194/isprsannals-I-4-239-2012
https://doi.org/10.5194/isprsannals-I-4-239-2012
20 Jul 2012
 | 20 Jul 2012

THE CHALLENGE OF AUTOMATED CHANGE DETECTION: DEVELOPING A METHOD FOR THE UPDATING OF LAND PARCELS

L. Matikainen, K. Karila, P. Litkey, E. Ahokas, A. Munck, M. Karjalainen, and J. Hyyppä

Keywords: Mapping, Change Detection, Updating, Automation, Segmentation, Classification, Agriculture, LPIS

Abstract. Development of change detection methods that are functional and reliable enough for operational work is still a demanding task. This article discusses automated change detection from the viewpoint of one case study: the Finnish Land Parcel Identification System (FLPIS). The objective of the study is to develop a change detection method that could be used as an aid in the updating of the FLPIS. The method is based on object-based interpretation, and it uses existing parcel boundaries and new aerial ortho images as input data. Rules for classifying field and non-field objects are defined automatically by using the classification tree method and training data. Additional, manually created rules are used to improve the results. Classification tests carried out during the development work suggest that real changes can be detected relatively well. According to a recent visual evaluation, 96% of changes larger than 100 m2 were detected, at least partly. The overall accuracy of the change detection results was 93% when compared with reference data pixel-by-pixel. On the other hand, there are also missing changes and numerous false alarms. The main challenges encountered in the method development include the wide diversity of agricultural fields and other land cover objects locally, across the country, and at different times of the spring and summer, variability in the digital numbers (DNs) of the aerial images, the different nature of visual and automatic interpretation, and the small percentage of the total field area that has really changed. These challenges and possible solutions are discussed in the article.