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ABSTRACT: 

 

Geospatial data matching is an important prerequisite for data integration, change detection, and data updating. Presently, 

crowdsourcing geospatial data is drawing great attention with its significant potential for geospatial data updating and Location 

Based Services, etc. To explore the availabilities of crowdsourcing geospatial data, the paper proposes a heuristic probabilistic 

relaxation road matching method, named PRRM. It starts with an initial probabilistic matrix according to geometric dissimilarities 

and then integrates the relative compatibility coefficient of neighbouring candidate pairs to update the previous matrix. Finally, the 

initial 1:1 matching pairs are selected based on probabilities calculated and refined based on the structure similarity of the selected 

matching pairs, then a matching growing process is implemented to find M: N matching pairs. Two experiments between 

OpenStreetMap and professional data show that our method achieves good performance in matching crowdsourcing and professional 

data with non-rigid deviations and inconsistent structures. Moreover, the proposed method is independent on matching direction and 

could handle 1: 0 (Null), 1: M and M: N matching. 
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1. INTRODUCTION 

As the rapid development of sensor technology and the 

increasingly large amount of spatial and thematic data, data 

matching is playing more and more important role in data 

integration, change detection, and data updating. On the one 

hand, conflation technologies (Saalfeld 1988; Zhang 2009) 

were developed to integrate heterogeneous datasets into an 

enriched product by improving positional or semantic accuracy. 

On the other hand, corresponding objects identification is an 

essential precondition for change detection and incremental 

updating (Medioni and Nevatia 1984, Anders and Bobrich 

2004). Currently, a new way of collaborative mapping, named 

Volunteered Geographic Information (VGI) (Goodchild 2007), 

crowdsourcing (Tapscott and Williams 2007), Neogeography 

(Turner 2006) or wikification of geographic information (Sui 

2008) makes a timely and cost-effective means for geospatial 

data updating and GIS applications. For one thing, 

crowdsourcing data is freely available and information-rich, 

such as Open Street Map (OSM) data; for another, the user-

generated content may lack of standard representation or lead to 

invalid topology. Moreover, the details of OSM data may vary 

from one area to another one.  

 

A lot of advanced matching methods for road networks have 

been proposed based on geometric, structure and sematic 

criterions (Cobb et al. 1998, Xiong and Sperling 2004, Samal et 

al. 2004, Volz 2006, Mustière and Devogele 2007, Zhang 

2009). On the other hand, many studies integrated information 

theory or approaches of graph matching to update the matching 

criterions iteratively for global optimization. Walter and Fritsch 

(1998) searched the best matching with maximum mutual 

information. Song et al. (2011) proposed a relaxation-based 

point feature matching approach for vector road data.  

Those existing methods effective for professional data sources 

have difficulties in handling crowdsourcing road networks. 

Take OSM data for an example. The details of OSM data 

(Figure1-a) may vary from one area to another one and so does 

the positional deviation, from several meters to more than 100 

meters (Figure 1-b and c). Moreover, the invalid topology and 

non-standard representation (Figure 1-d) may lead to error 

matching and missing matching. Hence, matching 

crowdsourcing data with other professional sources should 

incorporate multiple measures such as shapes, structures, and 

local similarities in order to overcome non-rigid deviation and 

non-standard representations. The probabilistic relaxation 

matching (Song et al. 2011) brings a promising solution for 

crowdsourcing road networks which integrated shape and 

relational measurements to find a consistent labelling for point 

matching. The method of Song et al. (2011) established 1:1 

point correspondence. Nevertheless, 1: 0 (Null) matching and M: 

N links frequently occur between crowdsourcing road network 

and professional data.  

 

>100m

<10m

(a)

(b) (c) (d)

OpenStreetMap Data Professional Data  
Figure 1. Comparison between OSM data and professional data 
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This paper thus proposes a probabilistic relaxation road 

matching (PPRM) method for matching crowdsourcing road 

network, which extends the work of Zhang et al. (2011). The 

proposed method firstly starts with an initial probabilistic 

matrix according to mutual geometric dissimilarities between 

two road segments and then utilizes the binary relations as 

evidence to update the probabilistic matrix iteratively. Finally, 

the matching pairs are selected according to the probabilistic 

matrix and the structural similarity. 

 

2. PROBABILISTIC RELAXATION ROAD MATCHING 

The proposed method includes three primary processes, namely, 

initialization, relaxation and selection: 

 

 Initialization: including candidate road detection and the 

initial probability calculation 

 Relaxation: including the compatibility coefficient 

modelling and the probabilistic matrix updating. 

 Selection: mainly including structural similarity calculation, 

robust matching pair selection and matching growing. 

 

Let two road networks be T and R and their road segment sets 

be ST= {ti | i=1, 2…m} and SR= {rj | j=1, 2…n} respectively. In 

light of the principle of probabilistic relaxation, each candidate 

matching pair detected by a buffer operation is assigned to an 

initial probability according to the geometric dissimilarities. 

Then, an initial matching matrix P is determined (Section 2.1), 

of which the element pt,r indicates the assigned probability of 

road segments of (t, r), or represents 0 when road segments of t 

and r are not a candidate matching pair. Suppose that t or r is -1. 

It indicates that road segment of t or r has no corresponding 

matching road segments. Then, the relative relations are used to 

calculate the compatibility coefficient which indicates the 

support degree of the neighbouring candidate matching pair. 

The proposed method integrates the compatibility coefficients 

of all neighbouring candidate matching pairs to update the 

probabilistic matrix P for a global consistency (Section 2.2). 

Finally, based on the convergent probabilistic matrix P and the 

road structures, the final matching roads are selected (Section 

2.3). 

 

2.1 Initialization 

The deviation between two data sources covering the same area 

is non-rigid but the candidates of each road segment can 

approximately be detected by a buffer operator within a 

specified distance threshold (Zhang 2009). Once the candidates 

of one road segment are obtained, the geometric dissimilarities 

between the candidates and the road segment are then calculated. 

In our proposed method, the distance, direction, and length are 

selected to measure the dissimilarities between two roads 

segments. Beeri et al. (2004) defined a probability to measure 

the matching confidence according to the distance between two 

objects. Safra et al. (2010) improved it by introducing Null 

matching. When matching R to T, a probability of each 

candidate matching pair is calculated by the method of Safra et 

al. (2010). 
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Where dA,B= the dissimilarity indicator of distance, direction, 

or length between two road segments of A and B. 

 βt=the error factor from R to T 

 CSt= the candidate road segment set of t. 

 

The probability (prt,r) of matching T to R is also calculated as 

formula (1) where βt and CSt are replaced by βr (the error factor 

from T to R) and CSr (the candidate road segment set of r). 

Then, two probabilistic matrices of different matching direction, 

namely, Ptm×(n+1) and Pr(m+1)×n are determined.  

 

To obtain the above error factors of βt and βr, we calculate the 

Hausdorff distance from T to R and from R to T by 
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Where dt,r= the dissimilarity indicator of distance, direction, 

or length between two road segments of t and r. 

 ST (SR) = the road segment set of road network T (R) 

 CSt (CSr)= the candidate road segment set of road t (r) 

 DH(A,B)=the Hausdorff distance from A to B 

 

Based on the two probabilistic matrices Ptm×(n+1) and Pr(m+1)×n, 

the total probability P(m+1)×(n+1) of the dissimilarity indicator of 

distance, direction, or length is calculated by 
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Where ptA,B= the element of Ptm×(n+1) 

 prA,B= the element of Pr(m+1)×n 

 

For each dissimilarity indicator of distance, direction and length, 

a probabilistic matrix will be calculated. To further eliminate 

the ambiguity of matching results, the probabilistic matrix is 

formulated by weight average of the probabilistic matrices 

calculated by the indicator of distance, direction and length, 

respectively. 

 

2.2 Relaxation 

Once the probabilistic matrix is initialized, the values of the 

probabilistic matrix will be reiteratively updated according to 

the neighbouring compatibility coefficient. The compatibility 

coefficient measures the compatible degree of some 

neighbouring matching pair. The basic principle of probabilistic 

relaxation is to integrate the compatibilities of all neighbouring 

matching pairs into a total support value, which is responsible 

for improving the prior matching probabilistic matrix. 

 

2.2.1 Compatibility coefficient calculation 

 

To calculate the compatibility coefficient, Song et al. (2011) 

took the relative position difference between candidate 

matching points into count. As far as road networks are 

concerned, the proposed method calculates the compatibility 

coefficient by integrating relative positions and directions of 

candidate matching road segments. 
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Figure 2. Compatibility calculation between two neighbouring 

matching pairs 

 

As illustrated in Figure 2, for a candidate matching pair (i, j), 

the compatibility coefficient of one neighbouring candidate 

matching pair (h, k) to (i, j) is calculated by  
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Where d1 = the distance between nodes of o and o’ 

 d2 = the distance between nodes of e and e’ 

 α=the angle of road segments of i and h 

 β= the angle of road segments of j and k 

 DHHdis (DHHdir) =the average Hausdorff distance of 

the dissimilarity of distance (direction) between two datasets 

calculated by formula (2)  

 εdis (εdir) = the normalized position (direction) 

differences by DHHdis (DHHdir) 

 δdis (δdir) = the position (direction) consistency 

calculated by the method of Song et al. (2011). 

 Ratio=the length ratio of road segments of h and k 

 

Different from feature point matching, a lot of incomplete 

matching cases often occur to road networks, which are hardly 

identified by a threshold of distance or length difference. Hence, 

the node of e or e’ should be extended along h or k until a 

minimum road length difference is achieved. To calculate the 

self-compatibility coefficient of C (i, j; h, j), the virtual vertex of 

o is calculated at road j to ensure that this virtual vertex splits 

road j from the starting point of j at the length of i, vice versa. 

For the calculating of C (i, j; i, k), the virtual vertex of o’ is 

calculated at road i to ensure that this virtual vertex splits road i 

from the starting point of i at the length of j. Then the 

compatibility coefficient is calculated by the formula (4). 

 

2.2.2 Probabilistic matrix updating  

 

Once the compatibility coefficients of the neighbouring 

candidate matching pairs are calculated, the effects of all 

neighbouring candidate matching pairs should be integrated 

into a total support value to update the previous probabilistic 

matrix. Matching T to R or conversely, the neighbouring road 

segments incident to the starting and ending nodes will be taken 

into count. As the incomplete matching can hardly be 

preidentified, the support value of complete matching and 

incomplete matching are calculated, respectively, of which the 

larger one will finally be selected.  

 

 
Figure 3. Support value calculation at FNs and TNs 

As illustrated in Figure 3, when matching j to i, the support 

value of the neighbouring road segments at the starting nodes 

(FNs) is calculated by 
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Where SFNs = {a1, a2}, QFNs = {b1, b2} 

 p(r)(a, b) = the probability of road segments of a and b 

in the iteration of r. 

 C(i, j; a, b), C(i, j; i, b)= the compatibility coefficient 

calculated by formula (4) 

 q1 = the support value of the candidate matching pairs 

between SFNs and QFNs∪ j 

 q2 = the support value of the candidate matching pairs 

between QFNs and i.  

 

Then, qi,FNs, the larger one of q1 and q2, will be the support 

value at the starting nodes, and vice versa. When calculating the 

support value at the ending nodes (TNs), the support value of 

the candidate matching pairs between STNs (={a3, a4}) and QTNs 

(={b3})∪ j, as well as that of the candidate matching pairs 

between QTNs and i is calculated, respectively. The larger one 

will be selected as the support value at the ending nodes, i.e. 

qi,TNs. 

 

In light of the above description, the support value qi(i, j) of 

matching j to i is calculated by formula (6) and the other sub 

support index qj(i, j) of matching i to j is calculated by the same 

principle. 
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Then, the total support value q(i, j) is calculated by the formula 

(7) and the support matrix Q(m+1)×(n+1) is determined. 
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Where CSi (CSj) = the candidate road segment sets of road 

segments i (j).  

 ηi (ηj) is the prior estimator of the support value that i 

(j) is matched with Null. The proposed method sets ηi (ηj) the 

quotient of the minimum dissimilarity measure with road i (j) 

and the maximum value with all roads in the whole dataset. 

 qA
(r)(A, B) (qB

(r)(A, B)) is calculated by formula (6) 

from different matching direction.  

 

To obtain an optimistic matching result, a relaxation labelling 

process is then executed to update the probabilistic matrix based 

on the above support matrix. Similarly, two sub probabilities of 

different matching directions are calculated by formula (8), of 

which the convergent is proved in Parent and Zucker (1989). 
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Where CSi and CSj = the same as formula (7) 

 p(r)(i, j) = the element of P(m+1)×(n+1) in the r iteration 

 q(r)(i, j) = the element of Q(m+1)×(n+1) in the r iteration 

 

Then the final probability in the iteration of r+1 is calculated by 
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The iteration terminates when the difference between two 

successive iterations is less than a specified threshold (e.g., 

ε<0.0005). 

 

2.3 Selection 

1: 1 and 1: M matching pairs can be selected from the 

probabilistic matrix by row or column (Safra et al. 2010, Song 

et al. 2011). However, a lot of road segments without 

corresponding pairs may be mismatched to the road segments 

with a maximum probability. To efficiently overcome error 

matching (False Positive) and missing matching (False 

Negative), the proposed method selects the final matching pairs 

based on the following five steps. 

 Structural similarity calculating 

The structural similarity indicates the total matching degree of 

one candidate matching pair and its neighbouring ones. The 

proposed method defined it as the sum of their matching 

probabilities. Hence, the structural similarity of matching pair (i, 

j) can be represented by 

 

 
, ,i j FNs TNs i jST ST ST p    (10) 

Where STFNs (STTNs) = the structural similarity at the starting 

(ending) nodes of a matching pair (i, j) 

 pi, j = the matching probability of matching pair (i, j).  

 

To calculate STFNs, the neighbouring road segments of the two 

road segments i and j incident to the starting nodes are stored as 

two sets, namely, SFNs and QFNs. Then, the maximum matching 

combination between SFNs and QFNs. is determined by the KM 

algorithm (Munkres 1957). STFNs is calculated by the sum of the 

probabilities of the above maximum matching combination. The 

calculation of STTNs is the same as that of STFNs. 

 Robust matching pair selecting 

Suppose that the candidate matching road segments of i and j 

are set K = {k1, k2, .., kp} and set L = {l1, l2, .., lq}, respectively. 

Suppose that the matching pair (i, j) meets 
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The matching pair (i, j) is a robust matching pair. All the robust 

matching pairs are inserted into a queue of M. 

 Matching pair confliction filtering 

As illustrated in Figure 4, for one matching pair Mn = (i, j) of M, 

its neighbouring matching pair Mp = (h, k) is found in the queue 

of M. Suppose that the common nodes (solid circle) of Mn and 

Mp are the starting nodes or ending nodes of Mn and Mp. The 

matching pairs of Mn and Mp are compatible. Otherwise, they 

are conflicted (as shown in Figure 4). Then, the matching pair 

with the minor structural similarity is removed from the queue 

of M. All the elements of the queue of M are traversed one by 

one to remove the conflicted matching pair. 

 
Figure 4. Conflicted matching pairs detection 

 1:1 matching pair detecting 

To determine the 1:1 matching pairs, the following conditions 

are defined  

 

Condition 1: The structural similarities of its starting and 

ending nodes, namely, STFNs, STTNs are larger than that of the 

other candidate matched pairs of the two road segments;  

Condition 2: The neighbouring road segments incident to the 

starting and ending nodes both have one robust matching pair at 

least, respectively. 

 

Suppose that one matching pair (i, j) of M meets the above 

conditions. The matching pair (i, j) is one 1:1 matching, its 

starting and ending nodes are defined as matched nodes. All the 

elements of the queue of M will be checked to detect 1:1 

matching. The detected 1:1 matching pair is removed from the 

queue of M. 

 1:N matching pair detecting 

The remain elements of M might be 1: N matching pairs. 

Suppose that the matching pair of (i, j) is one 1: N matching 

pair and the starting nodes are not matched nodes. Let road 

segment of i be the minor length one. As illustrated in Figure 5, 

the starting node of road segment of i will be extended to find 

its neighbouring road segments. Then the structural similarities 

of the neighbouring road segments of G = {g0 , g1,…, gn} and 

road segment of j are calculated, respectively. The pair (gk, j) 

with maximum structural similarity is selected as one matching 

pair and inserted into the queue of M. The above operator is 

recursively invoked until the matched node of the starting node 

of road segment of j is found. Then, the ending node of road 

segment of i is extended to find the matched node of the ending 

node of road segment of j according to the identical operator. 

i

j

gk

g0

gn

 
Figure 5. Matching Growing from unmatched nodes 

 

After the above five steps, the elements of the queue of M are 

checked by the step of Matching pair confliction filtering. The 

remain elements of the queue of M and the detected 1: 1 

matching pairs will be selected as the final matching pairs. 

 

3. EXPERIMENTS 
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Two test areas, Wuhan in China and Zurich in Switzerland were 

selected to verify the validities of the proposed method. For 

each study area, one dataset was downloaded from 

OpenStreetMap (www.openstreetmap.org) and the other dataset 

was provided by professional manufacturers. The buffer widths 

were specified as 200m and 40m for the datasets of Wuhan and 

Zurich, respectively to find the potential matching pairs of road 

segments. Then, the probabilistic matrices of the three areas 

were initialized and the iterative procedure is executed until the 

changes of the values of all elements of the probabilistic matrix 

are less than 0.0005. 

 

3.1 Matching Results 

Figure 6-7 illustrate the matching results of Wuhan and Zurich, 

respectively, where the OSM data and professional data are 

dotted in brown colour and grey colour, respectively. The 

linkages from OSM data to professional data are represented in 

dashed green lines with arrows. The overall matching results of 

two study areas are shown in Figure 6-a and Figure 7-a 

respectively. The partial enlarged views are displayed in the 

other subfigures. 

 

(a)

(c)(b)

(b)(c)

OpenStreetMap Data Professional Data Linkage  
Figure 6 Matching results in Wuhan (about 7 km2) 

 

As illustrated in Figure 6, the deviation of Wuhan is more than 

100m. Buffer operation can approximately detect the candidate 

roads while it is difficult to determine the real corresponding 

roads among the roads falling in the buffer region merely by 

distance, shape or direction measures. The proposed method 

correctly matches them to their corresponding roads that are not 

the nearest one. It can be seen from Figure 6-c that the proposed 

method achieves correct matching results at complicated 

structures. 

 

Figure 7-b and c show the correct matching between incomplete 

and inconsistent structures. The results demonstrate that the 

proposed method matches road network at different levels and 

complicated structures (e.g., road junctions). It is clear that the 

methods based on distances, shapes or directions have 

difficulties in dealing with these kinds of case as each road 

segment has almost the identical similarity. However, the 

proposed method calculates not the similarity but the structural 

similarities between road segments. Hence, the problems are 

successfully solved and good matching results were achieved. 

 

(a)

(b) (c)

(b)

(c)

OpenStreetMap Data Professional Data Linkage  
Figure 7 Matching results in Zurich (about 9 km2) 

 

3.2 Matching evaluation 

To evaluate the matching results quantitatively, we make a 

comparison analysis of the results by our method and that of 

manual matching, which is listed in Table 1 Two evaluation 

indicators, i.e. Precision and Recall are calculated by 

 

 

_
100%

_ _

_
100%

_ _

True positive
Precision

True positive False positive Ambiguity

True positive
Recall

True positive False negative

 
 

 
  (12) 

Where True_positive = the number of road pairs correctly 

matched by the proposed method 

 False_postive = the number of road pairs wrongly 

matched by the proposed method 

 Ambiguity= the number of road pairs hardly judged by 

human inspection 

 False_negative = the number of road pairs missed by 

the proposed method. 

 

It can be seen from Table 1 that the Precision is more than 96% 

and the Recall is greater than 90%. Nevertheless, about 5.3%-

8.8% of the relevant matches are not efficiently identified. The 

statistical results demonstrate that the proposed method 

achieves a good matching precision and most of the real 

corresponding roads are correctly matched. 
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Table 1. The statistical matching results according to the proposed method 

 

Test Area True_positive False_positive Ambiguity False_Negative Precision Recall 

Wuhan 
415 10 2 40 

97.2% 91.2% 
97.2% 2.3% 0.5% 8.8% 

Zurich 
2573 75 19 144 

96.5% 94.7% 
96.5% 2.8% 0.7% 5.3% 

 

 

4. CONCLUSION 

Road network matching is of great importance and value in 

Navigation, Intelligent Transportation System (ITS), and 

Location Based Services (LBS), etc. The emerging crowd-

sourcing geospatial data (VGI, neogeography and Wikification 

of GIS) raises considerable challenges for matching datasets of 

different qualities, resolutions and representations. This paper 

proposed a heuristic probabilistic relaxation matching method 

for matching road networks. The proposed method encompasses 

three key component, initial probability matrix calculation, 

probability matrix relaxation, and final matching pair selection. 

Two datasets were selected to demonstrate the validities and 

effectiveness of the proposed method, which proves that the 

proposed method achieves a good matching precision more than 

95%. The proposed method is independent of matching relation. 

Matching dataset of A to B or B to A achieves the identical 

results. Moreover, the proposed method can effectively detect 

and identify 1: N matching and Null matching. It provides a 

promising solution for matching crowdsourcing data (e.g., OSM 

data) and professional data. Further study will focus on the 

thematic data matching and updating. 
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