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ABSTRACT:

This paper presents a new unsupervised classification method which aims to effectively and efficiently map remote sensing data. The
Mean-Shift (MS) algorithm, a non parametric density-based clustering technique, is at the core of our method. This powerful clustering
algorithm has been successfully used for both the classification and the segmentation of gray scale and color images during the last
decade. However, very little work has been reported regarding the performance of this technique on remotely sensed images. The main
disadvantage of the MS algorithm lies on its high computational costs. Indeed, it is based on an optimization procedure to determine the
modes of the pixels density. To investigate the MS algorithm in the difficult context of very high resolution remote sensing imagery, we
use a fast version of this algorithm which has been recently proposed, namely the Path-Assigned Mean Shift (PAMS). This algorithm
is up to 5 times faster than other fast MS algorithms while inducing a low loss in quality compared to the original MS version. To
compensate for this loss, we propose to use the K modes (cluster centroids) obtained after convergence of the PAMS algorithm as an
initialization of a K-means clustering algorithm. The latter converges very quickly to a refined solution to the underlying clustering
problem. Furthermore, it does not suffer the main drawback of the classic K-means algorithm (the number of clusters K needs to be
specified) as K is automatically determined via the MS mode-seeking procedure. We demonstrate the effectiveness of this two-stage
clustering method in performing automatic classification of aerial forest images. Both individual bands and band combination trails are
presented. When compared to the classical PAMS algorithm, our technique is better in terms of classification quality. The improvement
in classification is significant both visually and statistically. The whole classification process is performed in a few seconds on image
tiles of around 1000× 1000 pixels making this technique a viable alternative to traditional classifiers.

1 INTRODUCTION

Classification of remotely sensed data has long attracted the at-
tention of the remote-sensing community because classification
results are the basis for many environmental and socioeconomic
applications (Tso and Mather, 2001). Scientists and practition-
ers have made great efforts in developing advanced classification
approaches and techniques for improving classification accuracy
(Lu and Weng, 2007, Guo, 2008). There are two broad classes of
classification procedure and each of them finds application in the
analysis of remote sensing image data. One is referred to as un-
supervised classification or clustering and the other is supervised
classification or machine learning (Duda et al., 2001). In clus-
tering, the problem is to group a given collection of unlabeled
patterns into meaningful clusters. In a sense, labels are associ-
ated with clusters too, but these category labels are data driven;
that is, they are obtained solely from the data (Jain et al., 1999).
Clustering procedures yield a data description in terms of clusters
or groups of data points that possess strong internal similarities
(Duda et al., 2001). Major clustering methods can be classified
into the following categories (Pal and Mitra, 2004):

Partitioning methods : Given a data set of n objects and K, the
number of clusters to form, a partitioning algorithm organizes the
objects into K partitions, where each partition represents a clus-
ter. The clusters are formed to optimize an objective partitioning
criterion, often called a similarity function, such as distance, so
that the objects within a cluster are similar, whereas the objects
of different clusters are dissimilar. A partitioning method starts
with an initial partition and uses an iterative refinement technique

that attempts to improve the partitioning by moving objects from
one group to another. The most well-known and commonly used
partitioning method is K-means and its variations. Partitioning
methods work well for finding spherical shaped clusters in small
to medium-sized data sets. For clustering very large data sets and
to find clusters with complex shapes, these methods need to be
extended.

Hierarchical methods : A hierarchical method can be classi-
fied as either agglomerative or divisive, based on how the hier-
archical decomposition is formed. The agglomerative approach,
also called the bottom-up approach, starts with each object form-
ing a separate group. It successfully merges the objects or groups
close to one another, until all the groups are merged to one, or the
required number of clusters is obtained. The divisive approach,
also called the top-down approach, starts with all the objects in
the same cluster. In each successive iteration, a cluster is split
into smaller clusters, until eventually each object represents one
cluster, or until a required number of clusters is obtained. These
methods suffer from the fact that once a step (merge or split) is
done, it can never be undone. This rigidity leads to sensitivity to
noise in the data. Furthermore, their time and space complexities
are much higher than in case of partitioning methods.

Density-based methods : Besides partitioning and hierarchical
methods, other clustering algorithms have been developed based
on the notion of density. The general idea is to continue growing
the given cluster as long as the density (number of data points) in
the neighborhood exceeds some threshold. Such a method can be
used to filter out noise and discover clusters of arbitrary shape.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

111



The Mean-Shift (MS) clustering algorithm (Comaniciu and Meer,
2002) belongs to this last category and is at the core of our unsu-
pervised classification scheme for Very High Resolution (VHR)
remote sensing data. In contrast to the classic K-means clus-
tering approach (Duda et al., 2001), there are no embedded as-
sumptions on the shape of the distribution nor on the number of
modes/clusters in the MS clustering method. This powerful clus-
tering approach has been successfully used for both the classifica-
tion and the segmentation of gray scale and color images during
the last decade. However, the high computational complexity of
the algorithm has constrained its application in remote sensing
images with massive information. Consequently, very little work
(Wang et al., 2006, Bo et al., 2009, Chehata et al., 2011) has been
reported regarding the performance of this technique on remotely
sensed data. In this paper, we aim to effectively and efficiently
map remote sensing data through a new combined unsupervised
classification method that consists of a cooperative approach of
both the standard K-means and a fast Mean-Shift clustering algo-
rithms.

This paper is organized as follows. The following section de-
scribes the standard K-means algorithm and its weaknesses. Sec-
tion 3 presents the general Mean-Shift algorithm and a fast ver-
sion that has been recently proposed. We introduce then our
new combined clustering method in section 4. The validation of
our approach on forest cover classification from VHR imagery is
presented in section 5. Discussions and concluding remarks are
given in the last section.

2 K-MEANS CLUSTERING ALGORITHM

K-means is a simple algorithm that has been adapted to many
problem domains and is commonly used in remote sensing. This
algorithm is based on an iterative procedure. The main idea is to
define K centroids, one for each cluster, assuming that the num-
ber of clusters K is known a priori. One popular way to start is
to randomly choose K of the samples to initialize the means. The
next step assigns each point of the data set to the closest centroid
and include it in the corresponding cluster. K cluster mean vec-
tors (centroids) are then updated using all the pixels in each clus-
ter resulting from the previous step. This recursive procedure is
iterated until convergence, in other words, centroids do not move
any more.

The objective of the K-means algorithm is to minimize the within
cluster variability. The objective function is the Sum of Squared
Errors (distances to the cluster centers) defined by equation 1.

SSE =
∑
i

∑
x∈Ci

(x−mi)
2 (1)

where x corresponds to any point in cluster Ci and mi is the
mean (or centroid) of the latter.

Although the K-means procedure will always reach convergence,
it does not necessarily find the most optimal configuration, cor-
responding to the global objective function (SSE) minimum. The
algorithm is also sensitive to the initial randomly selected clus-
ter means. From a statistical point of view, the clusters obtained
by K-means can be seen as the maximum likelihood estimates
for the cluster means assuming each cluster comes from a spher-
ical normal distribution with different means but same variance.
This highlights a limitation of the K-means algorithm: it is most
appropriate for images with clusters that are sphere-shaped and
have the same variance. This does generally not hold for re-
motely sensed images. For example, a forest cluster is usually

more or less elongated with a large variability. As a consequence,
the K-means algorithm will often split up forest clusters into mul-
tiple smaller clusters. Another weakness of the K-means algo-
rithm, which is particularly troublesome is: K has to be specified.
Unfortunately, there is no general theoretical solution to find the
optimal number of clusters for any given data set. A simple ap-
proach is to compare the results of multiple runs with different K
and choose the best one according to a given criterion, but one
needs to be careful because increasing K results in smaller er-
ror function values by definition. In this work, we overcome this
problem by involving the Mean Shift automatic mode detection
procedure.

The computational complexity of the standard K-means algo-
rithm is O(n), where n is the size of the data set.

3 MEAN-SHIFT CLUSTERING ALGORITHM

3.1 Standard Mean-Shift algorithm

The Mean Shift optimization procedure was first proposed by
Fukunaga and Hostetler (Fukunaga and Hostetler, 1975), and later
adapted by Comaniciu and Meer for image clustering and seg-
mentation (Comaniciu and Meer, 2002). The Mean Shift algo-
rithm is a non-parametric density-based method for analysis of
complex multi-mode feature space and for delineation of arbi-
trarily shaped clusters. This approach provides excellent results
in clustering and object delineation in color images (Comaniciu
and Meer, 2002).

The MS algorithm is based on a density mode searching and clus-
tering. The feature space is considered as the empirical prob-
ability density function (p.d.f.) of the input features. The algo-
rithm proposes a filtering step that associates each pixel in the im-
age with the closest local mode in the density distribution of the
feature space. The MS procedure actually locates theses modes
without estimating the global density, hence avoiding a compu-
tationally intensive task. Local modes are searched for in the
feature domain of n dimensions, where n is the number of con-
sidered features. An iterative procedure of mode seeking consists
in shifting the n dimensional window to a local mode. This search
window is initially centered at a data point randomly chosen from
the image. This seed point is then recursively shifted to the av-
erage of the data points in its neighborhood. Regions associated
with nearby modes are fused.

Only one input parameter is needed, that is the choice of the ra-
diometric range (hr) which corresponds to the unique spectral
radius in the n-dimensions search window. In a multiple feature
space, feature values are normalized prior to the MS mode de-
tection and clustering steps. However, the general MS algorithm
allows only one unique radiometric range hr , which limits its po-
tential in a multi-spectral and/or a multi-temporal context.

In order to extract an actual cluster in the image, hr has to be
both:

• higher than the maximum radiometric difference between
inner cluster pixel pairs

• lower than the radiometric difference between cluster pixels
and surrounding cluster pixels

The clustering result is not very sensitive to range parameter hr .
The latter and smallest feature size M control the number of de-
lineated clusters. The more an image deviates from the assumed
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piecewise constant model (such as heavily textured areas), the
larger values have to be used for hr and M to discard the ef-
fect of small local variations in the feature space (Comaniciu and
Meer, 2002). No theoretical constraints can be imposed on the
value of hr which is task dependent. In practical settings, its
choice should incorporate a top-down knowledge driven compo-
nent (Comaniciu and Meer, 2002). Parameter M is chosen in
practice according to the Minimum Mapping Unit (MMU) which
corresponds to the size of the smallest region of the map as well
as the size of the smallest image object. The choice of MMU
needs thematic knowledge too.

The mean shift density mode detection is a simple iterative proce-
dure that shifts each seed point x to the average of its neighbors
(Fukunaga and Hostetler, 1975). The shift m(x) is determined
by considering the gradient, ∇f̂(x), of the kernel density esti-
mate (Comaniciu and Meer, 2002). It is one of the two terms of
the latter and can be expressed as (equation 2):

m(x) =

∑l

i=1
xig

(∥∥∥x− xi

h

∥∥∥2
)

∑l

i=1
g

(∥∥∥x− xi

h

∥∥∥2
)

︸ ︷︷ ︸
C

−x (2)

where xi corresponds to any point in the neighborhood of size
l within a kernel bandwidth h assuming a Gaussian kernel g().
The first part of the Mean Shift vector m(x) corresponds to the
calculated neighborhood center of mass C.

The MS algorithm is particularly effective in high density regions
but is computationally expensive especially in case of multidi-
mensional data sets due to the underlying optimization procedure
to determine the modes of the pixels density.

To investigate the MS algorithm in the difficult context of very
high resolution remote sensing imagery, we use a fast version
of this algorithm which has been recently proposed, namely the
Path-Assigned Mean-Shift (PAMS).

3.2 Fast Mean-Shift algorithm

While a few work has been reported on the use of the standard
MS algorithm on remotely sensed images (Wang et al., 2006, Bo
et al., 2009, Chehata et al., 2011), fast versions of this cluster-
ing method have never been used yet for a remote sensing appli-
cation despite the computational complexity of the general MS
algorithm for remote sensing data. In this work, we aim to ef-
fectively and efficiently map remote sensing data using a fast MS
algorithm that preserves robustness while significantly increasing
computational speed.

The Path-Assigned Mean-Shift algorithm (PAMS) is a fast ver-
sion of the MS algorithm that exploits neighborhood consistency
(Pooransingh et al., 2008). In the PAMS assignment, all data
points along the path toward the mode point are assigned to the
final mode value :

∀P ∈ Path(S), cluster(P ) = mode(S) (3)

Thus, points already assigned modes are eliminated from the mean
shift process and are not traversed in the future. Consequently,
seed points number is dramatically reduced in the mode seeking
step and the complete mean shift process converges much faster.

Unlike most fast MS methods (DeMenthon, 2002, Zhang et al.,
2005), this method is a true mean shift as no preprocessing phase
is needed (Pooransingh et al., 2008). Furthermore, no post-processing
is needed as in the case of the original algorithm (Comaniciu and
Meer, 2002). In this fast process, all points of the data set are
considered unlike other methods that use a sample of the data set
to reduce the complexity.

The PAMS algorithm is up to 5 times faster than other fast MS
algorithms (DeMenthon, 2002, Zhang et al., 2005) while induc-
ing a low loss in quality compared to the original MS version.
This loss is mainly due to the fact that, unlike in the original ver-
sion, the data points traversed along the path toward a mode point
are not considered as potential seed points to explore in the next
mode seeking step. To compensate for this loss, we propose to
use the K modes (cluster centroids) obtained after convergence
of the PAMS algorithm as an initialization of a K-means cluster-
ing algorithm.

3.2.1 PAMS algorithm The main steps of the PAMS algo-
rithm are as follows (Pooransingh et al., 2008):

1. Select a point site S(p, q) at random in the image.

2. Extract the spectral values vector I(p, q) of the pixel at that
point.

3. Find the i neighborhood vectors, Ii(t), within the spectral
bandwidth, hr .

4. Compute the center of mass, C, in the spectral domain.

5. Translate by the mean shift vector, m.

6. Repeat steps 3 and 5 till convergence to stationary mode vec-
tor, Im. Assign the final mode vector, Im, to the entire mean
shift path, Ii(t), 0 ≤ t ≤ T , where T is the number of iter-
ations to convergence.

3.2.2 PAMS versus MS algorithms The major conceptual
difference between the PAMS and MS algorithms lies on simulta-
neous versus consecutive mode seeking and clustering steps. The
computational complexity of the general MS algorithm is O(n2),
where n is the size of the data set. The main computational load
for this algorithm lies in the calculation of the mean shift vector,
m (see equation 2). The complexity of the PAMS algorithm is
reduced to O(Φ2) where Φ represents the total number of unas-
signed points per iteration of the algorithm. Thus, in theory, the
complexity of the PAMS algorithm is between O(n) and O(n2)
but is quasi-linear in practice as the computation time is reduced
significantly with each iteration.

4 COMBINATION OF K-MEANS AND MEAN-SHIFT
CLUSTERING ALGORITHMS

Our main objective is to achieve a fast and robust clustering method
capable of processing multidimensional remote sensing data sets
easily.

We present here a new combined method that consists of a co-
operative approach of two different algorithms for unsupervised
classification : the well-established K-means and the more ad-
vanced Mean-Shift clustering algorithms. A fast version of the
Mean-Shift was chosen for more efficiency, especially in the con-
text of VHR remote sensing data, namely the PAMS algorithm.

Like the MS algorithm, our unsupervised classification frame-
work consists of two main steps : mode seeking and clustering
steps. This two-pass partitioning method proceeds as follows:
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• PAMS algorithm is involved as a first-pass process. It pro-
vides reliable initial centroids for the subsequent K-Means
algorithm.

• K-means algorithm is used as a second-pass refinement pro-
cess. It converges very quickly to a refined solution to the
underlying clustering problem. Resulting clusters are more
accurately delineated than in the PAMS algorithm which, in
comparison to the standard MS algorithm, sacrifices some
effectiveness for efficiency.

The latter does not suffer the main drawback of the classic K-
means algorithm (the number of clusters K needs to be specified)
as K is automatically determined via the MS mode-seeking pro-
cedure, nor the troublesome initialization of the centroids that
classification outcome is sensitive to, as previously stated. And,
while in the standard K-means algorithm, it frequently happens
that suboptimal partitions are found, this 2-pass combination ap-
proach leads to optimal and relatively stable clustering results.

The time required to perform the mode seeking (fast Mean-Shift)
and clustering steps (fast Mean-Shift and K-means) is nearly lin-
ear in the number of elements of the data set (complexity O(n)).
Hence, the introduced combined clustering method remains al-
most as fast as the standard K-means algorithm while providing
comparable classification accuracy to the general Mean-Shift al-
gorithm which has a quadratic computational complexity (com-
plexity O(n2)).

5 EXPERIMENTAL RESULTS

The new clustering scheme has been applied to forest site charac-
terization from multispectral VHR imagery (Farmer et al., 2011).
We demonstrate the effectiveness of our two-stage clustering method
in performing automatic classification on an aerial multispectral
forest image, of 30 cm spatial resolution, combining three spec-
tral bands : Green (G), Red (R) and Near-Infra-Red (NIR), shown
on fig. 1. This 877× 938 image of a paddock field exhibits small
and larger clusters of trees. Four main classes can be seen in this
image: soil, water hole, trees, and shadows. The latter is an is-
sue in forestry and is particularly enhanced in VHR imagery, as
well as texture which is not considered in this work. Only spec-
tral information is used here. Both individual bands and band
combination results are presented in the following.

5.1 Classification of individual bands

Our clustering method has been applied to the NIR band of the
paddock field aerial image. Only three major classes can be seen
in this image: soil, trees, and shadows. The water hole cannot
be spectrally distinguished from the soil class. The PAMS al-
gorithm fully automatically classifies this individual band into 3
different clusters (fig. 2(a)). The classification results are rep-
resented by the final mode (or cluster centroid) value of each
feature point. The radiometric resolution hr has been automat-
ically set to half the standard deviation of the whole image data
(hr = 16.5) and minimum cluster size M has been set to 10 pix-
els. We can notice that the algorithm distinguishes well trees from
soil but has trouble in separating trees from their shadows. The
trees cluster is under-estimated while the shadows cluster is over-
estimated. This probably comes from the neighborhood consis-
tency on which is based the PAMS algorithm and also from the
radiometric resolution hr .

Our combined approach, involving both PAMS and K-means al-
gorithms, leads to a meaningful classification, depicted on fig.

Figure 1: Paddock field aerial image (G,R,NIR)

2(b), with a satisfactory preservation of the details of the land-
scape. This clustering result clearly exhibits a better classifica-
tion quality than when using PAMS algorithm alone. Indeed, the
three different clusters are now accurately delineated, including
the trees and shadows which were problematic in the previous
PAMS classification result (see fig. 2(a)).

Let us emphasize that the MS clustering performance is essen-
tially controlled through the resolution of the analysis : radio-
metric bandwidth hr . A larger hr would lead to less details in
the resulting classification but at a higher speed than a smaller
hr . Only features with high radiometric contrast survive when
hr is large (Comaniciu and Meer, 2002). A smaller hr will pre-
serve finer details and will produce a larger number of clusters.
Parameter M has a minor impact on the clustering outcome. It
can be neglected all together unless very small classes have to be
filtered out in the task of interest.
Thanks to our 2-stage classification process, we can sacrifice some
accuracy in the first stage, which is the most computationally de-
manding (due to the mode detection optimization process), to
delineate more accurately the clusters in the second refinement
stage.

Visual comparison is insufficient for determining the performance
of the classification procedure. Therefore, both unsupervised clas-
sification approaches were also statistically analyzed using two
well-known measures for clustering quality assessment : intra-
class variance (or within cluster variance), defined as a weighted
(by class sizes) average of variances of the different classes, and
inter-class variance (or between clusters variance), which repre-
sents the variance of the means (or cluster centroids) also weighted
by class size. Table 1 shows these statistics for both methods as
well as their running time in a matlab platform. We can notice
that the improvement in classification is also significant statis-
tically: intra-class variance decreased by 32% while inter-class
variance increased by 43%. The whole classification process
combining fast Mean Shift and K-means is performed in about
5 s.

5.2 Classification of multiple bands

Both PAMS and new combined clustering algorithms have been
applied on the multi-spectral forest image (3 bands) and lead to
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Algorithm Intra-class Inter-class Computational
variance variance time

PAMS 225.26 827.68 3.68 s
Combined 154.15 1187.20 5.56 s

(PAMS+K-means)

Table 1: Performance comparison between the PAMS and the
new combined (PAMS & K-means) algorithms

the classification results depicted on fig. 3. As in the previous
single-band classification, the radiometric resolution hr has been
automatically set to half the standard deviation of the whole im-
age data (hr = 19.3) and minimum cluster size M has also been
set to 10 pixels. Unsurprisingly, the water hole cluster is detected
now as the algorithms consider the 3 spectral bands (G, R, NIR).
The PAMS algorithm automatically provides the number of clus-
ters : K = 5. One of the 5 clusters is not relevant and is twice
smaller than the water hole size. Let us notice that the K-means
algorithm alone (with K = 5± 1) fails to cluster the water hole,
which is a minor class compared to the others. Our 2 pass-method
allows once again to refine the results of the PAMS algorithm.
Intra-class and inter-class variances for PAMS and combined al-
gorithms are respectively : σ2

w1 = 238.50, σ2
b1 = 944.05, and

σ2
w2 = 144.90, σ2

b2 = 996.42. Hence, intra-class variance de-
creased by 39% while inter-class variance increased by 5.5%.
The PAMS algorithm running time is : 17.16s. Only 3 itera-
tions of the K-means algorithm permit to significantly refine the
clustering results achieved by the latter. These results confirm the
suitability of our method for unsupervised classification of forest
remotely sensed data. Our approach is applicable to the classifi-
cation of any other aerial or satellite image and in the context of
any application related to forestry or not.

6 CONCLUSIONS AND FUTURE WORK

The Mean Shift algorithm is an appealing choice for image clas-
sification due to its non parametric nature and its minimal user
input. The user controls the classification performance through a
single parameter that has a clear physical meaning and hence is
easy to specify: the resolution of the analysis (radiometric band-
width hr). This nonparametric clustering paradigm is certainly a
better alternative to cluster multispectral remote sensing imagery
than earlier parametric methods. However, it is computationally
intensive in the context of remote sensing.

We have presented a new unsupervised classification scheme, de-
rived from the mean shift theorem, that better addresses the com-
putational load of remote sensing data. It is an extended ver-
sion of one of the simplest and most frequently used unsuper-
vised classification method that solves the well-known clustering
problem : the K-means algorithm. Our two-pass method follows
a simple and easy way to classify a given data set into a certain
number K of clusters that is automatically determined via a fast
Mean Shift mode seeking procedure. Thus, it is a cooperative
approach of K-means and fast Mean-Shift clustering algorithms
that significantly alleviates the major weaknesses of the standard
K-means algorithm. When compared to the classical PAMS al-
gorithm, our technique is better in terms of classification quality.
The improvement in classification is significant both visually and
statistically. The whole classification process is performed in a
few seconds for image tiles of around 1000×1000 pixels making
this technique a viable alternative to traditional classifiers. The
time required to perform the mode seeking and clustering steps
is nearly linear in the size of the data set. Thus, it is almost as
fast as the standard K-means algorithm while providing compa-
rable classification accuracy to the general Mean-Shift algorithm
which has a quadratic computational complexity.

Future work will focus on the proper and automatic selection of
the radiometric bandwidth hr to provide a more accurate clus-
ter delineation and achieve a more complete solution towards au-
tonomous image classification. Furthermore, the radiometric res-
olution hr should be adapted to each spectral band, to take into
account the spectral distribution variability. The combination of
multiple bands may yield then more desirable results. Finally, a
hierarchical clustering approach has the potential to improve the
current mapping performance.
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(a) PAMS algorithm

(b) New combined algorithm (PAMS & K-means)

Figure 2: Unsupervised classification of paddock field aerial im-
age (NIR band)

(a) PAMS algorithm

(b) New combined algorithm (PAMS & K-means)

Figure 3: Unsupervised multispectral classification of paddock
field aerial image
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