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ABSTRACT:

The goal of this paper is to extract automatically the building contours regardless of shape. By extracting these contours, detection
results will be more accurate, giving useful information about urban area, which is important for many tasks, like map updating and
disaster management. First, we extract local feature points from the image, based on a modification of Harris detector’s saliency
function, which can represent urban area and building effectively. This point set is then used to define the main orientation of the
buildings, which characterizes well an urban region and helps to define directions, where object contours have to be searched. Second,
we applied shearlet approach to extract edges in the defined directions. This results in an edge map, which helps us to determine point
subsets belonging to the same building. Convex hulls of the point subsets is used for contour initialization, then region based Chan-Vese
Active Contour method is applied to extract the accurate building outlines.

1 INTRODUCTION

Automatic evaluation of aerial photographs is a very important
research topic, as the manual analysis is very time consuming.
Nowadays, there are many approaches for multispectral or syn-
thetic aperture radar (SAR) images, but developing methods han-
dling optical aerial or satellite images have also big importance
(Zhong and Wang, 2007), (Dey et al., 2011). When working on
optical photographs, the challenge is the large variety of features:
images can be grayscale or containing poor color information,
scanned in different seasons and in altering lighting conditions.
In this case, pixel neighborhood processing techniques like multi-
layer difference image or background modeling (Benedek and
Szirányi, 2008) cannot be adopted efficiently since details are not
comparable.

In our work, we concentrate on building detection, which is a
very important task, as land area might be changing dynamically
and a continuous periodic administration is necessary to have up-
to-date information. This is very useful for urban development
analysis, map updating and also helps in disaster management,
vegetation monitoring and discovering illegal surface forming ac-
tivities. The challenges of building detection partly come from
the aforementioned diverse imaging circumstances, causing dif-
ferent color, contrast and shadow conditions. On the other hand,
the shape of different buildings is quite various, which needs so-
phisticated techniques to have more accurate results.

There is a wide range of publications in remote sensing topic for
urban area and building detection. However, we concentrate on
novel approaches which will be used for comparison later. State-
of-the-art building detection approaches can be divided into two
main groups. The first group contains methods which only lo-
calize buildings without any shape information (Sirmacek and
Unsalan, 2009) and (Sirmaçek and Ünsalan, 2011). In these ap-
proaches, only the location of the building is detected. In (Sir-
macek and Unsalan, 2009) a SIFT salient point based approach
is introduced for urban area and building detection (denoted by
SIFT-graph in the experimental part). This method uses two tem-
plates (a light and dark one) for detecting buildings. After ex-
tracting feature points representing buildings, graph based tech-

niques are used to detect urban area. The given templates help
to divide the point set into separate building subsets, then the lo-
cation is defined. However, in many cases, the buildings cannot
be represented by such templates, moreover sometimes it is hard
to distinguish them from the background based on the given fea-
tures. (Sirmaçek and Ünsalan, 2011) proposes a method to detect
building positions in aerial and satellite images based on Gabor
filters (marked as Gabor filters in the experimental part), where
different local feature vectors are used to localize buildings with
data and decision fusion techniques.

The other group contains approaches which use some shape tem-
plates (e.g. rectangles) for detecting the buildings (Song et al.,
2006), (Sirmaçek and Ünsalan, 2008) and (Benedek et al., 2012).
In this case, beside the location, additional information is given
about the size, orientation and shape. In (Song et al., 2006) a
segment-merge technique is introduced (Segment-Merge), which
represents a distinct trend. This method considers building detec-
tion task as a region level problem and assumes that buildings are
homogeneous areas (either regarding color or texture informa-
tion), and based on this fact, they can be distinguished from the
background. In the first step, the background is subtracted, then
some shape and size constraints are created to define building ob-
jects. However, the basic assumptions influences the success of
the approach: sometimes buildings cannot be distinguished from
the background effectively by using color and texture features,
therefore the further steps will also fail.

(Sirmaçek and Ünsalan, 2008) (named as Features-Canny in the
experimental part) combines roof color, shadow and edge infor-
mation in a two-step process. First, a built-in candidate is de-
fined based on color and shadow feature, then a rectangle tem-
plate is fitted using a Canny edge map. This sequential method
is very sensitive to the deficiencies of both steps: the inappro-
priate shadow and color information results in false candidates,
and accurate detection is not possible with a malfunctioning edge
map.

A novel building detection approach is introduced in (Benedek et
al., 2012), using a global optimization process, considering ob-
served data, prior knowledge and interactions between the neigh-
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boring building parts (marked later as bMBD). The method uses
low-level (like gradient orientation, roof color, shadow, roof ho-
mogeneity) features which are then integrated to have object-level
features. After having object (building part) candidates, a config-
uration energy is defined based on a data term (integrating the
object-level features) and a prior term, handling the interactions
of neighboring objects and penalizing the overlap between them.
The optimization process is then performed by a bi-layer multiple
birth and death optimization.

Although the second group provides some information about the
shape, it is still just an approximation. Therefore, our aim is to
construct a method, which can deal with the shape diversity. In
the first step, we generate a feature point set, based on our modifi-
cation of the Harris corner detector (Kovács and Szirányi, 2012),
which is able to represent object contours effectively. Next, we
calculate main directions in the surroundings of feature points to
get orientation information, which characterizes the urban area as
well. Then, an improved edge map is constructed by strengthen-
ing the edges only in the calculated main directions with shearlet
method (Easley et al., 2009). Based on the edge map, the feature
point set is divided into subsets by a graph based connectivity
detection (a similar was introduced in (Sirmacek and Unsalan,
2009)), where each subset represents a building candidate. Us-
ing the convex hull of the point subset for initialization, Chan-
Vese active contour method (Chan and Vese, 2001) detects the
final boundary of the building. Evaluating the method on aerial
images provided by the Hungarian Institute of Geodesy, Cartog-
raphy and Remote Sensing, the initial results show that our pro-
posed method is able to detect buildings more efficiently and it
can be a rival for other state-of-the-art methods.

2 FEATURE POINT EXTRACTION

2.1 Original Harris detector

The detector was introduced in 1988 (Harris and Stephens, 1988)
and based on the principle that at corner points intensity values
change largely in multiple directions. By considering a local win-
dow in the image and determining the average changes of image
intensity result from shifting the window by a small amount in
various directions, all the shifts will result in large change in case
of a corner point. Thus corner can be detected by finding when
the minimum change produced by any of shifts is large.

The method first computes the Harris matrix (M ) for each pixel
in the image, consisting the product of the first order derivatives
smoothed by a Gaussian window. Then, instead of computing the
eigenvalues of M , an R corner response is defined:

R = Det(M)− k ∗ Tr2(M), (1)

with Det and Tr denoting the determinant and trace of M and k
is a coefficient, usually around 0.04.

ThisR characteristic function is used to detect corners. R is large
and positive in corner regions, and negative in edge regions (Fig-
ure 1(b)). By searching for local maxima of R, the Harris key-
points can be found ( see Figure 1(c)).

2.2 Modified Harris based feature map

When working on contour detection, contour points have to be
emphasized with some techniques. In our previous work (Kovács
and Szirányi, 2012), we introduced a modification of the origi-
nal Harris method, which is able to emphasize edges and corners

(a) (b) (c)

Figure 1: Operation of the Harris detector: (a) shows the original
image; (b) is the R characteristic function; (c): Keypoints chosen
as local maxima of R.

(a) (b) (c)

Figure 2: Operation of the modified Harris detector: (a) shows the
original image; (b) is the proposed Rlogmax function; (c): Key-
points chosen as local maxima of Rlogmax.

equally, therefore can be applied efficiently for generating a fea-
ture map for active contour approaches. The proposed modifica-
tion looks as follows:

Rlogmax = max(0, log[max(λ1, λ2)]), (2)

where λ1 and λ2 denote the eigenvalues of M . When emphasiz-
ing corners and edges, they both have one large component, thus
max(λ1, λ2) function separates the flat and non-flat regions ac-
curately. To produce a steady feature map, the dynamics of the
characteristic function should be compressed into a balanced dis-
tribution by keeping the necessary strength of the main attractors.
The natural logarithmic (log) function satisfies this condition: it
has a balanced output for both corner and edge saliency. The
target set of the Rlogmax is the positive domain (when it is used
as a feature map), thus the outer max function is responsible for
replacing negative values of small λ (points in flat regions) with
zeros.

By calculating the local maxima of the proposed Rlogmax func-
tion, the modified feature point set is defined, see Figure 2.

2.3 Urban area detection

The advantage of the (original and modified) Harris detector is its
strong invariance to rotation, illumination variation, image noise
and robustness on fixed scales. Therefore it can be an efficient
tool in aerial image segmentation and can handle the altering
characteristics of different images. The first question in apply-
ing the proposed function for the building detection task was if
the proposed extended feature point set could represent the ur-
ban area. Is it possible to use these points for building detection?
To get answers to these questions, we have evaluated the point
set for urban area detection. For testing, we used spatial voting,
which was proposed in (Sirmaçek and Ünsalan, 2010) for Gabor
filter based local feature points. The method assumes that when
detecting an urban area, many local feature points should be in it
located closely in the spatial domain, and around the points there
is a high possibility of urban features. Therefore, the constructed
voting matrix has the highest vote at the location of the feature
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(a) (b)

Figure 3: Urban area detection with spatial voting: (a) shows the
original image; (b) is the detected urban area.

point (xi, yi for the ith point), and the vote is decreasing around
it in accordance with the spatial distance:

V (x, y) =

K∑
i=1

1

2πσ2
i

exp

(
− (x− xi)2 + (y − yi)2

2σ2
i

)
, (3)

where σi is the parameter for voting proximity for point (xi, yi).
After calculating V for every pixel in the image, Otsu thresh-
olding (Otsu, 1979) was applied to distinguish urban area from
background.

Testing the method for modified Harris feature points for many
different aerial images, the results showed that urban area is well
represented by this point set. A typical result can be seen in Fig-
ure 3, where a grayscale image was used with limited color infor-
mation and some cloud shadows generating false contours in the
left size of the image, which makes the detection harder. How-
ever, the generated point set is mostly situated in the urban area
and the spatial voting can detect the area quite accurately.

3 ORIENTATION BASED BUILDING DETECTION

Our tests have shown that the proposed Harris point set is able to
represent urban area, therefore features of the points can also be
used to extract information of the urban area to improve building
detection. Our idea was to extract the main direction in the small
neighborhood of the feature points which can characterizes the
urban area. Edges in the defined direction are strengthened with
the shearlet method (Yi et al., 2009). Building candidates are
determined then based on the improved edge map and the feature
point subset. The accurate building contours are generated with
Chan-Vese active contour method (Chan and Vese, 2001).

3.1 Orientation estimation

A small urban area has buildings with connected orientation. In
most cases, houses are oriented according to some bigger struc-
ture (e. g. the road network), therefore main orientation of the
area can be defined. As the proposed modified Harris point set
represents the area, our idea was to calculate the main direction
of the buildings of the area based on this point set. (Benedek et
al., 2012) used a low level feature, called local gradient orienta-
tion density, where the surroundings of a pixel was investigated
whether it has perpendicular edges or not. Now we use a similar
feature to calculate the main direction of a feature point’s neigh-
borhood. Let us denote the gradient vector by ∇gi with ‖∇gi‖
magnitude and ϕ∇i orientation for the ith point. By defining the
n × n neighborhood of the point with Wn(i) (where n depends
on the resolution), the weighted density of ϕ∇i is as follows:

λi(ϕ) =
1

Ni

∑
r∈Wn(i)

1

h
· ‖∇gr‖ · k

(
ϕ− ϕ∇r

h

)
, (4)

(a)

(b)

Figure 4: Orientation estimation for an image: (a) shows the
feature points in yellow; (b) shows the λi(ϕ)orientation density
function of the points in blue, calculated for 15 × 15 neighbor-
hood. ϕ ∈ [−90,+90] is the horizontal axis, the number of
points is the vertical axis. The η2(.) two-component Gaussian
mixture is in red, detected peaks are θ = −47 and θortho = +53.

with Ni =
∑
r∈Wn(i) ‖∇gr‖ and k(.) kernel function with h

bandwidth parameter.

We define a main orientation for (ith) feature point as:

ϕi = argmax
ϕ∈[−90,+90]

{λi} . (5)

After calculating the direction for all the K feature points, we
define the density function ϑ of their orientation:

ϑ(ϕ) =
1

K

K∑
i=1

Hi(ϕ), (6)

where Hi(ϕ) is a logical function:

Hi(ϕ) =

{
1, if ϕi = ϕ
0, otherwise

(7)

We expect that the density function ϑ will have two main peaks
(because of the perpendicular edges of buildings), see Figure 4.
This can be measured by correlating ϑ to a bimodal density func-
tion:

α(m) =

∫
ϑ(ϕ)η2(ϕ,m, dϑ) dϕ, (8)

where η2(.) is a two-component mixture of Gaussian, withm and
m + 90 mean values and dϑ is standard deviation for both com-
ponents. The value θ of the maximal correlation can be obtained
as:

θ = argmax
m∈[−90,+90]

{α(m)} . (9)

And the corresponding orthogonal direction (the other peak of
α(m)):

θortho =

{
θ − 90, if θ ≥ 0
θ + 90, otherwise

(10)
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Thus, we expect building edges to be in the calculated main ori-
entation and we try to enhance edges in the given directions. We
tested the orientation estimation approach for different datasets
and different window size (n × n neighborhood). The results
show that with larger size n = 15, the density function is smoother
(see Figure 4(b)), while with smaller size (n = 5) rougher and
blurred, but the main characteristics and the main peaks were ob-
vious in both cases, therefore we only showed the result of 15×15
neighborhood in Figure 4.

3.2 Edge detection with shearlet transform

Now, the main orientations have been defined. The next step is
to enhance edges in these directions to extract useful edge infor-
mation from the image that can be later combined efficiently with
the feature point set. There are different approaches which uses
directional information like Canny edge detection (Canny, 1986)
using the gradient orientation; or (Perona, 1998) which is based
on anisotropic diffusion, but cannot handle the situation of multi-
ple orientations (like corners). Other single orientation methods
exist, like (Mester, 2000) and (Bigun et al., 1991), but the main
problem with these methods is that they calculate orientation in
pixel-level and lose the scaling nature of orientation, therefore
they cannot be used for edge detection. In our case we need to
enhance edges constructed by joint pixels, thus we searched for
such edge detection method which can handle orientation as well.
Moreover, as searching for building contours, the algorithm must
handle corner points as well. Shearlet transform (Yi et al., 2009)
has been lately introduced for efficient edge detection, as unlike
wavelets, shearlets are theoretically optimal in representing im-
ages with edges and, in particular, have the ability to fully capture
directional and other geometrical features.

For an image u, the shearlet transform is a mapping:

u→ SHψu(a, s, x), (11)

providing a directional scale-space decomposition of u with a >
0 is the scale, s is the orientation and x is the location:

SHψu(a, s, x) =
∫
u(y)ψas(x− y)dy = u ∗ ψas(x), (12)

where ψas are well localized waveforms at various scales and ori-
entations. As we are working with a discrete transform, a discrete
set of possible orientations is used, for example s = 1, . . . , 16.
In our case, the main orientation of the image θ is calculated (see
Section 3.1), therefore our aim is to strengthen the components
in the given direction on different scales as we only want to de-
tect edges in the main orientation. The first step is define the s
subband which includes θ and θortho:

s̃ =

{
si : (i− 1)

2π

s
< θ ≤ i2π

s

}
,

s̃ortho =

{
sj : (j − 1)

2π

s
< θortho ≤ j

2π

s

}
. (13)

After this, the SHψu(a, s̃, x) and SHψu(a, s̃ortho, x) subbands
have to be strengthened. For this reason, the weak edges (values)
have been eliminated with a hard threshold and only the strong
coefficients are amplified.

Finally, the shearlet transform is applied backward (see Eq.12) to
get the reconstructed image, which will have strengthened edges
in the main directions. The strengthened edges can be easily
detected with Otsu thresholding, results can be seen in Figure
5. While the pure Canny method detects the edges sometimes
with discontinuities, the shearlet based edge strengthening helps
to eliminate these problems.

(a)

(b)

Figure 5: Comparing the edge maps for u∗ channel : (a) shows
the result of the pure Canny edge detection; (b) is the result of the
shearlet based edge strengthening.

As building colours may vary largely and the shadow effect have
to be reduced to eliminate false contours when detecting build-
ings, we used two color channels in the edge strengthening step:
for red buildings we used the u∗ component of CIE L∗u∗v ad-
vised in (Muller and Zaum, 2005); for grey buildings we applied
the Cb component of YCbCr space, which was found to separate
grey coloured objects and their shadows the most effectively in
(Tsai, 2006). First, we extracted the red building outlines based
on the u∗ edge map, after that the remaining buildings were de-
tected in the Cb-based map.

3.3 Building contour detection

After defining the main orientation for the extended Harris point
set for the urban region, the shearlet based edge strengthening ap-
proach enhanced the edges in the main directions, resulting in an
edge map S. In the next step we will compound the feature point
set and edge map with a graph based representation, which was
introduced in our previous work (Kovacs and Szirányi, 2010);
based on the generated edge map, connected feature point sub-
graphs are determined, indicating building candidates. The E
edge network of G = (V,E) graph is constructed by connecting
vi = (xi, yi) and vj = (xj , yj), the ith and jth vertices of the V
feature point set, if they satisfy the following conditions:

1. S(xi,yi) = 1 ,

2. S(xj ,yj) = 1 ,

3. ∃ a finite path between vi and vj in S .

The result of this a graph composed of many separate subgraphs,
where each subgraph indicates a building candidate. However,
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there might be some singular points and some smaller subgraphs
(points and edges connecting them) indicating noise. To discard
them, we select subgraphs having points over a given threshold.

To detect the accurate contour of the buildings, we use Chan-Vese
active contour algorithm (Chan and Vese, 2001) and initialize the
contour for a building candidate as the convex hull of the vertices
of the subgraph.

Main directional edge emphasis may also enhance road and vege-
tation contours, moreover some feature points can also be located
on these edges. Therefore after the contour extraction step the
results have to be supervised to filter out misdetections. When
detecting false objects, like road parts or land section borders, the
edges in the detected area are unidirectional, unlike buildings,
which have either orthogonal or multidirectional contours. Thus,
the directional distribution of edges is evaluated in the extracted
area (see the technique in Section 3.1) and unidirectional hits are
eliminated. Here, we use again the correlation to a bimodal den-
sity function (Eq. 8) then measure and threshold the α value to
select multidirectional hits.

Figure 6 shows the result of the building detection with the de-
tected and filtered contours. Based on the contours, we can es-
timate the location of the buildings which will be useful in the
further work for evaluation and comparison.

4 EXPERIMENTS

We have evaluated our proposed method for the Szada dataset
provided by the Hungarian Institute of Geodesy, Cartography and
Remote Sensing. This dataset was also used in (Benedek et al.,
2012) for evaluation and for comparison with different methods
((Sirmacek and Unsalan, 2009), (Sirmaçek and Ünsalan, 2011),
(Song et al., 2006) and (Sirmaçek and Ünsalan, 2008)), therefore
quantitative test results are available. In Table 1 the quantitative
results for Szada dataset is shown. The name of the compared
methods is abbreviated as marked in the introduction part. The
complete dataset contains 57 buildings out of which our method
is able to detect 55 buildings (meaning 2 misdetections) with 0
false positive object. In this case we used the location of the
buildings (see Figure 6(b)) for evaluation. By comparing this
with the other approaches, one can see that our method is able
to outperform the others.

For qualitative evaluation we used the detected outlines (see Fig-
ure 6(a)). A part of this image was cut and enlarged to compare
our method qualitatively with (Benedek et al., 2012). Figure 7
shows the detailed differences. However, rectangular templates
provide a very close estimation for the shape of the buildings, the
fine details are lost. Unlike shape templates, active contour based
techniques do not apply any restrictions for the shape and able to
detect the varying contour parts more accurately.

Although active contours are able to cope with the altering shapes,
sometimes they suffer from the lack of contrast difference be-
tween the building and the background and have difficulties when
detecting contours (like missing a part of the building outline,
see the building in the bottom-middle of Figure 6(a)). Moreover,
sometimes buildings are oriented variously and the edge strength-
ening step misses their edges, which may result in misdetections.

5 CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel orientation based method
for building detection in aerial images. The proposed method

(a)

(b)

Figure 6: Result of the building detection: (a) shows the detected
contours; (b) is the estimated locations of the detected buildings.

(a) (b) (c)

Figure 7: Qualitative comparison of MPP-based and proposed
method: (a) is the original image part; (b) shows the result of
MPP-based method; (c) is the result of the proposed approach.

first calculates a feature point set based on the modification of
the well-known Harris corner detector. In the first step, we have
proven the detector’s ability to characterize urban area by testing
the point set with a voting matrix technique for urban area detec-
tion. The orientation feature of the point set is then used to define
main direction of the urban area, to make an edge strengthen-
ing in the given directions. Shearlet transform have been applied
for the orientation based edge enhancing, as it is able to handle
orientation information, even in multidirectional cases (like cor-
ners). The improved edge information is combined with the fea-
ture point set and a graph based technqiue was introduced to get
feature point subgraphs as building candidates. Finally, Chan-
Vese nonparametric active contour approach was applied to ex-
tract the building contours. The proposed method have been com-
pared with other state-of-the-art algorithms quantitatively and qual-
itatively. The results showed that our approach can detect build-
ings more effectively than the others, either for pure localization
and contour extraction.

However, this paper is just the first step of work, introducing the
main principles and needs more evaluation for different databases.
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Szada dataset (57 buildings) Missing objects False objects
SIFT-graph (Sirmacek and Unsalan, 2009) 17 26
Gabor filter(Sirmaçek and Ünsalan, 2011) 17 23

Features-Canny (Sirmaçek and Ünsalan, 2008) 10 18
Segment-Merge (Song et al., 2006) 11 5

bMBD (Benedek et al., 2012) 4 1
Proposed 2 0

Table 1: Quantitative results for Szada dataset

Moreover, there are still some open questions, which have to be
answered in the near future. If the resolution of the aerial im-
age is smaller, with larger scanned urban area, the orientation of
the buildings may varying, which have to be handled, for exam-
ple by correlating the orientation distribution function with multi-
ple bimodal Gaussian functions. Furthermore, the active contour
method might suffer from difficulties when building contours are
hided by other structures like trees. In this case some prior con-
straints (like edge parts running in the defined main orientations)
can be introduced.
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