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ABSTRACT: 
 
The objective of this work was to evaluate the potential of Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER), subsystems VNIR (Visible and Near Infrared) and SWIR (Short Wave Infrared) images, for discrimination and mapping 
of amethyst mining residues (basalt) in the Ametista do Sul Region, Rio Grande do Sul State, Brazil. This region provides the most 
part of amethyst mining of the World. The basalt is extracted during the mining process and deposited outside the mine. As a result, 
mounts of residues (basalt) rise up. These mounts are many times smaller than ASTER pixel size (VNIR - 15 meters and SWIR – 30 
meters). Thus, the pixel composition becomes a mixing of various materials, hampering its identification and mapping. Trying to 
solve this problem, multispectral algorithm Maximum Likelihood (MaxVer) and the hyperspectral technique SAM (Spectral Angle 
Mapper) were used in this work. Images from ASTER subsystems VNIR and SWIR were used to perform the classifications. SAM 
technique produced better results than MaxVer algorithm. The main error found by the techniques was the mixing between “shadow” 
and “mining residues/basalt” classes. With the SAM technique the confusion decreased because it employed the basalt spectral curve 
as a reference, while the multispectral techniques employed pixels groups that could have spectral mixture with other targets. The 
results showed that in tropical terrains as the study area, ASTER data can be efficacious for the characterization of mining residues. 

 
1. INTRODUCTION 

 
The Remote Sensing and auxiliary computing techniques are 
important tools used for the identification, geological mapping 
and mineral exploration. These tools aim to spectral 
discrimination of targets. To accomplish this discrimination is 
important to know about the spectral behavior through the 
observation of diagnostic features that express the physical and 
chemical composition of each element on study. One way to 
perform this type of study is using orbital sensors that allow 
study on a large spatial scale. 
 
On the other hand, this approach is subject to direct influence of 
the atmosphere, the gases and aerosols, reducing and changing 
the behavior of the electromagnetic radiation captured by the 
sensor, generating absorption/scattering effects. Among the 
gases that most contribute to these effects is the water vapor 
which constitutes about 2/3 of the atmosphere and shows 
absorption features around 0.94 µm, 1.14 µm, 1.38 µm and 1.88 
µm; oxygen (O2) (features between 0.60 and 0.30 µm), Carbon 
Dioxide (CO2) (features around 1.96µm, 2.01µm, 2.08µm), 
methane (CH4) (feature around 2:35 µm) and Ozone (O3) 
(feature next to the 0.60 µm) (Gao et al., 1993). 
 
Spectral nature processes are largely used for the treatment of 
hyperspectral data, through techniques that reduce the data 
dimensionality, correct the redundancies and identify extreme 
members (endmembers). Such techniques are currently being 
used also for multispectral data sensors, with satisfactory 
results, such as those by Vicente (2007), Linn (2008) and 
Breunif (2008). 

 
The traditional classification methods, such as MaxVer, 
Minimum Distance, and others, are applied by prior knowledge 
of the targets by collecting training samples. Spectral 
classification methods are also applied by a prior knowledge of 
the targets, but implying a supervised classification based on 
sampling and analysis of spectral signatures and their 
comparison with the image pixels. Such signatures can be 
obtained by collecting endmembers directly on the image, 
measured in laboratories or field, using a spectroradiometer or 
using a spectral library. The classification by spectral analysis 
allows discretize each pixel by its correlation with the material 
that composes it (spectrum) in a direct way, establishing 
location and, sometimes, sub-pixel composition (Vicente, 
2007). 
 
In this context, this study aims to evaluate the use of ASTER 
sensor images, along techniques of remote sensing and digital 
image processing for the mapping and identification of basalt 
residues extracted from amethyst mines in the Ametista do Sul 
city, North of Rio Grande do Sul State, Brazil (Figure 1).  
 
The basalt rock is very dark, compact, sometimes with cavities 
and some crystals developed on the solid mass formed by 
minerals rich in iron and magnesium. It is a basic igneous rock 
composed mainly of fine grains of plagioclase feldspar enriched 
with calcium and pyroxene. There may also be present other 
minerals such as olivine, magnetite and apatite. It is the most 
common lava. It was crystallized from magma at the surface or 
near the Earth's surface. It quickly cools and the minerals do not 
grow much. Thus, difficult to observe them with the naked eye. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

153



2. METHODS 
 
In this paper we evaluated two classification techniques: 
algorithm MAXVER and the SAM (Spectral Angle Mapper) 
technique. The reason why we chose these two techniques is the 
fact that they have been successfully used in other studies of 
soil and rocks. Here are introduced the theories that explain 
these two techniques and processing. 
 
2.1. MaxVer algorithm  
 
MaxVer or Maximum Likelihood is a statistical classification 
method that considers the weighting of the distances between 
averages of digital classes values using statistical parameters. 
To be accurate enough, MaxVer needs a great number of 
"pixels" for each training set (greater than 30). The training sets 
define the classes scatter diagram and their probability 
distributions, considering the normal probability distribution for 
each training class. The classification limits are defined from 
points of same classification probability for all classes. Below is 
showed the equation that defines the MAxVer algorithm: 
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Where: m=Vector of averages 

Ʃ= Covariance matrix 
ω= Occurrence probability of each class 
 
 

2.2 Minimum Noise Fraction (MNF)  
 
Hyperspectral and multispectral data are, no doubt, a great 
source of information. However, there are three factors that 
should be considered: (a) the high degree of correlation between 
bands due to the high number of narrow contiguous bands, 
resulting in redundant information (in hyperspectral case), (b) 
susceptibility to noise interference, which complicates the 
materials identification and quantification, and (c) the 
computational requirements for subsequent processing. In order 
to correct such problems, Green et al (1998) proposed a 
methodology - MNF (Minimum Noise Fraction), based on PCA 
(Principal Component Analysis). The MNF transformation 
combines both procedures for the segregation of the noise 
component as well as maximizing the variance of the data. In 
other words, the goal is to condense the targets spectral 
information contained in many specter electromagnetic bands in 
a reduced number of bands transformed, without information 
lost, which makes it an important phase in the digital processing 
for endmembers identification in an image. These 
transformations are performed pixel by pixel and not depend the 
spatial location of the data (Linn, 2008, citing Junior Carvalho 
et al, 2003). 
 
Essentially, the MNF transformation follows two sequential 
transformations. The first is based on a noise estimated 
covariance matrix to remove interband correlation and re-scale 
the noise. This transformation results in a set of bands 
characterized by equivalent variance. The second 
transformation consist in a standard transform by PCA 
(Principal Component Analysis), resulting in a new set of bands 
that is ordered according to the eigenvalues, that express the 
bands variance. The ascending order of the components results 
in increased noise level, indicated by the smaller variance. 
 

Data from MNF transformation can be divided into two groups: 
the first group associated with the largest eigenvalues (largest 
variance) and low-noise images, presenting images spatially 
coherent, and a second group, associated with higher order 
MNF bands (lower variance), with noisy images with 
eigenvalues close to unity (ENVI, 2000). The second group of 
MNF components is dispensed and the MNF bands of the first 
group, which represent the dimensionality of the data, are 
selected for subsequent processing. 
 
2.3 Pixel Purity Index (PPI) 
 
Boardman et al. (1995) developed the PPI (Pixel Purity Index) 
to select Endmembers on images through the determination of 
an n-dimensional simplex which fits with the image data. The 
pixels are processed and projected onto a random unit vector 
where the most extreme pixels in each projection are recorded, 
as well as the total number of times it occurs. Finally, a PPI 
image is generated in which the gray value of each pixel 
corresponds to the number of times each pixel was recorded as 
extreme in some projection (So higher the value of the pixel in 
the image PPI, greater its degree of purity ). 
 
Thus, from the PPI image, can provide new values for the cut 
point using a slice technique, which allows a better selection of 
endmembers. It is observed at increasing the value PPI cutting, 
areas of pure pixels become more restricted. This is very useful 
for field investigation to determine the location of pure pixels. 
 
2.4 Spectral Angle Mapper (SAM) 
 
The SAM technique (Spectral Angle Mapper) (Kruse et al., 
1993) is a tool that allows rapid mapping of the similarity 
between the spectrum of a pixel and a reference material. The 
reference spectrum can be both laboratory and field, a spectral 
library or extracted from the image. This method assumes that 
the image data was converted to surface reflectance. The 
algorithm determines the spectral similarity between two 
spectra calculating the angle formed between them, treating 
them as vectors in a space of dimensionality corresponding to 
the number of bands (nb) (Equatio 2) 
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Where: n= number of spectral band 

t= reflectance of the actual spectrum 
r= reflectance of the reference spectrum 

    
 
This similarity measure is insensitive to gain factors because the 
angle between two vectors is invariant with respect to the 
lengths of vectors. Laboratory spectra can be directly compared 
to pixels surface reflectance spectra, which inherently have a 
gain factor related to unknown illumination effects due to 
topography (Kruse et al. 1993). As a result, we obtain a 
classified image, showing the best fit for each pixel, subject to a 
limit specified by the User. Additionally, “rule” images are 
provided showing the angular distance (in radians) between 
each spectrum image and each reference spectrum. The black 
pixels in the "rule" image present low spectral angles values, 
and therefore more similar to the spectra of endmembers. For 
best viewing, these images are inverted and the smaller angles 
appear in a clear tone. 
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3. MEASUREMENTS AND IMAGE PROCESSING 
 
3.1 Study area 
 
The study area is located north of Rio Grande do Sul State, 
Brazil, City of Ametista do Sul (Figure 1). This region is the 
greater world amethyst producer. An ASTER image, Level 1B 
(Figure 2) was used to test and perform the techniques. A total 
of 16 points of mining residues/basalt was collected via GPS to 
check the classification/mapping accuracy (Figure 2). The 
Figure 3(A)(B) shows the mining residues/basalt when it is 
extracted at the mining process.  
 

 
Figure 1. Location of study area. 

 
The	
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  and	
  mapping.	
  	
  
	
  
The	
   Figure	
   2	
   shows	
   the	
   ASTER	
   scene	
   used	
   to	
   perform	
   the	
  
processing.	
  The	
  sixteen	
  mining	
  points	
   collected	
  by	
  GPS	
  are	
  
plotted	
  at	
  the	
  scene.	
  	
  
	
  

 
Figure 2. Aster scene color composition R(2), G(3), B(1) with the 

amethyst mining points distribution.  

 
Figura 3. Photographs of amethyst mining residues/basalt. 

 
3.2 Image Processing 
 
ASTER Level 1B image was submitted to crosstalk effect 
correction using the correction software crosstalk (ERSDAC, 
2003). This effect affect in ASTER, the dispersion of the 
incident light in the band 4, which is reflected in the focal plane 
of SWIR bands, causing, for example, the appearance of 
"ghosts" at the interface between land and water surfaces 
(Iwasaki & Tonooka, 2005). After, the classification was 
performed using the MaxVer algorithm. We selected six 
classes: Soil 1, Soil 2, Native forest, Agriculture, Mining 
residues/basalt and Shadow. The interest classes for this work 
are Shadow and Mining residues/basalt. The others were used 
only to improve the classifier accuracy. After the image 
classified, geometric correction was performed to compare with 
the mining points collected in field. 
 
The following processes were performed to SAM Technique. 
The data of original scene ASTER (1B) were converted to 
apparent reflectance and submitted to atmospheric correction 
procedures using the Atmospheric Moderate Resolution 
Radiance and Transmittance Model (MODTRAN), 
implemented in the application FLAASH (Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercube). The following 
image conditions were considered in the model implemented 
here: (a) elevation of study region, (b) platform elevation, (c) 
flight date, (d) aerosol levels (visibility), (e) area coordinates, 
(f) atmospheric model (tropical). 
 
A spatial re-sampling of SWIR bands was performed, 
artificially increasing its resolution to 15m, thus, allowing the 
composition with Visible bands (VNIR) an image database with 
9 spectral bands. From the group of nine bands in reflectance 
values, we used the following sequence of processes: Technical 
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MNF, PPI and N-dimensional viewer. As a result, were 
extracted mining residues/basalt endmembers used by SAM 
technique processing.  
 
 

4. RESULTS AND DISCUSSIONS 
 
4.1 MaxVer processing 
 
The ASTER image was classified into six classes: Soil 1, Soil 2, 
Native forest, Agriculture, Mining residues/basalt and Shadow 
Figure 4 presents the classification results. 
 

 
Figure 4. MaxVer classification result. 

 
Fourteen of sixteen points mines mapped by GPS were correctly 
classified by the MaxVer algorithm. The presence of vegetation 
close the mining residues/basalt is large, especially native 
forest, hampering the classification, largely caused by shaded 
areas in the visible region, is easily confused with the mining 
residues. These two points were not classified, presumably 
because they were located in very small mines, where the 
residues mounts are smaller, being strongly influenced by the 
reflectance of other targets, such as bare soil or shadow. The 
main problem found with MaxVer algorithm was the mixture 
produced between the "shadow" and "mining residues/basalt" 
classes. Several shaded areas were classified as “mining 
residues/basalt” even when have any occurrence of residues. 
This can be seen in Figure 5. On the classification result, the 
“Shadow” class (brown color) included several pixels classified 
as mining residues/basalt (white color). 
 

 
Figure 5. Misclassification between “Shadow” and “Mining 

residues/basalt” classes. Shadow Pixels were classified like mining 
residues/basalt (white color).  

4.2 SAM processing 
 
Figure 6 shows the result of MNF technique. It shows that most 
of data variance is concentrated in the MNF images 1 to 7 and 
noise in the last MNF images (8 and 9). In consequence, they 
were not used as input data in Pixel Purity Index (PPI) 
technique. 
 

 
Figure 6. MNF transformation result sorted according to information 

coherent ; 
 
The PPI technique application result and the subsequent use of 
the N-dimensional viewer, aimed at the endmembers selection, 
are illustrated in Figure 7. The purest pixels are found at the 
extremes of the atributes space, generated by N-dimensional 
viewer. Through this technique was possible to identify the 
purest pixels group concerning mining residues/basalt. 
 

 
Figure 7. Pixels selected for endmember of the N-dimensional viewer. 
The projected values are obtained from MNF transformation images. 

 
Figure 8 shows the reflectance spectra, measured by the ASTER 
sensor, relative to the reference member used in SAM 
technique, selected by the sequential application of the 
techniques MNF, PPI and N-dimensional viewer. 
 

 
Figure 8. ASTER reflectance spectra to mining residues/basalt 

endmember. 
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As follow, we present the results of SAM technique processing 
(Figure 9). The lighter pixels are those with greatest similarity 
with the mining residues/basalt spectral curve, that is, the 
clearer, more likely to be a pure pixel class. 
 

 
Figure 9. SAM results. 

 
The mining points G1, G2, G3 and G14 did not show similarity 
with the spectral endmember mainly due to the reduced amount 
of residues/basalt present at these areas, smaller than one pixel 
(15 m – VNIR, 30 m - SWIR). Most of the polygons has pixels 
with white color saturated indicating the mining residues/basalt 
occurrence and hence, the mines. The figure also shows other 
areas identified as "mining residues/basalt" that were not 
mapped via GPS, indicating the presence of other mines or 
areas of mixing with shadow. Figure 10 shows the mining 
residues/basalt points classified by the SAM technique, 
overlapping in ASTER Band 4. 
 

 
Figure 10. Mining residues/basalt overlapping the Aster band 4. 

 
The advantage using this technique over conventional 
classification techniques is that it has greater control over the 
results. Based on the image "rule", we can filter only the pixels 
with the highest probability of belonging the class under study, 
whereas in the other classification techniques, the pixels are 
classified according to a range of values, which are similar. 
 
Classification procedures with reference spectra extracted 
directly from images to be processed always tend to have better 
results because factors such as lighting conditions, particles and 
aerosols, the spectral influence of other targets are already 
associated with the image and consequently the spectral curve. 
 
 

5. CONCLUSIONS 
 
The results demonstrate that the ASTER images can be very 
effective for mineral characterization, in the study case, the 
mining residues/basalt taken from amethysts mining. 
 

The algorithm MaxVer produced satisfactory results. The main 
problem was the confusion (error) between "shadow" and 
"mining residues/basalt" classes. 
 
The SAM technique achieved good results and was able to 
identify the pixels with greater spectral similarity. Even areas 
where mining residues/basalt occurrence was small, sometimes 
lower than one pixel, the technique could identify the basalt 
spectral influence, of course, with a lower similarity value. 
 
The forest native present beside the mines has great influence 
on the pattern detection process and extraction of spectral 
reference spectra. Therefore, to generate reference spectra that 
are more pure and reliable, large areas should be chosen, where 
the vegetation and shadow influence are smaller. 
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