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ABSTRACT: 

 

The Polarimetric and Interferometric Synthetic Aperture Radar (POLINSAR) is widely used in urban area nowadays. Because of 

the physical and geometric sensitivity, the POLINSAR is suitable for the city classification, power-lines detection, building 

extraction, etc. As the new X-band POLINSAR radar, the china prototype airborne system, XSAR works with high spatial 

resolution in azimuth (0.1m) and slant range (0.4m). In land applications, SAR image classification is a useful tool to distinguish 

the interesting area and obtain the target information. The bare soil, the cement road, the water and the building shadow are 

common scenes in the urban area. As it always exists low backscattering sign objects (LBO) with the similar scattering mechanism 

(all odd bounce except for shadow) in the XSAR images, classes are usually confused in Wishart-H-Alpha and Freeman-Durden 

methods. It is very hard to distinguish those targets only using the general information. To overcome the shortage, this paper 

explores an improved algorithm for LBO refined classification based on the Pre-Classification in urban areas. Firstly, the Pre-

Classification is applied in the polarimetric datum and the mixture class is marked which contains  LBO. Then, the polarimetric 

covariance matrix C3 is re-estimated on the Pre-Classification results to get more reliable results. Finally, the occurrence space 

which combining the entropy and the phase-diff standard deviation between HH and VV channel is used to refine the Pre-

Classification results. The XSAR airborne experiments show the improved method is potential to distinguish the mixture classes in 

the low backscattering objects. 

 

1. INTRODUCTION 

The Synthetic Aperture Radar (SAR) is now capable of 

producing the high quality remote sensing image in variation 

weather and atmosphere conditions. The recently development 

new radar techniques, Polarimetric and Interferometric SAR 

(POLINSAR), give the multitude observers to describe the 

physical and geometry characteristics which used in digital 

elevation model (DEM) estimation, vegetation structure 

estimation and the target recognition, .etc (Saatchi, S., 1997; 

Neumann, M., 2010; Mette, T.,2004).  

The land-cover classification has been widely developed by 

many literatures. The prevalent frameworks firstly initialize 

the features space to obtain the class centres; then, the Wishart 

Probability Density Function (PDF) memberships of each class 

group are measured. The general POLSAR and POLINSAR 

feature contain the H-Alpha, the Freeman-Durden scattering 

mechanisms and the optimal coherence, .etc (Freeman, A., 

2007; Yamaguchi, Y., etc, 2011).  

In general, the classic Wishart-H-Alpha classification 

method has a favourable performance in nature land-cover 

types and the overall accuracy is better than 80% ( Lee, J. S., 

2006; Pottier, E., 2000; Hill, M. J, 2005; Freeman, A., 2007; 

Yamaguchi, Y., 2011; Lee, J. S., 2001; Greco, M. S., 2007). 

Moreover, the urban presents a little difference with the land-

cover classification. The nature classification tries to 

distinguish the nature-cover block types. However, the 

scattering mechanisms of man-made area are complex and 

some kinds of objects show the similar scattering process. The 

bare soil, cement roads, the water body and the shadow of 

building are the common scenes in cities. The prevalent 

methods, such the Wishart-H-Alpha, always confuse those low 

backscattering sign objects (LBO) in Figure.1.  

 

 
Figure 1.  The typical low backscattering objects: from left to 

right, the bare soil, cement roads, the water and the shadow. 

 

Two reasons cause the indistinguishable phenomenon. 

Firstly, the low- and high-order statistical characteristics, such 

the backscattering cross-section (RCS) and polarimetric 

covariance matrix, need large look numbers to reduce the 

speckle. But, roads and soils usually present a narrow 

geographical distribution. The boxcar neighbourhood always 

arouses the spatial resolution loss. Furthermore, because of 

absenting the obvious texture, the recently popular spherically 

invariance random vectors (SIRV) algorithm does not represent 

much improvement than boxcar estimator (Hondt, O. D., 2007; 

Vasible, G., 2010; Formont, P., 2010). Secondly, the incident 

angle causes a weak backscattering power while the specular 

reflection dominating.  
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The XSAR airborne radar is the dual-antenna prototype 

POLINSAR system. The LBO targets confusion problem also 

arises in the city images of XSAR. In general, the surface 

medium scattering process contains two scattering mechanisms: 

the specular reflector and the Bragg backscatter. The water 

body and the cement road mix the specular reflector and the 

Bragg backscatter. Furthermore, the bare soil is more 

dominated by the Bragg backscatter. Those instincts of scatter 

types imply the probability of LBO distinguishing. This paper 

explores the land-cover features of the LBO targets:  1) the 

shadow could not distinguish with the water body only using 

polarization and the interferometer operator is necessary. 2) 

The rest of three low backscattering types could be subdivided 

by polarimetric mechanisms which combines the entropy of the 

polarimetric covariance matrix and the Phase Standard 

Deviation (PSD) of the HH/VV channel. 

The paper is organised as the following structure. The 

section 2 discusses the sign feature of the LBO. The section 3.1 

presents the refined polarimetric covariance matrix estimation 

based on pre-classification and the section 3.2 gives the 

Entropy-PSD feature to subdivide the LBO targets. The test 

experiments are represented in section 4. The final section 

mentions the conclusion. 

 

2. THE LBO LAND-COVER FEATURE 

In general, the LBO contains the bare soil, cement road, the 

water and the shadow of the buildings. The most common 

interaction between the medium and the electromagnetic wave 

are the specular reflector and the Bragg backscattering. The 

calm water shows a specular reflection causing the low back 

sign of radar. But, the nature water body is always influenced 

by the wind-drive and that induces the slight Bragg backscatter 

which is very similar with the rough cement road. Moreover, 

the bare soil obeys the Rayleigh criterion which the roughness 

is highly relative to the wavelength and the local incident. The 

Figure.2 gives the sketch of the surface scattering that the 

backscattering power is mainly influenced by the Bragg 

scattering process. 

 

 
Figure 2.  The surface scattering types 

 

The specular reflection and the Bragg backscatter could be 

formulated by the Fresnel and the Bragg surface model 

respectively. The Fresnel formulation presents the horizontal 

(HH) and vertical (VV) polarization reflection coefficient as: 
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The HH and VV Bragg scatter coefficient (Ulaby, F. T., 1912): 
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The dielectric ratio of boundary material is given by 
r and the 

i means the local incident angle.  

 

 
Figure 3.  The theoretical intensity of the Fresnel and Bragg 

scatter in HH and VV channels. The εr is given by 4. 

 

 
Figure 4.  The bare soil, the road, the water body and the 

building shadow in HH and VV channels of the XSAR image.  

 

In Figure.3, the theoretical function curves are plotted from the 

equation (1) to (4). The HH intensity of the Fresnel is always 

higher than the VV channel; nevertheless, the VV of Bragg is 

larger than the HH channel in any local incident angle. We find 

the inherent scattering process of various roughness surfaces 

could be observed by polarimetric radar. The backscattering 

signal of monostatic radars is more dominated by the Bragg 

scattering and the correlation of HH/VV channel could be used 

to distinguish the LBO. 

The backscattering coefficients of the low backscattering 

targets are represented in Figure.4. Firstly, in the bare soil, the 

VV is larger than the HH channel and the sign is always higher 

than other LBO targets. That is because the soil is more 

dominated by the Bragg backscattering. Furthermore, the 

cement road could be distinguished from the water in the 

HH/VV channel because of the low sign randomness. Finally, 

the water and the shadow are always confused in both the co-

polarization channel; therefore, the interferometer operator is 

applied to reject the shadow. There are some literatures talking 

about the shadow extracting from the buildings (Tison, C., 

2007; Brunner, D., 2010), so, the rest of this paper will only 

focus on the soil/road/water. 
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3. THE LBO LAND-COVER CLASSIFICATION 

3.1 The polarimetric covariance matrix re-estimation 

The S2 Sinclair complex matrix is the most common 

observer in polarimetric SAR images. The S2 complex matrix 

is: 
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The “H” and “V” represent the horizontal and vertical 

transmitter/receiver operator; the “HH” means the horizontal 

polarimetric transmission and the horizontal receiving. To 

characterize the nature distribution types, such as the grassland 

and the forest, the spatial average is needed to reduce the 

randomness. Then, the polarimetric covariance matrix C3 is: 

 

*3 ( )T

L LC E k k


   where [ 2 ]T
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         (6) 

 

The “E” is the expectation and the “T” is the transpose. The 

“*” means the Hermitian operator. The LBO targets are always 

dominated by the coherence speckle of SAR. The speckle noise 

level could be suppressed by the Boxcar Estimation (BE) of 

multi-look average in homogenous areas. The region noise-

filter methods mainly contain the Intensity Driven Adaptive 

Neighbourhood (IDAN) (Vasible, G., 2006) and the Span 

Driven Adaptive Neighbourhood (SDAN) (Vasible, G., 2008). 

As the improvement of IDAN, SDAN performs the better 

stationary in complex nature environments. However, is must 

be applied in the Sinclair matrix. This paper proposes a region 

C3 re-estimation method based on the Pre-Classification and 

the segmentation result, named the Object Boxcar Estimation 

(OBE). 

 

 
Figure 5.  The flow chart of the refined C3 matrix by OBE 

 

In Figure.5, the confusion classes are extracted and segmented 

after the Wishart-H-Alpha classification method (Lee, J. S., 

2006). That means the next progress just considering the 

confusion classes. Then, only the same label of class and the 

same segmentation object samples are used to re-estimate the 

C3 matrix. The same label class ensures that the LBO targets 

could be distinguished with other land-cover types; the same 

segmentation object could retain the independence of the 

scattering mechanisms between LBO targets. The re-estimation 

step is very important to refine the C3 matrix of low scattering 

targets when the speckle noise at the high level. 

 

3.2 Entropy-PSD Feature Segmentation 

To discriminate the Bragg scattering and the Bragg-Specular 

mixture scattering, the polarimetric entropy of C3 matrix is 

applied. The entropy is defined: 
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In equation (7), the λ is eigenvalue of C3 matrix. The entropy 

presents the disordered degree of the covariance matrix. The 

entropy is one and means the C3 matrix is totally random; on 

the contrary, the zero entropy gives the determinate scattering 

mechanism. In Figure.6, we sample 150 pixels to get the 

statistics of different land-cover characteristic. The entropy of 

soil is low at 0.6 and the road/water entropy is high. In general, 

the bare soil shows a very strong Bragg backscattering which 

implies the low or moderate entropy value. When the cement 

road and the water body perform the mixture Specular-Bragg 

feature, the low scattering power and the system noise will 

cause the high entropy value. 

 

 
Figure 6.  The entropy of 150 samples in the soil/road/water 

 

In the previous Figure.4, the water body presents a high sign 

randomness and the cement road is relatively steady. This 

paper proposes the standard deviation of the phase-difference 

(PSD) of the HH/VV channel. We define PSD as: 

 
*arg( )PSD SD HH VV   

   (8) 

 

The “SD” means the standard deviation and the “arg” is the 

angular of the complex value. Actually, the PSD is highly 

relative to the correlation coefficient of the HH and VV 

channel. The relation is given by Cramer-Rao boundary 

condition (S. Seymour, 1994): 
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Figure 7.  The relation between PSD and correlation value 
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The Figure.7 shows the function relation between the PSD 

parameter and the correlation coefficient value. In the low 

correlation region, because of the low back sign and high noise 

of the road/water, the PSD gives the better sensitivity than the 

correlation parameter. In our statistical experiments, we find 

the sign phase of the cement road is steadier than the water. In 

the Figure.8, because of the phase station, the soil and the road 

take a low PSD; however, the water PSD value is influenced 

by the noise and the stochastic feature when radar imaging, 

that is why the water always shows high PSD. 

 

 
Figure 8.  The PSD of 150 samples in the soil/road/water 

 

4. THE EXPERIMENTS OF THE LBO LAND-COVER 

The XSAR is the china prototype dual-antenna POLINSAR 

system. There were several flight tests at the LingShui city of 

china from 2009 to 2010. The local ground truth was also 

measured when the airborne system flight. 

 

 
Figure 9.  The dual-antennas XSAR system 

 

The XSAR is a high-resolution (azimuth 0.1 m and slant range 

0.4 m) experimental system. With 9.6 GHz frequency (X-band) 

and full-polarization radar, the interferometer works on dual-

antennas in a 5.97 m baseline (in the Figure.9). There are 

already several public literatures about the XSAR system, such 

the calibration accuracy, the image registration and the 

classification precise, etc (Li, P. X, 2011; Shi, L, 2011). This 

paper gives two test suits of XSAR system in LingShui city; 

the experiment images are calibrated and the absolute 

amplitude is unified by the trihedral corner reflector. 

 

4.1 Test site A 

The Figure.10 represents the XSAR image which is 

processed by the Refined-Lee filter. The blue/green/red image 

channel associates to the HH+VV/HH-VV/HV. The Pre-

Classification is implemented by the Wishart-H-Alpha 

algorithm in the Figure.11. Comparing with the ground truth 

map Figure.10, the cement highway (1), the pond (2), the soil 

(3), the schoolyard (4), the shadow of buildings (5) and the 

basketball playground (6) are all confused in class 7 (the blue 

class in the Figure.11). Those land-cover types are also at low 

backscattering sign level in the Figure.10. Comparing to the 

other brightness targets, the Wishart PDF could not distinguish 

the intrinsic different of the LBO targets. 

 

 
Figure 10.  The PAULIRGB image of the XSAR and the 

corresponding ground truth 

 

 
Figure 11.  The classification result of Wishart-H-Alpha 

 

 
Figure 12.  The normalized Entropy-PSD feature segmentation 
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When the C3 matrix is re-estimated in homogeneous areas by 

the OBE, the entropy and PSD parameters are calculated at 

large looks. The Figure.12 displays the Entropy-PSD feature 

and the colour bar is the unified histogram of the mixture class. 

The feature gives the clear boundary of the different class. In 

general, the water always presents the wide PSD range; that is 

because the water is a mixture of the Specular-Bragg and the 

low signal-noise-ratio (SNR) is also empoisoned by the system 

noise when the radar imaging. Then, the PSD of the water 

shows unsteady phase statistical feature. The feature of 

Entropy-PSD could be subdivided by a threshold. 

 

 
Figure 13.  The classification result of the mixture land-cover 

 

 
Table 1.  The classification accuracy of the mixture land-cover, 

UA is the user accuracy and PA means the producer accuracy 

 

The final refined mixture land-cover classification result is 

given in the Figure.13 and the relative quantitative evaluation 

is also displayed in the table.1. Obviously, the mixture classes 

of the Figure.11 are distinguished clearly. Because the 

schoolyard is made by the roughness plastic and the strong 

Bragg backscattering is same with the real bare soil, they are 

labelled as the same. We also find the cement highway and the 

cement basketball ground is very similar because of the same 

material. The producer accuracy is slight higher than the user 

accuracy. The final overall accuracy is 82.8% and the Kappa 

coefficient is better than 0.72. The improvement method shows 

a nice improvement in the mixture land-cover types which can 

not be differentiated by the general algorithm. 

 

4.2 Test site B 

Furthermore, we give the other test site of XSAR. This area 

locates in the urban area. In Figure.14, The LBO contains the 

river-wall (1), the cement road (2), the man-made pool (3) and 

the river (4). The general classification result is presented in 

the Figure.15. The rough surface seems separable to others; 

however, the water and cement surface, such as road and river 

wall, are still confused.  

 

 
Figure 14.  The PAULIRGB image of the test site B and the 

corresponding ground truth 

 

 
Figure 15.  The classification result of Wishart-H-Alpha 

 

 
Figure 16.  The normalized Entropy-PSD feature segmentation 

 

When the Entropy-PSD feature algorithm is applied, the LBO 

shows a remarkable distinguish in Figure.16. The further 

classification gives an improvement of LBO. The river/pool are 

separated with the road/river-wall. However, there is always 

some confusion when the high brightness target, such as 

streetlight, around the LBO. The brightness radar target is 

caused by the stabilized phase and that increases the 

randomness of surrounding PSD parameter. That is why the 

test site B does not present well as the test site A. 

 

 
Figure 17.  The classification result of the mixture land-cover 
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5. CONCLUSION AND FURTURE WORK 

This paper exploits the low backscattering targets 

classification. The general algorithms always confuse the 

typical darkness targets of radar images which contain the bare 

soil, the cement road, the water body and the shadow. We 

propose combining the Entropy and PSD parameter to 

subdivide the mixture classes. The preparing of the refined 

classifying contains three steps. Firstly, re-estimate the C3 

matrix based on the Pre-Classification result. The next, 

calculate the entropy and PSD parameters. Finally, segment the 

Entropy-PSD feature using the threshold or the mean-shift 

method, then, output the classification result. In the 

improvement algorithm, the Pre-Classification only ascertains 

the mixture classes and provides the initial classification info. 

The further sub-dividable process is implemented by the 

Entropy-PSD and the betterment is considerable.  
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