
ANALYSIS OF MULTITEMPORAL AND MULTISENSOR REMOTE SENSING DATA 

FOR CROP ROTATION MAPPING 
 

 

G. Waldhoff a, *, C. Curdt a, D. Hoffmeister a, G. Bareth a 

 
a
 University of Cologne, Institute of Geography, 50923 Cologne, Germany - (guido.waldhoff, c.curdt, dirk.hoffmeister, 

g.bareth)@uni-koeln.de 
 

 

 

KEY WORDS:  remote sensing, GIS, land cover, land use, multitemporal, multisensor, classification, crop 

 

 

ABSTRACT: 

 

For accurate regional modelling of (agro-)ecosystems, up-to-date land use information is essential to assess the impact of the 

permanent changing vegetation cover of agricultural land on matter fluxes in the soil-vegetation-atmosphere (SVA) system. In this 

regard, officially available land use datasets are mostly inadequate, since they only provide generalised information concerning 

agricultural land use. In this contribution, we present our work for the year 2008 on the generation of multi temporal, disaggregated 

land use data with the goal to derive a crop rotation map for the years 2008-2010 for the study area of the research project CRC/TR 

32. For this purpose, the Multi-Data Approach (MDA) was used to integrate multitemporal remote sensing classifications with 

additional spatial information by the means of expert knowledge-based production rules. Our results show that the information 

content of a land use dataset is considerably enhanced by combining crop type information of multiple observations during each 

growing season. For a sufficient temporal coverage, the usage of multiple sensors is generally inevitable. Thus, datasets of ASTER, 

Landsat TM & ETM+ as well as IRS-P6 were incorporated. In terms of classification accuracy our analysis yielded similar results 

with support vector machines (SVM) and the classical maximum likelihood classifier (MLC) for all sensors, with SVM being mostly 

only slightly better. For the refinement of land parcel boundaries and the reduction of misclassification, the incorporation of the 

‘field block’ (FB) vector information was very effective. ‘Field blocks’, provided by the chamber of agriculture, are coherent 

agricultural areas with (relatively) permanent boundaries. As a result, a much more accurate differentiation of agricultural land and 

non- agricultural land was achieved. With the enhanced annual MDA land use data of the three consecutive years containing crop 

type information sufficient information is available for the derivation of crop rotation. Again, adapted knowledge-based production 

rules are used for this purpose. 
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1. INTRODUCTION 

The interdisciplinary research project CRC TR32: “Patterns in 

Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling 

and Data Assimilation” works on matter fluxes between soil, 

vegetation and atmosphere (SVA) on a regional scale. The 

overall goal is to yield improved numerical SVA models for the 

prediction of CO2-, water- and energy-transfer by calculating 

the patterns at various scales (CRC-TR32, 2011).  

 

The study area of the CRC TR32, the catchment of the river 

Rur, is situated in western Germany, parts of the Netherlands 

and Belgium. The northern part is characterised by a fairly flat 

terrain that is dominated by intensive agriculture, whereas the 

southern part consists of low mountain ranges with forest areas 

and grass land (cf. Figure 1). Owing to the huge amount of 

annually changing cultivated land in the area of investigation, 

detailed and up-to-date land use (LU) information is essential to 

accurately assess the impact of change in vegetation cover on 

SVA interactions. In this regard, nowadays several LU datasets 

of different quality are available from official sources, in 

particular for lager regions. Popular datasets like Corine Land 

Cover are, for instance, available for most of Europe. However, 

although such datasets provide valuable information for 

numerous applications, they are inadequate for investigations of 

(agro-) ecosystems for several reasons. Official land use 

datasets mostly contain fairly generalised information 

concerning agricultural areas, since only a differentiation 

between arable land, grassland, orchards or specialized crops is 

made. Additionally, the spatial resolution of official land use 

maps usually is too low (Rohierse & Bareth, 2004). Moreover, 

official datasets usually have up-date-cycles of more than three 

years. As a result, the annual changes of agricultural land 

parcels are not considered by such datasets. In contrast, for 

regional (agro-)ecosystem modelling accurate spatial 

information on the major agricultural crop types and crop 

rotations (CR), which are actually practised in a region are 

required on the basis of land parcels. For the application of 

process-based models like the DANUBIA crop growth model 

(Lenz-Wiedemann et al., 2010), CR are important to account for 

multi annual investigations. Additionally this data includes 

management information like the dates of sowing, fertilization, 

irrigation or harvest on an annual base and per single field 

(Waldhoff & Bareth, 2009). Only with such data, uncertainties 

that are usually introduced in models by inadequate land use 

information can be avoided (Bareth, 2008; Kersebaum et al., 

2007).  

 

Thus, in this contribution, we present our work on the 

generation of improved multi annual disaggregated land use 

data for the years 2008-2010 by incorporating of multiple 

remote sensing datasets of different sensors with additional 

spatial LU information. Based on the consecutive annual LU 

datasets a crop rotation map of the study area can be derived. 

Exemplary for the production of the annual LU datasets, this 

paper will focus on a reworked LU analysis for the year 2008. 
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Figure 1.  LU Classification of 2008 for the CRC/TR32 study 

area, the Rur Catchment 

 

 

2. DATA &METHODS 

2.1 Multi-Data Approach (MDA) 

For the generation of disaggregated multi temporal und multi 

annual LU data the methodology of the Multi-Data Approach 

(MDA) was applied. This method is continuously further 

developed since the late 1990s (Bareth, 2001) and is described 

in more detail in Bareth (2008) and Waldhoff & Bareth (2009). 

The basic idea of the MDA is the incorporation of as much as 

spatial information that is available to enhance and refine the 

information content of LU datasets. Besides the supervised 

classification of multitemoral remote sensing data to obtain up-

to-date land use information, this approach additionally 

includes the usage of all kinds of spatial data that contain 

valuable LU information. For this purpose, all information 

sources (i.e. remote sensing classification results and other 

geodata) are combined into a multi-layer raster stack in a GIS 

environment. For the final MDA-LU dataset of each year, 

expert knowledge-based production rules are applied to the data 

stack to extract the desired LU information of each layer. In this 

way, all useful LU or crop type information were retrieved from 

the different time slices and transferred to a (new) LU target 

layer in the stack. Then, other production rules are compiled to 

transfer the spatial information from the additional land use 

datasets to the target.  

 

The crop rotation map is generated by combining the annual LU 

datasets of at least three consecutive years into a new layer 

stack. To obtain the CR information, additional production rules 

translate all the occurring crop rotation combinations into 

unique single values. On the basis of these values the spatial 

distribution and the frequency of individual crop rotations can 

be calculated for every land parcel (Waldhoff et al., 2011). 

 

2.2 Additional data 

To support the remote sensing data analysis and to further 

enrich the information content of the final MDA-LU, several 

additional spatial datasets are incorporated in the LU analysis. 

In this paper the usage of the ATKIS Basic-DLM and of ‘field 

blocks’ as additional datasets is addressed in particular. Both 

datasets are described below. The ‘Authorative Topographic-

Cartographic Information System (ATKIS) is the Digital 

Landscape Model (DLM) for Germany.  

 

 
 

Figure 2.  Rasterised subset of the ATKIS Basic-DLM for 

Germany (data source: Geobasis NRW) 

 

In addition to classical LU datasets, DLMs recently are 

becoming more prevalent in many countries. The ATKIS Basic-

DLM is provided by the official state survey and mapping 

agency in vector format and is known for a high spatial 

accuracy and resolution. The ATKIS provides topographical 

information, like the road network, prominent landscape 

features, and additionally valuable LU information concerning 

residential, industrial and impervious surface areas. Moreover, 

information regarding vegetation such as forest areas, arable 

land or grassland is included. However, the information content 

concerning arable land is highly aggregated (cf. Figure 2). The 

level of detail of the ATKIS is based on the Topographical Map 

1:25,000 of Germany. Yet, the road network or point features 

have a spatial accuracy of ± 3 m (AdV, 2006). The update cycle 
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for ATKIS currently is three years. From the ATKIS, 

information regarding residential, commercial, industrial land 

use or the road network is of interest for the production of the 

MDA-LU dataset.  

 

The ‘field block’ (FB, in German so-called ‘Feldblöcke’) 

information is a vector dataset that contains the entire 

agricultural area of Germany as individual polygon features (cf. 

Figure 3). For the study area the FB data is provided by the 

Chamber of Agriculture of North Rhine-Westphalia. Single FB 

consist of coherent parcels of the same principle agricultural 

land use type (i.e. mainly arable land or pasture) that are 

bordered by a persistent enclosing, like roads, rivers or forest 

(LWK NRW, 2011a). 

 

 
 

Figure 3.  ‘Field block’ vector data for Germany. (Data source: 

Landwirtschaftskammer NRW, 2009) 

 

Compared to the content of the ATKIS, the information 

regarding agricultural LU of the FB data is considerably more 

accurate. Moreover, FB data are updated annually, since they 

are the basis of agricultural funding. Hence, virtually every 

agricultural area is included in the dataset. With regard to the 

remote sensing data, all data layers that stem from ATKIS as 

well as the FB data were rasterised for the further analysis. 

 

2.3 Remote Sensing Data 

For the remote sensing based land use mapping of the study 

area of consecutive years, multiple remote sensing datasets for 

the years 2008-2010 were purchased. For the annual LU maps 

usually three to five observations during each growing season 

are necessary to capture the major occurring agricultural crops, 

owing to their differences in crop phenology.  

 

Because of the frequent cloud cover in the temperate latitudes a 

sufficient spatial and temporal coverage of a study area is often 

hard to achieve, relying on a single optical remote sensing 

system only. Therefore, the incorporation of multiple sensors 

can be useful. As a result, for the presented analysis of the year 

2008, four multispectral datasets of the 'Advanced Spaceborne 

Thermal Emission and Reflection Radiometer' (ASTER), 

Landsat (TM/ETM+), and IRS-P6 were determined as suitable 

for the analysis. From ASTER, due to the malfunctioning of the 

SWIR detector since April 2008 (LP DAAC, 2009), only the 

VNIR bands of the L1A data product were used. Table 4 lists 

the datasets with the corresponding observations dates that were 

used for the 2008 LU map. Unfortunately, still not all scenes 

were cloud free. Areas with massive cloud cover were masked 

prior to the analysis.  

 

Sensor Acquisition date 

ASTER (VNIR only) 5th of May 

IRS-P6 (LISS III) 10th of June 

Landsat ETM+ (L7) 7th of July 

Landsat TM (L5) 9th of September 

 

Table 4.  Remote Sensing datasets analysed for the multi-

temporal LU classification of 2008 

 

With the beginning of 2009, the RapidEye system could be 

added to the data pool. Because of the high revisiting rate of the 

RapidEye satellites, sufficient annual data coverage for the 

other years was achieved by mainly using this system. 

 

2.4 Data pre-processing 

For the analysis of the remote sensing data, several data type 

specific pre-processing tasks had to be conducted. These 

included radiometric calibration, mosaicking of multiple scenes 

of an observation date, spatial subsetting of data or interpolation 

of data gaps in the case of the Landsat ETM+ data. However, no 

atmospheric correction was required, since the training data for 

the classification stage was derived from each of the datasets 

itself (Song et al., 2001). Owing to the fact that Landsat ETM+ 

is only capable of acquiring image data in the so-called ‘SLC-

off’-mode (scan line corrector-off-mode) since May, 2003 

(USGS, 2010), nodata gaps are apparent in the scenes. 

Nevertheless, the data was selected, since it still carried 

valuable information. To compensate the interferences, a gap 

filling algorithm (Minari, 2009) was applied. In the case of 

homogeneous areas like agricultural fields this algorithm 

produced satisfying results for the selected scenes, whereas blur 

was sometimes introduced for heterogeneous areas, or when 

data gaps got too big. As a result, areas that were not delineated 

as agricultural land by the ‘field block’ were masked out for the 

further analysis. 

 

Then, all scenes of the various sensors were resampled to the 

same cell size. In view of the wide range of spatial resolutions 

from 30 m of Landsat, 23 m of IRS-P6, 15 m of ASTER and 

5 m of RapidEye (not available for 2008), a spatial resolution of 

15 m was chosen. This cell size was regarded as a trade-off 

between the different remote sensor capabilities, (concerning 

the information content of a raster cell) and the data amount that 

has to be processed in the analyses. Additionally, this resolution 

still allows capturing single agricultural parcels. Likewise, also 

the additional LU information of the FB and the ATKIS were 

rasterised to 15 m spatial resolution. As a next step, all datasets 

were registered to a master base layer. For this purpose, the road 

network of the ATKIS DLM was chosen, because of its high 

spatial accuracy. A good alignment to this layer is of major 

importance for multitemporal and multi data analysis (Jensen, 

2005). To assure that the spatial position of the raster cells of all 

incorporated datasets perfectly match each other, the road 

network was also set as a so-called snap raster. 
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2.5 Remote Sensing Analyses 

Prior to the supervised classifications of the remote sensing data 

several extensive ground reference mapping campaigns were 

carried out during each growing season. For this purpose, 

different mapping regions within the study area were selected to 

account for the heterogeneity of the vegetation cover and land 

use composition. These areas where repeatedly visited during 

each year. With regard to the derivation of the crop rotations, 

the same areas were revisited in the following years. In this 

way, also reference information for the crop rotations per se was 

collected. Afterwards, one part of the collected ground reference 

information was used for the training of the classification 

algorithms, while the rest was saved for the post classification 

accuracy assessment. 

 

In the classification stage every scene was classified separately 

using the adequate ground reference information for the 

observation date. Regions of known land use were identified in 

each image and consequently marked as training regions. 

 

For the investigation of the achievable classification results with 

different classifiers, both Support Vector Machines (SVM) and 

the Maximum-Likelihood Classifier (MLC) were chosen for the 

remote sensing analysis. The best classification result was then 

used for the subsequent analysis steps. SVM currently receive a 

lot of attention in remote sensing, due to their ability to perform 

well, even with limited training samples available (Mountrakis, 

2011, Foody & Mathur, 2004). As a non-parametric method 

coming from machine learning theory, it is fundamentally 

different from the classical MLC, which is based on statistical 

parameters like mean and covariance (Jones et al., 2010). To 

receive comparable results, equal sets of training samples were 

used for each classifier. Although, both algorithms use the 

training data in different ways (Foody & Mathur, 2006), it was 

tried to take the requirements of both methods on the trainings 

samples into account.  

 

Additionally to the classification of the whole scenes, analyses 

of the agricultural land only were conducted to reduce possible 

misclassifications of agricultural crops (e.g. grassland vs. 

cereals). In accordance with the processing of the L7 data, the 

FB data was used as mask. 

 

After the individual classification of each remote sensing scene, 

the resulting land use classification layers were stacked together 

with the additional datasets to a multi-layer raster file for the 

MDA-LU analysis.  

 

 

3. RESULTS 

In Figure 5, a subset of the final MDA-LU map of 2008 for the 

Rur catchment is displayed. The whole LU map is shown in 

Figure 1. With the exception of the information on pasture, 

which stems from the FB data, the complete vegetation 

information was derived by the remote sensing data analysis.  

Concerning the major agricultural crops, due to the different 

acquisition dates, certain scenes were used to obtain a particular 

field crop. For instance, the differentiation of rapeseed, winter 

wheat and winter barley was possible with the ASTER and the 

IRS-P6 scenes, which stem from early May and mid-June, 

respectively. Especially in the case of the ASTER observation, 

land parcels which would potentially contain sugar beet, potato 

or maize, appear as bare soil at this stage in the image. Cereals 

in contrast are then already in a developed growing stage. For 

obtaining information on potatoes and spring barley, in 

particular the L7 scene was used, which was acquired later in 

the growing season. The mapping of maize and sugar beet was 

mainly conducted with the L5 scene. At that time most of the 

other field major crops are already harvested in the study area.  

 

In terms of non-agricultural land use, information regarding 

impervious surfaces of settlements was refined by incorporating 

the corresponding information of the ATKIS. For example, in 

this way residential LU was differentiated from business LU. 

Additionally the road network was taken from the ATKIS.  

 

 
 

Figure 5.  Subset of the MDA-LU dataset of 2008. Remote 

sensing derived crop type and vegetation 

information is integrated with LU from ATKIS. The 

information on pasture stems from the FB data 

 

Concerning the accurateness of the individual LU 

classifications, table 6 lists the overall accuracies and Kappa 

values of the classification results for SVM and MLC where the 

complete scenes were classified. The L7 scene is an exception.  

 

 Overall Accuracy / Kappa Coefficient 

Scene SVM MLC 

ASTER 92.04% 0.91 90.85% 0.89 

IRS-P6 93.38% 0.92 94.24% 0.93 

L7 (ETM+) 89.30% 0.87 87.27% 0.84 

L5 (TM) 97.44 0.97 97.02% 0.96 

 

Table 6.  Accuracy assessments results of the LU classifications 

of 2008 for the complete scene classifications 
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Here only arable land was classified. Apart from the IRS-P6 

results, SVM yielded always better results. Although, the 

maximal difference in overall accuracy is about 3%. 

 

With regard to the very high calculated accuracies for all 

classifications it should be noted that the overall accuracies are 

used for simplicity reasons to compare classification results and 

not to report on the actual quality of the classifications in the 

first place. Of course, the results are based on error matrices. 

For the accuracy assessment, data from field surveys were 

considered. This could have led to the very good results.  

 

 

4. DISCUSSION & CONCLUSION 

Without the inclusion of multitemporal remote sensing data of 

different sensors, the information content on the major 

agricultural crops could not have been derived, for such a 

heterogenic region like the study area. With multispectral data, 

several crops are only distinguishable from another at certain 

stage in the growing season. Therefore multiple observation 

dates were mandatory. Additionally through the multitemporal 

observations and the incorporation of expert knowledge, 

deductions on basic crop types were possible, that are not 

detectable directly. For example, parcels with bare soil in May 

cannot contain winter cereals. 

 

The differentiation of grassland and cereals (and other green 

vegetation) is often problematic. By incorporating the FB data 

this problem is mainly solved. While the FB does not carry 

information regarding crops on arable land, the spatial 

information on land parcels that are used as pasture is available 

on a yearly basis. In this way, misallocations between grassland 

and cereals can were prevented already in the classification 

stage, by masking out the pasture.  

 

For the investigation of matter fluxes in the SVA system, also 

different residential or commercial LU types have to be 

considered (e.g. industrial sources of CO2 emission). The 

identification of such LU types by remote sensing alone would 

be a lot more complicated. Moreover, maintaining the high 

spatial accuracy of the ATKIS in the final MDA-LU dataset 

reduces the problems of misalignment. Such problems are often 

encountered where data of different sources and dates is 

included in GIS and remote sensing analyses.  

 

With the MDA numerous information sources can be integrated 

into the analysis. Likewise, the crop information of the annual 

MDA-LU datasets is handled with the MDA to generate crop 

rotations by using adapted production rules (Waldhoff et al., 

2011).  

 

Beside the extraction of up-to-date LU information, finding the 

most suitable classifier for the analysis was a second goal of the 

study. Although, most of the time the results of SVM were used 

in the study, the comparison revealed than both algorithms 

produced more or less the same results, with SVM being (only) 

a few percent better. Also, it seemed as if SVM performed a 

little better at class boundaries, where frequently pixels with 

mixed LU type (spectrally mixed pixels) occur. However, SVM 

needed significantly more processing time compared to MLC 

(sereval hours vs. less than a few minutes). As a result, we 

conclude that for this study the choice of the classification 

algorithm was fairly not that important for the whole 

investigation. In view of the fact that multiple classifications 

have to be conducted in the context of this work, processing 

time is considerable factor. Therefore, it seemed that the choice 

of the right training samples might be more important in the 

case of this study.  
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