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ABSTRACT: 

 

The objective of this study was to improve the Markov Random Field (MRF) based Super Resolution Mapping (SRM) technique to 

account for the vague land-cover interpretations (class mixture and the intermediate conditions) in an urban area. The algorithm has 

been improved to integrate the fuzzy mean and fuzzy covariance measurements, to a MRF based SRM scheme to optimize the 

classification results. The technique was tested on a WORLDVIEW-2 data set, acquired over a highway construction area, in 

Colombo, Sri Lanka. Based on the visual interpretation of the image, three major land-cover types of this area were identified for the 

study; those were vegetation, soil and exposed grass and impervious surface with low medium and high albedo. The membership 

values for each pixel were determined from training samples through Spectral Angle Mapper (SAM) technique. The compulsory 

fuzzy mean and the covariance measurements were derived using these membership grades, and subsequently was applied in MRF 

based SRM technique. The primary reference data was generated using Maximum Likelihood Classification (MLC) performed on 

the same data which was resampled to 1m resolution. The scale factor was set to be (S) =2, to generate SRM of 1m resolution. The 

smoothening parameter (λ) which balances the prior and likelihood energy terms were tested in the range from 0.3 to 0.9. SRM were 

generated using fuzzy MRF and the conventional MRF models respectively. Results suggest that the fuzzy integrated model has 

improved the results with an overall accuracy of 85.60% and kappa value of 0.78 between the optimal results and the reference data, 

while in the conventional case it was 77.81% of overall accuracy with  kappa being 0.65. Among the two MRF models, fuzzy 

parameter integrated model shows the highest agreement with class fractions from the reference image with a smallest average 

_MAE (MAE, Mean Absolute Error) of 0.03.  

 

 

1. INTRODUCTION 

Pattern recognition using satellite imagery has been challenged 

by the urban land scape in establishing a precise relationship 

between the pattern and a class label. Primarily the rapid change 

of the urban land-cover categories within a small distance 

resulting similar entities at different locations, majority of land-

cover types being internally heterogeneous and intermediate 

conditions of the class boundaries make the urban landscape a 

vague entity (Wang, 1990; Wood and Foody, 1993). This 

situation on the ground makes a mix spectral signature within a 

pixel of a satellite image (Zhang and Foody, 2001). Still the 

classes are mutually exclusive and discrete in the ground it 

might not be the case in the image due to the sensor spatial 

resolution. In many cases this brings fuzziness or the 

uncertainty into the image in the form of mixed pixels (Fisher et 

al., 2006). Fuzzy set theories have been used extensively to 

address this imprecise class information in a mixel (pixel 

comprising mixed land cover categories) which complicate the 

classification problem (Zadeh, 1965). Although it should be 

noted that fuzzy parameter integrated classification schemes 

does not fully resolves the problem of class mixtures within the 

pixel, it provides more appropriate definition for vague land-

cover classes recorded at a particular sensor resolution. MRF 

have been potentially identified in Remote Sensing image 

classification with promising results, mainly due to its ability to 

integrate the contextual based information in to the 

classification scheme (Kasetkasem et al., 2005; Solberg  et al., 

1996). This practical applicability of MRF has been made 

possible by the equivalence between MRF and Gibbs 

distribution, established by the Hammersley-Clifford theorem 

(Li, 2009; Tso and Mather, 2009). This provides a convenient 

framework to determine the joint prior probability for the pixel 

labelling problem. One of the main applications of the MRF is 

to produce higher resolution land-cover maps also called SRM 

from coarser resolution satellite images (Kasetkasem et al., 

2005; Welikanna et al., 2008). Moreover MRF models have 

been widely used to resolve many of the vision problems 

including image restoration and segmentation, edge detection, 

texture analysis, data-fusion and change detection (Ardila et al., 

2011; Kasetkasem and Varshney, 2002; Xu et al., 2011).  MRF 

based SRM techniques have been using class descriptive 

statistics in the form of conventional class mean and covariance 

to model class probability density functions. The conventional 

mean and the covariance, consider a training pixel to belong to 

a single class (one pixel one class) while neglecting its 

proportional contribution. As an extension to this conventional 

scheme, several previous studies have integrated fuzzy class 

parameters reliably into a classification scheme (Wang, 1990; 

Zhang and Foody, 2001, Tang et al.,2007). In this study we 

propose a robust MRF model which integrates the fuzzy class 

descriptive statistics, to produce SRM with improved 

classification results.   
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2. MRF AND THE FUZZY PARAMETERS 

This section mainly focuses on illustrating the key conceptual 

elements of the fuzzy parameter integrated MRF model. 

 

2.1 MRF and images 

In any real image adjacent pixels are correlated due to the point 

spread function (PSF) effect and the ground cover types being 

well distribute over regions lager than the spatial resolution of 

the image (Richards and Jia, 2006). There for with the use of 

the contextual information, pixels will no longer be treated as 

an isolated entity. MRF with its relationship to the Gibbs 

Random Fields (GRF), layout the framework needed to model 

this contextual dependency systematically. A comprehensive 

introduction to this can be found in the literature as well (Li, 

2009; Tso and Mather, 2009). Let a set of pixel DN values in an 

observed image x with K spectral bands, are represented 

by
1.... mx x , where M is the total number of pixels to be classified.  

The measurement vectors are represented as : 1,...mx m M , in a 

pixel matrix
1 2

( )A M M  . Let c be the resulting SRM defined 

on a pixels matrix B, with each of the pixel belonging to a 

unique class at a finer resolution than the observed image. Let 

an unobserved multispectral image be y with the same number 

of spectral bands as x but with a spatial resolution identical to c. 

The pixel locations in y are represented by
,i jy . Also it is 

assumed that each pixel in y can be assigned to a unique class 

(
,( )i jc y ). If the pixel resolution of the original image is R and 

that of the SRM is r (<R), the relation between the two images 

is determined by a scale factor which is denoted by S=R/r. 

Hence it can be seen that the pixel matrix
1 2

B SM SM  . In this 

study S takes an integer value for the convenience. For each 

pixel 
,i jy a symmetric neighbourhood ,( )i jN y is defined by a 

window size W, where it is the length of the side of the squared 

window. Different definitions for the neighbourhood system can 

be found in the literature (Li, 2009). A second order 

neighbourhood consisting the eight closest connected pixels 

(W=3) have been selected for this study. The classified image c 

will be modelled as a MRF with respect to the Neighbourhood 

system ,( )i jN y . MRF is defined by local properties, therefore 

the labelling of the pixels is considered to be effected by this 

neighbourhood configuration (Tso and Mather, 2009). This is 

where the MRF models take the advantage of modelling 

contextual dependencies, or the spatial correlation among the 

pixels. The set  is referred as a random field with the 

probability distribution ( )p  describing the likelihood of 

finding the labels ,( ) {1,... }i jc y l  over the image. We model 

the classified image c as a MRF with the neighbourhood 

system ,( )i jN y . The overall objective of the model is to classify 

all the pixels which maximize the global posterior 

probability ( | )p  x , which is the probability that ω is the correct 

overall scene labelling given the full set of measurement vectors 

x. According to the Bayes theorem a pixel mx  in the observed 

image is allocated to a class ω according to Eq. (1), where a 

value ω is selected to maximize the argument for a pixel to find 

the most appropriate scene label . 

 

 argmax{ ( | ) ( )}p p


   x  (1) 

 

According to the equivalence of the MRF and the GRF the 

probabilities in Eq. (1) are defined by the means of energy 

functions.  GRF describes the global properties of an image, 

where a label given to a pixel is affected by the label given to all 

the other pixels, according to the joint distribution of classes for 

all the pixels. Hammersley-Clifford theorem explains the 

existence of a unique GRF for every MRF as long as the GRF is 

defined by the cliques on a neighbourhood system. A clique is a 

subset in which all pairs of the pixels are mutual neighbours 

(Tso and Mather, 2009). Hence the prior probability ( )P  for 

the SRM, the conditional probability ( | )p x , that the image x 

is observed given the true SRM and the posterior probability 

( | )p  x are modelled by means of energy functions. Owing to 

this relation the posterior probability in Eq. (1) also takes the 

form given by,  

 

                                                                                                 (2) 

 

Where Z  is the normalizing constant, T is the constant termed 

temperature and ( | )U  x is the posterior energy function of the 

super resolution map c given the observed image x . Both the 

terms Z and T are independent of ω and x. Based on Eq. (2) it 

can be shown that maximizing the ( | )p  x is equivalent to 

minimizing the energy function ( | )U  x .  

 

2.2 Prior Energy to model the contextual dependencies 

In the MRF, prior and likelihood energies are modelled 

individually. They account for the contextual and spectral 

properties of the observed image respectively. The prior energy 

is modelled by using the sum of pair-site interaction within the 

neighbourhood system (
,

( )
i j

N y ), as follows:  

                                                                                           

                                                                                                

 

        (3) 

 

 

 

In Eq. (3) each pixel contributes locally to the prior energy, 

which is denoted as
,

( ( ))
i j

U c y . The term ( ( ), ( ))
,

c y c y
i j l

 is called 

the “Kroneker delta”, which takes a unit value when 

,
( ( ) ( ))

i j l
c y c y  and 0 otherwise (Richards and Jia, 2006). 

0  controls the influence of the neighbouring pixels, and can 

be an anisotropic or isotropic assumption made by the user. In 

this study this value is an isotropic expression which only 

depends on the Euclidian Distance D between the pixels 

,i jy and
ly written as:  

 
2

,

1
[ ( ( , ))]i j lD c y y



   (4) 

   

Where 
,

,( ( , )
i j

i j l

l N

D c y y


  =1 is the normalizing constant. A 

single pixel in the observed image is considered to resemble a 

multidimensional normal distribution. This distribution is 

determined by the mean and the variance of each spectral class. 

To implement the fuzzy integrated MRF model, these 

fundamental parameters have been reformed using fuzzy 

definitions. Subsequently they were used to define the 

likelihood energy.   

 

1
( | ) exp(- ( | ) / )p U T

Z
 x x

.
,

( ) ( ( ))i j
i j

U U c y 

,

,
, ( )

[1 ( ( ), ( ))]
i j

i j l
i j l N y

c y c y 


  
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2.3 FUZZY mean and FUZZY covariance 

Fuzzy set theory (Zadeh, 1965) provides the conceptual 

framework to solve the classification problems in an ambiguous 

environment. In the problem of image classification if we take 

an event ω which is a class label and consider it to be a fuzzy 

subset of the universe of discourse    , and x to be a feature 

vector of a particular pixel, then the probability density function 

of ω can be represented by a fuzzy membership function f as 

follows  

 ( ) ( )p f


   x  (5) 

 

This multiple membership values for feature vector realize how 

much it contributes to a land-cover class label, this change its 

contribution to the class mean and the variance. Accordingly the 

discrete fuzzy mean and the fuzzy covariance matrices can be 

derived from the definitions given by Wang (1990). Here the 

conventional mean and the covariance will be restructured using 

fuzzy membership function. These membership values were 

defined by the class fractions within a pixel of the coarser 

resolution input image. In the case of per-class covariance 

matrices, let the training pixels take values 
1 2
, ,....,

n
x x x with n 

being number of training pixels for an l number of classes. Then 

the respective fuzzy training data set can be represented as a 

fuzzy set ,{ / [0.0,1.0]}l n i jF f  . The element ,i jf represent the 

fuzzy membership value of a training pixel (1 )
j

x j n  to the l 

class.  The discrete fuzzy mean 


  and the fuzzy covariance 

matrix  for class  can be defined as follows: 

 

 

 

 

 

                                                                                                 (6) 

 

 

 

 

Where ( )if x is the fuzzy membership value for the pixel 

vector 
i mx x in the observed image x. Parameter estimation 

was done at the coarser resolution scale. To determine the class 

membership grades for each pixel different approaches can be 

found in the literature, for an evaluation additional research is 

required. In this study we have unmixed the pixel vectors to 

their respective class compositions to define the membership 

values for each pixel. A single pixel in the coarser resolution 

image x, corresponds to 
2S pixels in the finer resolution SRM, 

c. Hence the probability density function of an observed pixel 

vector 
mx  is assumed to be normally distributed with respect to 

the pixel composition with mean ( ) x and covariance ( ) x  , 

which can be defined using Eq. (6) as follows: 

 

                                          (7) 

 

 

        (8) 

 

Here  is the proportion of the class  in a pixel mx , 

where
1

( ) 1
L








 x . We also assume the spectral values of 

2S fine resolution pixels 
,i jy are independent and identically 

distributed, according to the normal distribution of the 

parameters of class
,( )i jc y .  

 

2.4 Likelihood energy to model the spectral information   

The conditional distribution of the observed data x with the 

given true class labels , is assumed to be Gaussian. We also 

assume a coarser spatial resolution pixel of the original image to 

contain a number of pure pixels at the fine spatial resolution. 

These fine spatial resolution pixels are strictly assumed to be 

spatially un-correlated. Therefore the fuzzy mean and the fuzzy 

covariance matrix of the observed pixel at a coarser resolution 

scale are directional sum of fuzzy mean vector and the fuzzy 

covariance matrix of the corresponding pixels at the fine 

resolution scale. Hence the conditional probability density 

function (PDF), as shown in Eq. (1) for the observed image can 

be defined as follows: 

 

 1

1/2
/2

( ) ( )
1 1

( | ) exp( ( ( )) ( ))
2(2 ) ( )

t
m m

Km

P x x  


     


 x xx x
x

 (9) 

 

The likelihood energy in this case with respect to the 

relationship shown in Eq. (2) takes the form written by: 

 

 
1

,

( ) ( ) ( ) ( )
1 1

( | ) [ ( ) ( ) ln ]
2 2

t
m m

m l

U x x  


      x x x xx

 (10) 

 

The posterior energy function is established using the 

definitions of the Bayes theorem which combine the prior and 

the likelihood energy terms defined in Eqs. (3) and (10) as 

follows: 

  

 ( | ) ( ) ( | )U U U   x x  (11) 

 

Hence the minimum of the posterior energy provides the 

optimum SRM C  , which is the maximum a posterior 

probability solution for the SRM problem (Geman and Geman, 

1984). To control and balance the spectral and the contextual 

information flow during the SRM generation a parameter called 

“the smoothness parameter” 0 1  is introduced to the 

posterior energy function in Eq. (11). Hence the full form of the 

posterior energy function can be written as: 

 

 ( | ) ( ) (1 ) ( | )U U U      x x  (12) 

 

The MAP estimation of the posterior energy in Eq. (12) is 

determined by using the stochastic Simulated Annealing 

technique (SA). This implements a Metropolis-Hasting 

sampling technique to reduce the energy to yield the maximum 

a posterior solution. A comprehensive explanation about the SA 

technique can be found in literature (Li, 2009; Tso and Mather, 

2009).  

 

3. STUDY AREA AND THE DATA PREPERATION 

The fuzzy MRF based SRM technique was tested using real 

satellite images. Study area was selected in the southwest urban 

coastal zone of Sri Lanka. In particular this area is undergoing a 

major construction of a highway running from the south to the 

west. Three main land cover classes were considered for the 

1

( ) ( )
l

 



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1
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l
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x x

1

1

1

1
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n
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n
T
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study, Vegetation (V), Impervious surface (I) and Soil (S). This 

selection was influenced by the Ridd`s (Ridd, 1995) V-I-S 

model for the urban composition. Fig.1 provides the details of 

the study area, with the Google map images showing the land 

cover changes during the year 2007 to 2009. 

 

 

 

 

 
                             (a)              

 

 

 

 

 

             
                             (b) 

Fig.1. Google map image of the Study site in the west coast of 

Sri Lanka, for (a) year 2007 and (b) year 2009 

 

 

 

 

 

 

 

 

 
        (a)                                                                  (b) 

 

 

 

 

 

 

 

 

 

 

 

 

       (c)                                                               (d) 

 

      Vegetation          Impervious             Soil  

 
Fig.2. (a) Worldview-II false colour multispectral band composite RGB 

(6, 5, 4) with ground samples, (b), (c) and (d) fractional images 

generated by SAM, for V-I-S classes  

 

A subset image from the DigitalGlobe’s WorldView-2 satellite 

acquired on 29th January 2010 was employed in this study  

(DigitalGlobe, 2011). The image was preliminary processed to 

identify the fractional abundance of the V-I-S classes in each 

pixel. Here the Minimum Noise Fraction (MNF) transformation 

was employed to remove the correlation exist between the eight 

bands and to identify the pure pixels in the image. These pure 

pixels were then plotted on the n-Dimensional (n-D) feature 

space to further identify the ideal pure signature for each land-

cover classes of interest. The Spectral Angle Mapper (SAM) 

technique was performed on the data to generate the fractional 

images to define the fuzzy membership values for each pixel. 

The use of SAM in this study was encouraged due to several 

important reasons, SAM does not necessarily effective to 

illumination and the albedo effects, image was not corrected for 

the atmospheric effects and the pixel spectra of the selected 

classes were well distributed with Transform Divergence (TD) 

and Jeffries-Matusita distance (JM) being very close to 1.9 and 

2.0 for the randomly test samples over the study area. The 

ability of the SAM to withstand different atmospheric and 

topographic variation is because that these effects linearly scale 

the spectra of the unclassified pixel vector and the vectors of the 

reference signatures belonging to same class, with least effect 

on the spectral angle. (Sohn et al., 1999). The generated 

fractional images are considered to be the Fuzzy functional 

images in this study. Fig.2 shows the results of the SAM 

classification and the square homogeneous training samples 

chosen for the three classes to determine the fuzzy class 

parameters. The square form of the training samples was to ease 

the calculation process. For vegetation and the impervious 

surface the total number of training pixels was 900 while for the 

soil class it was selected to be 400. Initial parameter 

determination was performed on a 400×400 pixel image subset, 

while for the MRF based SRM input it was further reduced to a 

100×100 pixel image. This is mainly to save the time taken for 

the processing.  

 

The statistical parameters mean and covariance, generated from 

the conventional and the fuzzy algorithms are different. The 

fuzzy covariance matrix for the vegetation class and the 

conventional and fuzzy means for the three classes V-I-S, are 

shown in Table 1and Table 2 respectively. The bench mark 

reference images were produces by performing the hard 

Maximum Likelihood classification (MLC), using the same 

training samples implemented for the class parameter 

estimations. Due to the SRM resolution being 1m according to a 

scale factor of 2, prior to the MLC classification the images 

were resampled to 1m resolution for a pixel to pixel comparison. 

Considering the distribution of the classes in the study region, 

to avoid the original pixels being over resampled, nearest 

neighbour resampling technique has been employed. For the 

determination of the class composition within a pixel to 

generate the initial SRM maps, we used the Singular Value 

Decomposition (SVD) technique (Canty, 2010). In SVD a 

library matrix determined by the class mean vector is inverted 

by decomposing it to two column orthogonal matrices and a 

diagonal matrix to perform a vector multiplication with the 

observed image to get the least square estimate of end member 

abundance. If the fractional estimation for a particular class in a 

pixel 
ix A in the observed image is

i , then there will be 

2

i S  allocation of that class in the corresponding pixel set 

B of the SRM. Figs. 4(a) and 5(a) shows the initial SRM`s 

generated from the SVD fractions. 

 

4. EXPERIMENTAL RESULTS 

Experimental results of the MRF based SRM with respect to 

several smoothness parameters (λ) using the fuzzy and the 

conventional class parameters are shown in the Figs. 3 and 4 

respectively. It should be mentioned that the λ is a key 

parameter which controls the contribution of the prior and the 

likelihood energy in the posterior energy determination. When 

λ=1 the likelihood term is completely ignored in Eq. (12) for a 

minimal posterior energy, which forces all the pixels to be 

classified to a single class.  These figures represents the initial 

SRM and the Optimized SRM`s for λ=0.7, 0.8, 0.9, and the 

reference image.  The validation of the SRM can be done at 

both pixel level as well as the sub pixel level. In both the cases 

it is a complex process. In the pixel based validation, we used 

the Cohen`s kappa statistics (Congalton, 1991), which is also 

known as kappa coefficient to assess the accuracy of the 

generated SRM using the contingency tables. For the sub pixel 

based validation we used the mean absolute error (MAE) (Tang 

et al., 2007)-      
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                    (a)                                                                               (b) 

Table 1. (a) Fuzzy covariance matrix for the vegetation class and (b) Conventional Covariance matrix for the vegetation class 

 

Table 2. Fuzzy and conventional mean values for the V-I-S classes.                                                                     

 

-to-compare the class area proportion within a fixed area size, 

between the SRM and the reference images. The MAE is 

defined as follows: 

 

Re

1 1

( ) ( )
N l

SRM f

l l

m l
l

fr m fr m

MAE
N

 






 (13) 

 

Where N is the total number of pixels considered. The 

( )SRM

lfr m  and 
Re ( )f

lfr m are the fractional value of class l in a 

fixed area m of the SRM and the reference image respectively.  

MAE provides an average measure of the agreement of the class 

fractions that has changed within a fixed area from the ground 

truth to thematic output. Hence a small error clearly leads to a 

better agreement between the two inputs. According to the 

previous experiments done on the parameters of the MRF 

technique it has been observed that for smaller scale 

factors 4S  ,   takes the values in the range of 0.7 to 0.9  

(Tolpekin and Stein, 2009).  Confirming these findings in this 

study for S=2, the highest accuracy of the SRM with respect to 

the reference image was attained at  =0.9, for both cases. 

According to the Table 3 the kappa agreement for the SRM 

generated at λ=0.9 for the fuzzy MRF model is 0.78 while its 

conventional counterpart reached 0.65 accuracy. The overall 

accuracy has also confirms the agreement with 86% for the 

SRM generated by using the fuzzy parameters while 78% for 

the conventional parameters. Hence the classification agreement 

between the optimized SRM and the MLC classified images 

produced with the fuzzy class parameters are improved with 

respect to its conventional counterpart. Visual interpretation of 

the results shows, smoother SRM maps were generated using 

the fuzzy class parameters.  This is presented in the Figs. 3(d) 

and 4(d). Grass and exposed soil class attains a comparatively 

higher degree of uncertainty in the parameterization than the 

other two classes. This is mainly due its higher mixture with the 

vegetation class.   

 

The joint distribution of normally distributed two variables is 

expected to have a Gaussian distribution. The determination of 

the class fractions are from normally distributed pixel vectors of 

the class samples. These fractions assigned as the membership 

grades, tend to preserve the original distribution and provide 

better probabilistic measures for classes within a pixel.  This 

affects the pixel labelling problem with the fuzzy MRF model, 

demanding the pixels to have accurate statistical measure 

through the prior and likelihood energy determination than in 

the conventional method. Hence with the use of the membership 

grades the classification results has significantly improved for 

the soil class. 

 

 

Table 3. Kappa and OA, agreement between the Optimal SRM 

and the reference image generated using MLC 

 

The persistence of the classification agreement between the 

ground truth classes and the thematic classes for the vegetation 

and Impervious categories are slightly higher in the fuzzy 

parameterized MRF model than its conventional case. The 

validation was carried out mainly to compare the fuzzy and the 

conventional MRF results for their accuracy at a pixel level. But 

it has certain draw backs as the error matrix doesn’t provide the 

convenience to evaluate the effect of the multiple memberships’ 

assignment for each pixel and also the fractional agreement of 

the fuzzy classification. To evaluate the fractional agreement 

between the optimal SRM and the reference images, MAE error 

measure has also been employed. A fixed area size for the 

comparison was set to 5×5 pixel area. This fixed area size was-  

Band  1  2     3      4      5     6       7 8 Band 1 2 3 4 5 6 7 8 

8.70 8.27 26.74 25.00 10.01 68.29 53.52 77.40 
8.95 8.89 27.79 26.85 11.31 66.99 50.90 74.05 

8.27 16.24 48.40 41.31 19.03 103.05 84.82 117.26 8.89 17.78 51.48 45.43 21.88 102.98 81.81 113.53 

26.74 48.40 319.02 229.69 69.67 838.48 714.50 917.25 27.79 51.48 327.33 239.69 75.85 846.04 715.93 919.13 

25.00 41.31 229.69 212.68 69.04 625.45 452.71 652.42 26.85 45.43 239.69 228.09 77.90 629.70 446.45 644.17 

10.01 19.03 69.67 69.04 33.93 135.33 88.72 132.51 11.31 21.88 75.85 77.90 39.69 136.06 83.01 125.50 

68.29 103.05 838.48 625.45 135.33 3067.91 2683..14 3639..24 66.99 102.98 846.04 629.70 136.06 3097.72 2706.23 3676.97 

53.52 84.82 714.50 452.71 88.72 2683.14 2743.24 3432.85 50.90 81.81 715.93 446.45 83.01 2706.23 2768.35 3470.08 

77.40 117.26 917.25 652.42 132.51 3639.24 3432.85 4871..06 74.05 113.53 919.13 644.17 125.50 3676.97 3470.08 4931.17 

Band  1 2 3 4 5 6 7 8 

Vegetation Fuzzy 362.99 274.47 355.50 242.71 79.46 553.95 510.57 715.65 

Conventional 363.02 274.57 355.46 242.97 79.66 552.27 508.14 712.30 

Impervious Fuzzy 478.60 443.49 617.311 581.744 261.25 515.35 308.05 411.22 

Conventional 476.98 441.38 614.40 579.49 260.42 516.58 310.50 415.67 

Soil Fuzzy 378.34 299.54 378.28 294.68 115.59 504.69 432.93 634.73 

Conventional 378.33 299.36 377.15 293.87 115.28 499.10 426.93 625.40 

Fuzzy MRF Conventional  MRF 

λ OA Kappa λ OA Kappa 

0.9 85.60% 0.78 0.9 77.81% 0.65 

0.8 84.52% 0.76 0.8 77.26% 0.64 

0.7 83.04% 0.74 0.7 75.94% 0.62 
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 (a)             (b) λ=0.7                       (c) λ=0.8                       (d) λ=0.9                              (e) 

 

Fig.3. Initial SRM (a) Optimum SRM generated using fuzzy class definitions for λ=0.7(b), λ=0.8(c), λ=0.9(d) respectively and the 

MLC classified reference image (e). 

 

 

 

 

 

 

 

 

 

 

 

     

              (a)                       (b) λ=0.7                      (c) λ=0.8                       (d) λ=0.9                             (e)  

 

Fig.4. Initial SRM (a) Optimum SRM generated using conventional class definitions for λ=0.7(b), λ=0.8(c), λ=0.9(d) respectively 

and the MLC classified reference image (e). 

 

 

-chosen so that in this region the MLC classified output 

provides the necessary mixture condition for all the 3 classes to 

have fractional estimations. The definition of the fixed area can 

vary depending on the heterogeneity of the classes in the study 

region. The proportions of the classes within this fixed area of 

five by five pixels were determined for both the SRM and the 

reference images. The MAE for the fuzzy integrated MRF 

model and the conventional model based SRM are shown in 

Table 4. Low MAE values with 0.03, 0.02 and 0.05 for the V-I-

S classes were resulted for the fractions in the fuzzy integrated 

MRF model. Both the pixel and sub-pixel level evaluation of 

the results with respect to the MLC based reference data; 

suggest that the use of fuzzy class definitions provides more 

promising results than in the conventional case. It is also more 

effective for the ambiguous classes for ex. Soil.  

 
  

 

MAE 

 Vegetation Soil Impervious Average 

MAE 

Fuzzy MRF 0.03 0.05 0.02 0.03 

Conventional 

MRF 
0.12 0.15 0.03 0.10 

 

Table 4. Comparison of the mean absolute error (MAE) for the 

fuzzy integrated MRF model and the conventional MRF model. 

 

 

5. CONCLUSIONS AND DISCUSSION 

 

This work investigate the improvements of the MRF based 

SRM technique with the integration of the fuzzy class 

parameters. The testing was done using a Worldview-II data set 

over a semi urban environment. The main assumptions made in 

the study were the selected training pixels to be pure elements 

of their representative land cover classes, the fine resolution 

pixels (y) are conditionally independent, fuzzy membership 

grade of a pixel (x) for a particular class is its proportion within 

that pixel  and the observed pixel vector 
mx  of the multispectral 

image is having a Gaussian distribution with mean (x)  and 

covariance (x)  (Eqs.(7) and (8)) defined using fuzzy 

definitions. The healthy class spectral seperability with TD and 

JM close to 1.9 and 2.0 respectively suggested the least spectral 

confusion among the classes in the study area. This improves 

the selection of the pure spectral elements or the endmembers to 

perform the SAM classification with good accuracy. 

Minimization of the posterior energy for the optimum SRM c, 

(Eq. (12)) was achieved using SA with Metropolis-Hasting 

sampler (Geman and Geman, 1984). The main parameter which 

controls the annealing schedule of SA technique is called the 

initial temperature 
0( )T and the cooling schedule parameter 

( ) which control the rate of temperature decrease (Li, 2009). 

Both these parameters are determined on the basis of the 

complexity of the problem at hand (Tolpekin and Stein, 2009). 

With the S=2 and the higher class spectral seperability the 

complexity of the classification problem addressed in this study 

is considerably low. For better results in a  complex situations, 

large values of both these parameters (
0 3.0T  and 0.9  ) 

which slows down the annealing process is recommended 

(Tolpekin and Stein, 2009). Regardless of the low complexity of 

the classification problem in this study, we have implemented a 

slow annealing process for better results as a precaution. We 

tested the fuzzy and conventional MRF models for a range of λ 
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values from 0.3 to 0.9. SRM generated for each of these λ 

parameters is a configuration of different spectral and 

contextual information combination. As a benchmark these 

SRM results were comprehensively evaluated with respect to a 

standard parametric classification technique (MLC) at both 

pixel and sub pixel levels. For both the cases at a λ = 0.9 the 

optimum SRM were generated. The results demonstrate the 

significant improvements in the fuzzy MRF model, with 

smoother classification results.  

 

The overall results suggested that the use of SAM for the 

generation of fuzzy functional images is reasonable. Using 

membership grades for the training pixels is observed to be 

advantageous as it also reduce the amount of representative 

training samples needed for the classification. An extension is 

needed to investigate into the different optimal fuzzy 

membership definition methods. The contextual information 

integration and the improvement of the class parameters using 

fuzzy definitions in the MRF based SRM technique, is proved 

to be more effective with better classification accuracy. For 

vague land cover interpretations this approach can be very 

advantages due to its capabilities to reach higher classification 

accuracies at the sub pixel level. Further work is needed to test 

the performance of the method at a coarser resolution scale with  

heterogeneous land cover classes with strong similarity and also       

to validate the results with reference images having higher 

accuracy at sub pixel levels.   
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