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ABSTRACT:

The difficulties about change detection of VHR images are analyzed from different perspectives. Motivated by perception and cognition
mechanism of human vision, visual change detection principles are discussed, and a unified change detection framework is proposed.
To address the difficulties in change detection of VHR images, a novel approach is presented within the framework, which exploits
the combination of local features and change vector displacement field to represent the complex changes of VHR images and utilizes
transductive SVM(Support Vector Machine) to classify change features progressively. Experiments demonstrate the effectiveness of
the proposed approach.

1 INTRODUCTION

”Everything changes but changes itself”(Kennedy). With the glob-
alization and geographic expansion of human activities, under-
standing changes becomes increasingly important. Change detec-
tion is the apprehension of changes in the world around us. Re-
mote sensing image change detection aims at detecting changes
by comparing multiple images of the same scene taken at differ-
ent times, and it is a powerful tool that can be used in a diverse
range of applications such as disaster management, ecosystem
monitoring, military surveillance, and so on. With the devel-
opment of VHR (Very High Resolution) satellites, change de-
tection receives more extensive attention since it can detect the
changes at the more detailed spatial scale. However, compared
with low-to-moderate resolution remote sensing images, change
detection of VHR images is more challenging since the basic
premise of change detection(Singh, 1989)(i.e., changes in land
cover must result in changes in radiance values and changes in
radiance due to land cover change must be large with respect to
radiance changes caused by other factors) is broken by the com-
plexities of such data. In detail, the difficulties lie in the following
factors:

First, the difficulties lie in the intrinsic complexity of VHR im-
age. The employment of sensors with the improved spatial reso-
lution simplifies the problem of mixed pixels, however, the inter-
nal variability within homogenous land-cover classes increases.
At the same time, the increased internal variability decreases the
statistical separability between different land-cover classes in the
spectral data space. The resulting high internal variability and
low spectral separability lead to the reduction of the statistical
separability between the changed class and the unchanged class.
For this reason, traditional change detection approaches(Coppin
et al., 2004, Lu et al., 2004, Radke et al., 2005) are difficult to
be applied to VHR images without considering the complexities
of such data. For the same reason, some key techniques such as
image segmentation and image classification are not mature for
VHR images, which hamper the digital change detection tech-
niques.

Second, the difficulties lie in the incomprehensive understand-
ing of human visual change detection mechanism. The ability
to detect change is important in much of our everyday life. In

spite of the pervasiveness of change detection in our lives, it has
proven surprisingly difficult to study, and only recently have var-
ious approaches begun to converge in terms of what it is and how
it is carried out(Rensink, 2002, Simons and Rensink, 2005). The
effective change detection algorithms can be designed by imitat-
ing recognition principles of human beings, and the computer is
only a tool to accelerate the computation. The incomprehensive
understanding of visual change detection mechanism hinders the
development of change detection techniques.

Last but not least, the difficulties lie in the ”human-machine” gap.
The gap is caused by the difference between 3-d real world and
2-d digital images, the difference between human eyes and satel-
lite sensors, the difference between human brains and comput-
ers. The other cause is the ambiguous definition of ”change”, i.e.,
the definition of change is application-specific, task-specific and
user-specific(Paul and Alessandro, 2000). The ”human-machine”
gap makes the change detection an ill-posed problem, and it is
more troublesome to be solved by the computers.

Despite the importance of the existing review papers for develop-
ing new change detection approaches, it is difficult to analyze the
change detection techniques within a general framework. For this
reason, a unified change detection framework is presented, from
which most of the existing approaches can be generated. With
the help of the proposed framework, a novel approach is pre-
sented to overcome the above difficulties encountered in urban
change detection of VHR images. Compared to the related work,
the contributions of this paper lie in the investigation of change
detection framework based on visual change detection principles,
as well as the derived approach to address the above difficulties.

The paper is organized in five sections. Section 2 describes the
proposed framework. Section 3 presents a detailed description
of the proposed approach step by step. Section 4 reports the ex-
perimental results obtained on real QuickBird images. Finally,
section 5 draws the conclusions.

2 THE UNIFIED CHANGE DETECTION
FRAMEWORK

The disability to detect changes visually is called change blind-
ness, recent research(Simons and Rensink, 2005) indicates change
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blindness cannot be avoid unless the following three requirements
are met simultaneously:

1) The objects being observed must be encoded, and the encoded
features must be kept in mind.

2) The features encoded before and after changes occur must be
compared.

3) The feature difference must be recognized by the observers.

The above change blindness principles indicate that a digital change
detection algorithm should consist of at least three parts: feature
space, distance space and search space. For digital change de-
tection techniques implemented by the computer, the procedure
to simulate human vision system and cognitive mechanisms to
search the changes in a computable manner is very necessary. In
consequence, an effective digital change detection algorithm can
be divided into the following four components:

(1) Feature space, F.

The feature space determines the place where the co-registered
images will be compared.

(2) Distance space, D.

The distance space provides the way how the difference between
images is measured quantitatively. The combination of the fea-
ture space and the distance space is the change feature space.

(3) Search space, S and object function, f.

Given the feature space and the distance space, the search space
decides the change maps by the object function. The object func-
tion provides the link between the change features and the real
change detection result (which cannot usually be observed) or
the approximated optimal change detection result, and it can be
designed based on certain criterions such as the minimum error
rate and the minimum risk.

(4) Search strategy O.

There may be many solutions that can minimize the object func-
tion, among which the optimal solution can be achieved effi-
ciently by the search strategy.

For co-registered images I1 and I2, the change detection problem
can then be formulated as the following unified framework:

arg min
s∈S

f(D(F (I1), F (I2), s)). (1)

The selection of each component is determined by the types of
images to be compared. For example, spectral and structural fea-
tures can be used in the feature space, and these features can
be extracted in pixel- or region-based manner based on the im-
age resolution (low-to-moderate resolution or high resolution).
Based on the types of the sensors (SAR or the optical sensor),
the distance can be described by difference-based or ratio-based
approach.

The proposed change detection framework has the following ad-
vantages:

(1)It captures human visual change detection principles as well as
the difference between visual change detection and digital change
detection.

(2)It is powerful in understanding and analyzing the existing ap-
proaches. Most of the existing change detection methods(Coppin

(a) (b)

(c) (d)

Figure 1: Illustration of difficulties in change detection of VHR
images. (a) and (b):a multi-temporal image pair. (c)change
features based on the pixel-wise difference. (d)change features
based on the SIFT descriptor difference.

et al., 2004, Lu et al., 2004, Radke et al., 2005) can be included
by this framework.

The aim of this paper is to design a new desirable change detec-
tion approach for VHR images within the above framework.

3 THE PROPOSED ALGORITHM

The focus of this paper is urban change detection of VHR im-
ages. For such data, besides the common difficulties of VHR im-
ages, the complex morphology caused by human activities must
be taken into consideration. A pair of VHR images is shown in
Fig.1, some significant changes can be detected with ease by hu-
man visual comparison, but some subtle changes are difficult to
be detected even by the experienced experts after repeated com-
parisons. This indicates that the ability of human visual change
detection had been overestimated. As shown by the region B,
C and D in Fig.1(c), many false changes are caused by Sun an-
gle variation, shadow and seasonal change, human vision system
is robust to such changes, however, it is very hard for the com-
puters. The rationale of the proposed approach is to reduce the
missed alarms based on change blindness principles and reduce
false alarms by simulating human vision system. In detail, within
the proposed framework, we aim to tackle the difficulties of VHR
image change detection from the viewpoint of cognitive psychol-
ogy, i.e., to extracting discriminative local features to represent
the complex objects, to measure the difference between objects
by the robust metric which takes local nonlinear displacement
into consideration, to classify the change features in a progres-
sive fashion. Below we elaborate each component step by step.

3.1 Feature space

As stated above, the pure usage of spectral features is too sim-
ple for complex urban areas. Take the region A in Fig.1(c) as
an example, the structural changes can be detected by human vi-
sion, but the compute is ”bind” to such changes. In this paper,
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(a) (b)

Figure 2: SIFT feature space for VHR images. (a)SIFT feature
for Fig. 1(a). (b) SIFT feature for Fig. 1(b).

SIFT descriptor(Lowe, 2004), i.e., HOG(Histogram of Oriented
Gradients), is used as our feature space. In other words, SIFT
descriptor is extracted at each pixel to characterize local image
structures and encode the contextual information. SIFT is a local
descriptor to characterize local gradient information. In (Lowe,
2004), SIFT descriptor is a sparse feature representation that con-
sists of both feature detection and description. In this paper, how-
ever, we only use the feature description component. For every
pixel in an image, we divide its neighborhood (e.g. 16× 16) into
a 4 × 4 cell array, quantize the orientation into 8 bins in each
cell, and obtain a 128-d vector as the SIFT representation for a
pixel. We call this per-pixel SIFT descriptor SIFT image. Com-
pared to the raw spectral features, SIFT descriptor is a higher
level feature and more powerful in capturing the salient structures
of man-made objects, this is can be induced from Fig.2 (a) and
(b), where the top 3 components of SIFT descriptor after PCA
transformation are shown visually. Despite the discriminability
of SIFT descriptor, as shown in Fig.1 (d), the algebra difference
between SIFT descriptors is too simple to represent the complex
changes in VHR images, so the next task is to design a robust
distance metric to measure the difference between discriminative
local features.

3.2 Distance space

Recently, SIFT has been widely used in image matching and ob-
ject recognition, and most of the literatures compare SIFT de-
scriptors in Euclidean distance space(e.g., the ratio of the near-
est neighbors). However, such pixel-wise comparison is not suit-
able for VHR images. Even if the multi-temporal images are co-
registered, local small displacements caused by Sun angle varia-
tion or the registration error are inevitable and difficult to remove.
In consequence, a robust distance metric is needed which consid-
ers the local displacement adaptively to each pixel.

For the same objects taken under different Sun angles, human be-
ings can make the correct decision that no changes happen. The
underlying reason is that the appearances of the objects under
different Sun angles are regarded to be very similar by human
vision system as long as the local displacement is within certain
ranges. Based on this observation, for a pixel p, the local dis-
placement can be computed by searching the smallest distance
within a neighborhood that makes the similarities of SIFT de-
scriptors between the regions around it and the shifted ones in
the other images maximized. Given the local displacement spe-
cific to each pixel, the distance can be re-computed more accu-
rately by their SIFT descriptors with known displacement. The
alternative choice is to represent the difference between two SIFT
descriptors by the displacement directly. For a co-registered im-
age pair, if there is no changes happened at the pixel p and its
neighbors, their SIFT descriptors should be very close, and the
local displacements computed by the above principle should be

(a) (b)

Figure 3: Illustration of the distance space presented in this paper.
(a)change vector field in horizontal direction. (b)change vector
field in vertical direction.

small. And the reverse is also true, large local displacement
means changes of high probability. In fact, the latter choice is
simpler and is adopted in this paper.

Now, we describe the proposed distance metric in detail. Let
w(p) = (u(p), v(p)) be the local displacement at p, si(p) the
SIFT descriptor extracted form Ii at p, the problem of compar-
ing s1(p) and s2(p) is converted to find w(p) which makes the
following equation minimized:

E(w) =
∑

p

(‖s1(p)− s2(p + w(p))‖1, t) + (2)

∑
p

φ(|u(p)|+ |v(p)|) + (3)

∑

(p,q)∈N
(α(|u(p)− u(q)|, d) + (α(|v(p)− v(q)|, d))) (4)

The above equation contains a data term, small displacement term
and smoothness term (i.e., spatial regularization). The data term
in Eqn. (2) constrains the SIFT descriptors to be compared along
with the displacement w(p). The small displacement term in Eqn.
(3) constrains the displacement vectors to be as small as possible
when no other information is available. The smoothness term
in Eqn. (4) constrains the displacement vectors of adjacent pix-
els to be similar. t and d are the thresholds. In order to reduce
the complexity by distance transform function(Felzenszwalb and
Huttenlocher, 2006) and achieve better convergence by sequential
belief propagation (BP-S) (Szeliski et al., 2008), in the objective
function, truncated L1 norms are used in both the data term and
the smoothness term.

Fig.3(a) and Fig.3(b) show the horizontal and vertical displace-
ments visually. Compared to Fig.1(c) and Fig.1(d), the change
information contained in Fig.3(a) and Fig.3(b) is more discrimi-
native. After achieving w(p), the probability of changes at p can
be represented by the magnitude and orientation of w. The next
step is to classify the above 2-d change feature to distinguish the
changed class from the unchanged class.

3.3 Search space

To design a desirable search space, it is necessary to analyze the
cause and characteristic of the local nonlinear displacement. The
local displacement is mainly caused by the real changes or the
false changes caused by the impacts such as Sun angle variation
and the registration error. In detail, the magnitudes of displace-
ment vector corresponding to real changes are large, and the ori-
entations of displacement vector are out of order. In contrast,
the magnitudes of displacement vector corresponding to the un-
changed class are small, the orientations of displacement vector
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caused by Sun angle variation are of the same direction. Differ-
ent types of changes are visually shown in Fig.4(a), where C,U
and F denotes the changed class, the unchanged class and false
changes caused by Sun angle variation respectively. T are change
features to be classified. In fact, the displacement orientation
caused by Sun angle variation is closely related to the orienta-
tion of shadow. As shown in Fig. 5, for the images after being
rectified, the direction of local displacement caused by Sun an-
gle variation is vertical(or with slight variation). In other words,
if the displacements are large in both horizontal and vertical di-
rections, the probability of the corresponding pixel is changed
is very high; if the displacement is large in only horizontal or
vertical direction, the probability of changes caused by Sun an-
gle variation is very high. For a pixel p , the corresponding
change vector displacement w(p) = [u(p), v(p)] and the mag-

nitude m(p) =
√

u(p)2 + u(p)2, we define the above three
change types as follows: C = {p|m(p) ≥ τ1, s(p) ≥ τ4},
U = {p|m(p) ≤ τ2}, F = {p|m(p) ≤ τ3, s(p) < τ4}. s(p)
is to represent the degree and the direction(along the horizontal
and/or vertical direction(s)) of changes . Motivated by Harris cor-
ner detector techniques, s(p) = u(p)∗v(p)−k∗(u(p) + v(p))2

is used in this paper, k= 0.04. Since the changes F is not the
real changes of interest, we add it to the unchanged class, i.e.,
U = {p|m(p) ≤ τ2} ∪ {p|m(p) ≤ τ3, s(p) < τ4}.

(a) (b)

Figure 4: Different characteristics with respect to different types
of changes. (c)distributions of change features in Euclidean coor-
dinates. (d)distributions of change features in polar coordinates.

The task of search space is thus to determine τ1 - τ4 and discrimi-
nate C from U. As shown in Fig.4(b), the representation of change
vector field in polar coordinate is more convenient for computa-
tion. The objective function is to make the distance between the
changed class and the unchanged class maximized. Considering
the complex statistical distributions of the changed class and the
unchanged class, SVM(Support Vector Machine), a distribution-
free classifier, is used to classify the object-specific change fea-
tures. However, the traditional SVM needs training samples la-
beled beforehand, and the manual labeling fashion is not practical
for real applications. In this paper, this problem is addressed by
the progressive transductive SVM, which is implemented by the
following search strategy.

3.4 Search strategy

The search strategy used in this paper is composed of two steps:
initial classification and refined classification. In initial classi-
fication, some potential training samples are selected automati-
cally(e.g., the regions C2, U2 and F in Fig.4(b)), and the initial
change map is determined by the initial separating hyperplane.
In refined procedure, the performance is improved gradually by
adjusting the training samples(e.g., the regions C1, U1 and T in
Fig.4(b)) dynamically.

3.4.1 Initial Classification The key to automatic training sam-
ple selection is to determine τi(i = 1, . . . , 4), τ1-τ3 are related to

m(p), and τ4 is related to s(p). Since the training samples will
be tuned iteratively in the latter procedure, a heuristic approach
is used to determine τi approximately, i.e., let τi(i = 1, . . . , 3)
be the αi × N largest number of m(p), αi reflects the fraction
of the changed/unchanged class, N is the total number of fea-
tures. In this paper, αi = 0.8, α2 = 0.2, α3 = 0.5, τ4 = 50.
By this way, the training set Strain = Sc ⋃

Su can be achieved,
Sc = {(xp, 1)} and Su = {(xp,−1)}, xp is the 2-d change fea-
ture, xp = [m(p), s(p)]. The initial classifier is then obtained by
the inductive SVM, and the initial change map can be achieved
by computing the decision function values on all unlabeled ex-
amples.

Due to the uncertainty of training samples and the inherent na-
ture of inductive SVM, the initial change map may not be ac-
curate enough. The uncertainty of training samples lies in the
fact that the initial training samples are selected based on the ap-
proximated thresholds and limited to represent the whole change
feature set. The inherent nature of inductive SVM lies in the pur-
pose to optimize the classification performance over all possible
future test data, In fact, this is not necessary since we are only
interesting in the features extracted from the images being con-
sidered. Consequently, the classification accuracy is refined by
the progressive classification, which is implemented by the itera-
tive transductive SVM.

3.4.2 Refined Classification Given a set of independent la-
beled examples (x1, y1), . . . , (xn, yn), yi ∈ {−1, +1}, and un-
labeled examples x∗1, . . . ,x

∗
k from the same distribution, the aim

of transductive SVM(Collobert et al., 2006) is to minimize the
following equation over (y∗1 , . . . , y∗k, w, b, ξ1, . . . , ξn, ξ∗1 , . . . , ξ∗k):

min(
1

2
‖w‖2 + C

n∑
i=1

ξi + C∗
k∑

j=1

ξ∗j ) (5)

s.t.∀n
i=1 : yi(w · φ(xi) + b) ≤ 1− ξi, ξi ≥ 0. (6)

∀k
j=1 : y∗j (w · φ(x∗j ) + b) ≤ 1− ξ∗j , ξ∗j ≥ 0. (7)

Where the regularization parameters C and C∗ control the gen-
eralization capabilities, ξi and ξ∗j are positive slack variables en-
abling to deal with the permitted errors, φ is the mapping func-
tion. For the change detection algorithm based on the iterative
transductive SVM, at each iteration, the non-representative train-
ing examples are removed from the training set, and the new rep-
resentative examples are added from the unlabeled examples to
the training set. Based on the hyperplane

f(xi) =
∑

j

αjyjK(xj ,xi) + b (8)

=
∑

j

αjyj < φ(xj), φ(xi) > +b (9)

and Karush-Kuhn-Tucker condition, the training examples xi can
be partitioned into three different categories according to gi =
yif(xi)− 1(Cauwenberghs and Poggio, 2000): the set S of mar-
gin support vectors strictly on the margin(gi = 0), the set E of
error support vectors exceeding the margin(gi < 0), and the re-
maining set R of reserve vectors exceeding the margin(gi > 0).
At the next iteration, the set E should be deleted from the train-
ing set since its label is inconsistent with the current separat-
ing hyperplane, and it contradicts the assumption that the objec-
tive function has been minimized. For the unlabeled examples
x∗1, . . . ,x

∗
k, only those lying within the margin band are impor-

tant for the later classification since the adding of them to the
training set may change the separating hyperplane. To keep the
whole classification stable, at each iteration, we add the new rep-
resentative training examples in a pair-wise manner(the number
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(a)

(b)

Figure 5: Images used in this paper. (a)Image taken in 2002.
(c)Image taken in 2003.

(a) (b)

Figure 6: Results comparison. (a)reference change map.
(b)change map by the proposed approach.

of the representative positive examples is equal to the number of
the representative negative examples) to the training set when-
ever possible. However, if there is no such pair, only represen-
tative positive or negative examples are picked and added to the
training set. In this context, the ”representative” examples are the
ones that lie within the margin band and are closest to the mar-
gin. The iteration continues unless all the unlabeled examples are
outside the margin band. By this way, the accuracy is improved
iteratively by dynamically selecting the ”representative” training
samples and gradually tuning the separating hyperplane.

4 EXPERIMENTAL RESULTS AND DISCUSSION

To assess the effectiveness of the proposed approach, many ex-
periments were conducted on different datasets. For space limi-
tation, only the results of one dataset are shown in this paper. The
images used in this paper are shown in Fig. 5, which are taken
by QuickBird satellite over Beijing in 2002 and 2003. The im-
ages are composed of three channels (red, green and blue) and
the image resolution is 60 cm/pixel. The size of the images is
1024×1024 pixels. The selected test sites contain complex urban
scene with dense buildings.

Fig.6 shows the reference change map and the result by the pro-
posed approach. Due to the complexities and difficulties of VHR

images, the traditional pixel-based evaluation measure is not very
helpful for the practical applications. In this paper, we use region-
based false alarms and missed alarms to evaluate the proposed
approach in a more objective manner. As seen from Fig. 6(a),
the total number of changed regions is 65, 8 regions are caused
by vegetation change(such changes are labeled in blue) , and 57
regions are related to building changes(this type of changes is
labeled in red). By comparing Fig. 6(a) and Fig. 6(b), most
changes are detected correctly by the proposed approach. After
careful validation by the experienced experts, the performances
of the proposed approach are summarized as follows:

1) Most building changes are detected correctly with high confi-
dence. As shown in Fig. 7, the structures of buildings as well as
the corresponding changes are very complex and difficult to be
captured by the traditional approach, however, the proposed ap-
proach can detect such complex changes correctly. Moreover, as
shown in the right-bottom part of Fig.6(b), some subtle changes
of small buildings are detected unbelievably by the proposed ap-
proach. In fact, detecting such small-size subtle changes is very
hard even for human vision system. Considering the difficulties
of VHR images change detection and the limitations of the ex-
isted approaches, such result is very encouraging. Due to the
powerful ability of SIFT descriptor, the missed alarms is near
to 0. However, as illustrated by Fig.7(d)-(f), one shortage of the
proposed approach is that some changed regions are detected par-
tially, the reason lies in the limitation of SIFT descriptor in de-
scribing the regions of less textures. In detail, the two regions in
red rectangles of Fig. 7(d) are not rich in texture, and they are
similar in local pattern. In consequence, they are similar in SIFT
descriptor, and the change vector displacements are small. For-
tunately, this shortage can be tolerated by the experts since the
missed partial region can be observed with the guidance of the
detected partial region(e.g., yellow circle in Fig.7(f)). If possible,
we will use more discriminative and robust feature descriptors in
future work.

2) Another challenge of VHR image change detection is the dif-
ficulty to remove the false alarms. As illustrated by Fig. 2(a),
false alarms are very high by the traditional difference-based ap-
proach. In contrast, false alarms are reduced significantly by the
proposed approach. As shown in Fig. 7(g)-(i), the proposed ap-
proach is very robust to Sun angle variation or the image regis-
tration error. The improvement lies in the robust distance metric
represented by change vector displacements. In addition, it is
also attributed to the training sample selection strategy. The ini-
tial training samples selected by the proposed approach is shown
in Fig.8(a), where the changed samples and the unchanged sam-
ples are shown in red and green respectively, Fig.8(b) shows the
distribution of the change features in the polar coordinate, the
blue indicates the unlabeled features to be classified. The rea-
sonability of training sample selection principle can be induced
from Fig.8(a), where some changed building are chosen as the
changed samples, and some false changes are chosen as the un-
changed samples. The features shown in blue in Fig. 8(b) lie
within the border between the changed and unchanged regions,
they are classified after progressive tune of SVM hyperplane and
multiple switches of training sample labels. If no additional con-
siderations are added in determining the initial unchanged train-
ing samples, such improvements cannot achieved. Nevertheless,
as shown in Fig.7(j)-(l), due to the impacts caused by the vehi-
cle, vegetation and image quality, false alarms are still inevitable.
There are about 6 false alarm regions. Compared to the high false
alarms by the traditional approach, such performance is still com-
patible.

The above comparisons indicate the effectiveness of the proposed
approach. Of course, this effectiveness is closely related to the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7: Four cases used for performance analysis. Case 1(the
first row):complex changes are detected correctly. Case 2(the sec-
ond row): changed regions are detected in part. Case 3(the third
row): unchanged regions are detected correctly. Case 4(the fourth
row): false alarms.

combination of feature space, distance space, search space and
search strategy.

5 CONCLUSION

A unified change detection framework is proposed in this paper,
which captures the visual change detection principles and is im-
portant for analyzing the existing approaches. With the help of
the proposed framework, a novel approach is presented for ur-
ban change detection of VHR images based on local feature and
progressive classification. The contribution of the proposed ap-
proach lies in the following three aspects: 1) The change feature
is encoded by SIFT descriptor and the nonlinear local displace-
ment, it is discriminative to represent the complex changes and
robust to Sun angle variation. 2) The characteristics of different
change types are analyzed, based on which the training samples
can be selected automatically. 3) A progressive transductive clas-
sifier is proposed to classify the change features, it is superior to
the traditional approaches by considering the uncertainty of initial
training samples and tuning the training samples as well as the hy-
perplane simultaneously. The proposed approach has advantages
over the related techniques in accuracy, efficiency, robustness and
automation.

Despite of the promising results, many future developments need
be considered in the future work. For example, to make the pro-

(a) (b)

Figure 8: Automatic sample selection. (a)initial training samples
selected by the proposed approach. (b)visualization of training
samples in polar coordinate.

posed approach more effective, more discriminative features need
being studied in depth.
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