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ABSTRACT: 

 

Remote sensing has long been used as a means of detecting and classifying changes on the land. Analysis of multi-year time series of 

land surface attributes and their seasonal change indicates a complexity of land use land cover change (LULCC). This paper explores 

the temporal complexity of land change considering temporal vegetation dynamics, in other words, distinguishing the changes 

regarding to their properties in long-term image analysis. This study is based on the hypothesis that land cover might be dynamics; 

however, consistent land use has a typical, distinct and repeated temporal pattern of vegetation index inter-annually. Therefore, pixels 

represent a change when the inter-annual temporal dynamics is changed. We analysed the dynamics pattern of long-term image data 

of wavelet-filtered MODIS EVI from 2001 to 2007. The change of temporal vegetation dynamics was detected by differentiating 

distance between two successive annual EVI patterns. Moreover, we defined the type of changes using the clustering method, which 

were then validated by ground check points and secondary data sets.  

 

 

1. INTRODUCTION 

 

Among concerns about global environmental change, some 

issues related to land-use land-cover (hereafter LULC) and its 

change (LULCC) over time are becoming increasingly 

recognized (Lambin et al., 2003; Pielke 2005). During the past 

decades, several international interdisciplinary research projects 

have been initiated on these issues including the International 

Geosphere-Biosphere Programme Committee on Global Change 

(IGBP, 1988) and the Land Use and Cover Change program 

(Messerli, 1997). Both of these projects indicated the need to 

construct an updated and accurate database concerning these 

changes, their meaning, their pace and the explanatory factors 

prompting their appearance (Mather, 1999). The ability to 

recognize that change is a key requirement for the accurate 

mapping of LULCC (Turner et al., 1995; Lambin et al. 1999), 

instead of an improvement in the spatial resolution of image 

data and a detailed ground survey. 

 

Advances in remote sensing technology enable land scientists to 

identify on-going land cover change processes and their 

locations (Herold et al., 2006). Meanwhile, one of the main 

challenges of this technology is to ensure that a change is not a 

result of short-term variations in land cover (Lunetta et al., 2006, 

Lambin et al., 2003). For instance, in agricultural land use, 

which is systematically linked through seasonal-temporal 

interactions, the land might be associated with a sequence of 

covers through a year, as a vegetated land (vegetation), barren 

land (soil) and inundated land (water); meanwhile, the actual 

change is when the land is converted into built-up or other uses. 

In reality, land change is more complicated since it can be also 

categorized into three types and mechanism, are: 1) seasonal 

change, driven by annual temperature and rainfall interactions 

on vegetation phenology; (2) gradual change, caused by inter-

annual climate variability or land management; and (3) abrupt 

change, caused by disturbances such as deforestation, 

urbanization, floods, and fires (Verbesselt et al., 2010).  

 

Simultaneous analysis on land surface attributes by remote 

sensing seems to be a way to deal with the issue above (Lunetta 

et al., 2006). However, since the time-series of remotely sensed 

data might contain mixture of seasonal, gradual and abrupt 

changes (Roy et al., 2002), the change detection methods must 

allow identifying a change within long term data sets and 

seasonal variation (Setiawan and Yoshino, 2011).  

 

Recently, vegetation dynamics have attracted attention as a 

means for better understanding LULCC (Galford et al., 2008; 

Lunetta et al., 2006). On the other hand, understanding 

vegetation dynamics requires the characterization of vegetation 

changes at different temporal scales (Martinez and Gilabert, 

2009). In this article, we argue that the change detection in 

LULCC could be improved due to recognizing the change from 

seasonal/gradual changes, and it can be done due to the pattern 

analysis of long-term temporal vegetation dynamics of land use. 
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The analysis of temporal vegetation dynamics has often been 

made by using vegetation index values, either Normalized 

Difference Vegetation Index (NDVI) or Enhanced Vegetation 

Index (EVI), which are related to the amount of green leaf 

biomass. Furthermore, the temporal dynamics of those indexes 

are useful for examining LULCC due to the differentiating a 

change pattern in their vegetation dynamics (Hansen et al., 

2000; Lloyd, 2000).  

 

This paper will examine an application of temporal vegetation 

dynamics in order to detect and identify the LULCC with take 

into account the seasonal events and climatic variability in the 

tropical region.  

 

 

2. METHODS 

 

2.1 Satellite data 

 

The vegetation indices, such as NDVI and EVI are commonly 

used to measure reliable spatial and temporal photosynthetic 

activity and canopy structural variations. Moreover, EVI was 

developed to optimize the vegetation signal with improved 

sensitivity in high biomass regions through a decoupling of the 

canopy background signal and a reduction in atmospheric 

influences (Huete et al., 2002). 

 

In this study, we used the time series MODIS EVI (embedded 

in the MOD13Q1 product), which was filtered by wavelet 

transforms (Setiawan et al., 2011). The datasets were acquired 

from January 2001 to December 2007 and captured in a 161 

time series with an interval of 16 days. Information on the 

datasets was obtained from http://lpdaac.usgs.gov, which is 

maintained by the NASA Land Processes Distributed Active 

Archive Center (LP DAAC) at the USGS/Earth Resources 

Observation and Science (EROS) Center, Sioux Falls, South 

Dakota (2009).  

 

Image processing in this study was designed to address the 

objectives of our study as illustrated in Figure 1. 

  

2.2 Image pre-processing 

 

The MODIS data has some advantages in providing information 

on inter-annual variations of land surface, however, the datasets 

inevitably contain disturbances caused by some errors; such as 

atmospheric variability (Huete and Liu, 1994), aerosol 

scattering (Xiao et al., 2003) and some residual errors (Lu et al., 

2007). These disturbances degrade the data quality and add 

considerable uncertainty to temporal sequences, confusing the 

analysis of temporal image sequences by introducing significant 

variations on the EVI time series data. Therefore, noise 

reduction or fitting a model to observation data is required 

before analysis of temporal dynamics can be determined. In this 

study, we used the MODIS EVI datasets, which were filtered by 

wavelet transforms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 2 indicates that the wavelet transform application deals 

with discontinuous /sharp spike data (as a residual noise). Once 

the filtering applied on the temporal EVI pattern, the vegetation 

phenology can be defined more clearly. Figure 3 shows the 

result image of filtering by wavelet function on a MODIS image. 

Characterizing land surface continuously from MODIS EVI 

datasets have recognized and identified 25 specific land use 

types, and each type has different time sequence of phenological 

events (Setiawan et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Change detection 

 

Previous studies have applied temporal pattern change analysis 

to identify a change in land cover through change-vector 

analysis (CVA) (Lambin and Strahlers, 1994), sum of annual 

Figure 2. The wavelet function filters a temporal pattern EVI 

from one pixel MODIS EVI 2001-2007 

Original data with 

discontinuous/sharp spike 

(noise) (blue line) 

Transformed data by wavelet 

(red line) 

Figure 1. The flow chart of change detection in this study; 
(A) image preparation and pre-processing (completed 
by previous study), (B) change detection (this study) 
 

A) 

B) 
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Paddy field with double cropping 
system (paddy-paddy-bareland) 

Buit-up (settlement 
with infrastructure 
facilities) 

Significant distance 
of change pattern 

NDVI (Lunetta et al., 2006) and recursively merging value 

(Boriah et al., 2008). Meanwhile, we assigned a change area 

based on distance comparison of EVI values from two 

successive years, and a threshold was used to assign a change 

(Figure 4). We created distance in two successive annual 

patterns following equation 1 (Bouman, 2009). Any two 

successive annual segments are merged into a new segment, 

            furthermore, the distance function between 

segments has a form dkl = D(Rk,Rl)  0.  

 

     
  

    

|       |  
  

    

|       |                       (1) 

 

where dk,l is distance between two successive segments, N is the 

number of observations,             and  is the mean of 

a segment (      
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Then, we performed statistical analysis using a standard normal 

distribution to identify pixels that had the greatest change in 

distance of EVI for each period. Then, the change threshold was 

selected corresponding to a range of z-score probabilities, which 

produced appropriate estimates of annual change values. 

 

In order to differentiate the change patterns, the k-means 

clustering method was applied. The clustering is applied 

regarding to the Euclidean distance in an EVI-space, and it 

measures how similar a pattern is to patterns in its own cluster 

compared to patterns in other clusters. Then, we combined the 

clusters as needed. Each EVI image provides one dimension of 

the cluster space, analogous to spectral clustering and the 

clustering method subdivides datasets into n-clusters through an 

iterative process in order to optimize a criterion function.  

 

2.4 Validation 

In this study, the significant change patterns were identified 

based on the reference data derived by the ground survey, 

Landsat TM/ETM images, and a high-resolution image (Google 

Earth). Some pixels were randomly selected and used for the 

reference datasets. The final number of samples was 18,626 

pixels and each pixel was associated with a seasonal change or 

an actual change event regarding its location in the sets of 

Landsat images, high resolution image and the reference data 

derived from the ground survey points. 

 

Whenever possible we provided more detail of land change 

information including time and pathway of the change. For 

example, the change pattern illustrated in Figure 4 has been 

interpreted as a rice paddy field with double cropping system 

that was converted into built-up (non-agricultural land). That 

approach was applied to all significant change patterns, which 

could be detected by the method. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Change detection 

This study assumes that some locations display similar change 

patterns and are inferred to have a similar type of change. It can 

be defined with regard to the changes in temporal profiles of 

EVI. Then, through detailed identification of those change 

patterns, the pathway of change can be recognized either as a 

seasonal/gradual change or abrupt change. The results are given 

in Table 1.  

 

Table 1. The result of change detection for each period 

Change 

pattern period 

Number 

of 

location  

Percentage of change pattern  

Identified as 

abrupt change 

LULCC 

Identified as 

seasonal/gradual 

changes LULCC 

(temporary) 

1. 2001 - 2002 330 37.0% 63.0% 

2. 2002 - 2003 28 40.7% 59.3% 

3. 2003 - 2004 90 55.3% 44.7% 

4. 2004 - 2005 452 36.6% 63.4% 

5. 2005 - 2006 412 20.9% 79.1% 

6. 2006 - 2007 224 32.5% 67.5% 

 

Table 1 shows that on a regional scale, approximately 50%-60% 

of change patterns are affected by temporary changes of land 

cover (seasonal/gradual change). These changes of the temporal 

vegetation pattern were detected related to the climate 

variability (e.g. ENSO/El-Nino Southern Oscillation), which 

caused an extreme dry season in 2002, 2005 and 2006. 

a). Original data b). Transformed by wavelet 

Figure 3. The result of filtering on MODIS image. 

 

Figure 4. Identification of the change information from a 

change of temporal EVI profile 
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Accordingly, some agricultural lands became barren in those 

periods because there was insufficient water for plant growth. 

 

In this study, simultaneous analysis of long-term vegetation 

dynamics allowed the change to be detected including some 

properties such as the location, area, time and change 

mechanisms. 

 

Figure 5 shows several patterns of the actual change which 

could be detected by the distance comparison of EVI. The 

figure indicates: (a) forest mixed bush converted to barren land 

through burning at the end of November, 2001, which was 

planted and converted to upland; (b) change pattern of urban 

development in an urban area, where an upland was converted 

into infrastructure/settlement, the area was first converted to 

barren land (land clearing/preparation) on March 2004, and then 

a golf course (grass); (c) change pattern of agricultural 

development due to crop planting in barren land and then being 

intensive agricultural lands in July 2003; (d) re-vegetation 

processes occurred in an area affected by volcanic activity, 

where a forest mixed with bush/grass changed to open land 

because of the volcanic eruption in November 2002 and the 

later recovery process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, seasonal variability (climatic regime) might also 

affect the change patterns of the temporal vegetation dynamics 

of many land use types such as in many areas of industrial forest 

plantation and upland.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 shows several change patterns of agricultural land use 

which does not necessarily indicate a specific change of land 

use. These temporary changes are: 1) land in a plantation area is 

unplanted (barren land) for a long time because of a severe dry 

season, 2) a temporary change in cropping system, that is a 

triple cropping system changed to a double cropping system, 3) 

a pond temporarily changed into vegetated land when the water 

drained, and 4) intensive upland temporarily changed into 

barren land because of an extremely dry season, however, the 

land is then cropped just after the rainy season in following year. 

This is similar to Lunetta et al. (2006) who mentioned that the 

phenological issues associated with those land use types 

represent the temporal complexity of the change detection by a 

simultaneous analysis. 

 

In addition, characterizing the vegetation dynamics as 

demonstrated in this article can also monitor even some 

locations that have the potential to change several times in the 

long term. Changes from one land use type to another type and 

conversion into another type, could be identified as well as 

detected by the changing of temporal pattern more than once, as 

represented by Figure 7.  

 

In figure 7, pattern 1 indicates a conversion of forested land 

(bushes) into intensive agricultural land. Meanwhile, pattern 2 

represents the changing of a temporal pattern that occurred 

many times in a rice paddy field. The severe dry season in 2001 

and 2007 caused the cropping system changed. The climate 

variability was caused the cropping system was changed in 

period 2000-2001, 2001-2002, 2006-2007 and 2007-2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Validation 

The performance of our change detection approach, which 

tested actual land use change, revealed an overall accuracy of 

76.10%. Comparison accuracy among various land use types 

reveals variation (Table 2). The rice paddy type had the greatest 

overall accuracy (94.02%), followed by mangrove (87.57%), 

plantation (86.62%), mixed garden (82.55%), and natural forest 

(81.97%).  

Figure 5. Several detected changes from a single MODIS 

pixel that assigned as the actual changes LUCC 

Figure 6. Several detected changes from a single MODIS 

pixel within agricultural lands that assigned as seasonal/ 

gradual changes 

Figure 7.  Detection of seasonal changes (temporary changes) 

which occurred for several times, contributed to the LUCC 
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Table 2 also indicates that the change in the plantations, rice 

paddies and mixed gardens could be detected more accurately 

relative to other classes. Meanwhile, the greatest error was 

associated with upland and industrial forest plantation classes. 

Specifically, 91.88% of industrial forest plantations and 70.30% 

of uplands were assigned to changed area; even those areas had 

not actually changed. At the same time, changes in non-

vegetated land use types including built-up (settlement, mining 

and open-area), fishpond and water-body were not examined, 

because the reference data for those classes were unacceptable 

as a change category.  

 

Although the change detection in the land use by recognizing 

the change of vegetation dynamics is still affected by seasonal 

change due to the climate variability, the approach is able to 

monitors the re-vegetation process of non-vegetation areas as 

well as detecting conversion pathways in vegetated lands. 

However, the accuracy of the detected change areas might be 

lower than the area extent indicated in the field because of the 

inability of MODIS data to resolve an area less than 6.25 ha 

(250 m x 250 m). 

 

Regional shifts in the temporal vegetation dynamics, including 

the abrupt and seasonal changes, have numerous consequences 

relevant to the environment as well as changes in carbon and 

nitrogen storage, land degradation and loss of biodiversity. 

Determining the change of temporal vegetation dynamics is the 

first step in understanding their implications, for example, long-

term crop production, and environmental, agricultural and 

economic sustainability. An understanding of temporal 

vegetation dynamics to explain the mechanisms and pathways 

of the land use and land cover change is important because of its 

relationship to ecosystem characteristics and socio-economic 

attributes of the land and this will be discussed separately in 

another article.  

 

 

4. CONCLUSION 

This study used MODIS EVI to detect land use land cover 

change due to the change in temporal vegetation patterns. The 

wavelet transform was applied to filter out some noises in 161 

time series MODIS EVI. Consequently, the MODIS EVI 

wavelet-filtered could determine the vegetation phenology in 

many vegetated lands. This study assumed that consistent land 

use has a typical, distinct and repeated temporal vegetation 

dynamics inter-annually; accordingly, a change in land use type 

could be recognized through a change in the pattern of the long-

term vegetation dynamics. 

 

Temporal pattern analysis using the MODIS datasets has 

significant advantages for both capturing the actual timing of 

the change event and monitoring of the vegetation growth. 

However, such capabilities are limited by spatial resolution of 

the data.  The use of multi-temporal data sets is necessary to 

develop methodologies that utilize information on inter-annual 

variations to increase the accuracy of the land surface  

 

Table 2. The result of validation on the actual land use change 

detection for each land use type 

No 
Land use 

category 
Classified 

data 

Reference data 

% Correct 
Change 

No-

change 
Total 

1 
Natural 

forest 

Change 226 182 408 55.39 

No-change 85 988 1073 92.08 

Total 311 1170   

% Correct 72.67 84.44  OA-1: 81.97 

2 Bush 

Change 288 514 802 35.91 

No-change 208 975 1183 82.42 

Total 496 1489   

% Correct 58.06 65.48  OA-1: 63.63 

3 Mangrove 

Change 92 58 150 61.33 

No-change 27 507 534 94.94 

Total 119 565   

% Correct 77.31 89.73  OA-1: 87.57 

4 

Industrial 

forest 

Plantation 

Change 149 1686 1835 8.12 

No-change 285 4791 5076 94.39 

Total 434 6477   

% Correct 34.33 73.97  OA-1: 71.48 

5 Plantation 

Change 180 54 234 76.92 

No-change 134 1037 1171 88.56 

Total 314 1091   

% Correct 57.32 95.05  OA-1: 86.62 

6 
Paddy rice 

field 

Change 128 65 193 66.32 

No-change 27 1319 1346 97.99 

Total 155 1384   

% Correct 82.58 95.30  OA-1: 94.02 

7 
Mixed 

garden 

Change 254 112 366 69.40 

No-change 200 1222 1422 85.94 

Total 454 1334   

% Correct 55.95 91.60  OA-1: 82.55 

8 Upland 

Change 755 1787 2542 29.70 

No-change 290 4368 4658 93.77 

Total 1045 6155   

% Correct 72.25 70.97  OA-1: 71.15 

9 
Built-up/ 

Mining 

Change 0 111 111 0.00 

No-change 0 1132 1132 100.00 

Total 0 1243   

% Correct NA 91.07  OA-1: 91.07 

10 Fishpond 

Change 17 109 126 13.49 

No-change 9 755 764 98.82 

Total 26 864   

% Correct 65.38 87.38  OA-1: 86.74 

11 Water 

Change 0 291 291 0.00 

No-change 0 664 664 100.00 

Total 0 955   

% Correct NA 69.53  OA-1: 69.53 

 
Overall 

categories 

Change 2089 4969 7058 29.60 

No-change 1265 17758 19023 93.35 

Total 3354 22727   

% Correct 62.28 78.14 
OA for all categories:  

76.10 

Note: OA-x= Overall Accuracy for each land use category x 
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