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ABSTRACT:

A new approach has been proposed for radar and optical image fusion. Candidate images for fusion are polarimetric radar images
and very high resolution stereoscopic optical images. The fused product is expected to produce more reliable large scale land cover
classifications. In the first part of this paper, observation-based state-of-the-art methods for optical and radar image fusion are discussed.
The idea of unmixing physical radar scattering mechanisms with the optical images has been proposed as a suitable means to improve
the resolution of the polarimetric radar images. The second part focuses on a general description of the target algorithm. The suggested
physical approach simulating synthetic scattering matrices with stereoscopic optical images is developed. Finally, future work to

develop this unmixing algorithm is discussed.
1 INTRODUCTION

1.1 Designing a land cover database

Land cover is a layer of information of significant interest for land
management issues. Therefore, there is a crucial need to develop
methods for creating and updating land cover databases. Many
countries such as France have decided to design and frequently
update very high resolution stereoscopic optical data repositories
for topographic databases. One of the research goals is then to
design a large scale land cover database from these repositories.
The approach detailed in (Bordin, 2011) puts forward the main-
tenance of a constant terrain partition, in order to follow the evo-
lution of land cover through time. In this context, remote sensing
images are considered as a possible and rich source of informa-
tion to qualify the homogeneous areas.

Until now, aerial or satellite optical remote sensing images have
been widely used to compute land cover classification, as they
are useful to differentiate between ground objects on the basis of
their spectral reflectance. However, since the stereoscopic optical
images considered are acquired at a very high resolution (20 cm
to 30 cm), two limits can be taken into account to retrieve land
cover information. First, using a 20 cm pixel size to derive land
cover classes may not be consistent with the desired scale of land
cover classification. Then, downscaling the information may im-
ply the use of high-level image processing techniques that com-
plicate class labelling.

Moreover, land cover classes often take into account geometrical
or geophysical properties of the objects to be classified, that opti-
cal images cannot be reliably used to estimate. Therefore, the ob-
jective of this research is to explore the use of polarimetric radar
images in association with optical images. Since 2006, space-
borne polarimetric sensors such as Radarsat-2 or PALSAR have
offered the opportunity to estimate geometrical or geophysical
properties on large areas at a rather high resolution. Polarimetric
radar images provide many advantages: the resolution of sensors
is consistent with the desired application; their wide swaths and

279

their weather condition independence are useful for acquisition.
In addition, the fact that microwaves penetrate vegetation and are
sensitive to the geometrical or geophysical properties of the ob-
jects make these images complementary to optical data.

Polarimetric sensors observe a scattering matrix that gives infor-
mation about amplitude and phase of the backscattered signal.
Usual radar image processing chains tend to decompose this ma-
trix in order to identify the occurrence of scattering mechanisms ;
coherent decomposition must be applied when polarisation infor-
mation needs to be preserved. Understanding these mechanisms
is challenging as they are mixed inside the radar cell resolution,
but it is the key to producing a reliable land cover classification.

1.2 Toward super-high resolution polarimetric images

As a consequence, fusion between observations of different re-
mote sensors has been explored in order to distinguish between
radar scattering mechanisms and to produce sharpened images.
Instead of considering independent sources of information in-
volved in the fusion process, our aim was to develop coopera-
tive methods in which optical data is used to input information
in the radar product. The final objective will be to improve the
understanding of radar images and to increase their resolution, so
as to retrieve more information. (Pohl and Van Genderen, 1998)
argued that fused images may provide increased interpretation ca-
pabilities and more reliable results since data with different char-
acteristics are combined. This objective can be reached by pro-
ducing a super-high resolution polarimetric product, which could
be used for land cover classification purposes.

1.3 Necessary hypotheses

Papers giving a review of data fusion techniques insist on the im-
portance of the co-registration of image candidates for fusion.
(Gamba and Chanussot, 2008) underline that co-registration re-
mains a crucial step in numerous applications and still attracts a
lot of attention. Co-registration is all the more important when
sensors are different. (Pohl and Van Genderen, 1998) reviewing
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of multi-sensor image fusion in remote sensing show the impor-
tance of geometric accuracy to avoid artefacts and misinterpre-
tation in pixel-based image fusion. Sub-pixel accuracy is then
recommended. Thus co-registration is a topic of research inter-
est. Literature about co-registration of optical and radar images
can be found in (Tupin, 2011). This issue is then especially im-
portant when designing sharpening techniques. As a result, data
is assumed to have been correctly co-registered. We also con-
sider that acquisition dates of optical and radar images are closed
in time. Indeed, change detection is another very interesting issue
that can cause distortions in the sharpening process.

2 STATE-OF-THE-ART
2.1 Fusion level

This work is within the framework of data fusion. Defining this
framework, (Wald, 1999), (Pohl and Van Genderen, 1998) and
(Gamba and Chanussot, 2008) explain that there are three com-
mon levels for fusion. The lower level is the data level, con-
cerning the observations of the sensors and related to physical
measurements. Then, at an intermediate level, there is the feature
level, which deals with characteristics or objects extracted from
data. Finally the highest level is the decision level, that is about
classification. Nevertheless, it is also appropriate to mention the
output of the fusion process. Thus, for example (Dasarathy, 1997)
shows that fusion can be proceeded on the data level to produce
data, features or decisions. Features can be fused to produce new
features or decisions, and decisions can be fused to synthesize
new decisions.

As the objective is to design super-high resolution polarimetric
images, our fusion framework stands on the data level in order to
produce new observations. In this first part, data-based methods
used to merge optical and radar observations will be reviewed.
Feature and decision-based fusion methods were explored for
optical and radar fusion. For example, (Gamba and Chanussot,
2008) explain that feature extraction and combination at a geo-
metrical level is considered a possible common practice in the
near future to improve classification. The fact that fusion occurs
on the the objects ensure that the approach is correct. These meth-
ods have produced reliable results for extracting building outlines
in urban areas ((Tupin and Roux, 2003)). At the decision-level,
sensors are considered independently. Merging decisions is also
another correct approach for fusion.

2.2 Methods taken from pan-sharpening

Most methods used to fuse radar and optical data come directly
from the work carried out to develop pan-sharpened images from
panchromatic and multi-spectral optical images. As a result radar
images are usually considered as a way to sharpen multispectral
optical images. Although there are numerous pan-sharpening al-
gorithms for optical images, (Klonus, 2006) and (Mercer et al.,
2005) observe that there are few publications mentioning high
resolution radar and low resolution optical fusion. Since 2006,
even if some new radar sensors have appeared, the same state-
ment can be made.

A detailed literature review of these pan-sharpening techniques
can be found in (Jinghui et al., 2010). In this paper the author
divided the methods into three categories : component substitu-
tion fusion techniques, modulation-based fusion techniques and
multi-resolution analysis fusion techniques. In the following, we
make an inventory of those methods applied to radar and optical
image fusion.
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Component substitution techniques Concerning the compo-
nent substitution fusion techniques, (Jinghui et al., 2010) notice
that the Intensity-Hue-Saturation (IHS) and the Principal Compo-
nent Analysis (PCA) transforms are the two most frequently used
techniques. It appears as well that these two techniques have most
often been adapted to process optical and radar image fusion. For
the IHS transform a color space is used: Intensity-Hue-Saturation
(IHS). For optical and radar data fusion, the IHS transform has
been used by (Balik Sanli et al., 2009) or (Chen et al., 2003). In
both cases, the resolution of the radar image is greater than the
optical one, and as a result radar is used to sharpen the multi-
spectral images. In these papers, the intensity of the IHS color
space is directly replaced by radar intensity. The PCA transform
aims at creating new uncorrelated channels from initial observa-
tions. PCA transform has been used by (Ramadan et al., 2007)
to fuse Radarsat-1 image and Landsat-TM optical images. In this
case, the first component of the PCA transform is replaced by
radar intensity. For IHS and PCA transforms, the end of the al-
gorithm is an inverse transformation that retrieves R, G, B values
of the sharpened product.

Modulation-based fusion techniques Modulation-based fusion
techniques tend to derive a synthetic panchromatic layer from
multi-spectral images. A ratio is calculated between the observed
and the synthetic panchromatic image resolution in order to cal-
culate a gain. Several methods are used to calculate this synthetic
panchromatic layer. Most of them consider a linear combination
of the multi-spectral channels (Brovey, or Synthetic Variable Ra-
tio (SVR)). Other techniques based on multi-resolution analysis
can also be used to determine the synthetic layer (Smoothing Fil-
ter Based Modulation (SFIM), High Pass Filter (HPF) or wavelets
decomposition)

Multi-resolution analysis fusion techniques Multi-resolution
analysis fusion techniques aim at decomposing the high resolu-
tion and low resolution images into a sum of functions of differ-
ent resolutions. The sharpening is then achieved by replacing the
high frequencies terms. One of the most frequently used meth-
ods for multi-resolution analysis is wavelet decomposition. For
optical and radar image fusion, these methods have most often
been used along with a component substitution method. (Mercer
et al., 2005) propose a method combining IHS and wavelet de-
composition. (Chibani, 2007) associates as well IHS and wavelet
decomposition.

2.3 Critical review of these methods

In many of the previous experiments, color distortions have been
observed. (Park and Kang, 2004) state that a fundamental prob-
lem frequently occurring in existing fusion process is the distor-
tion of spectral information. With optical images, the problem
may occur when sensors are different. This problem is then all
the more important when radar and optical images are considered.
Moreover, the techniques developed for optical pan-sharpening
are inconsistent with fusing optical and radar images.

IHS is a perceptual color space that is related to the human vi-
sual system. (Park and Kang, 2004) mention that this method is
widely used because of its simplicity and high sharpening ability,
while it distorts spectral properties of multi-spectral images when
the panchromatic image has little correlation with the intensity
image. Indeed, this method has been used to fuse panchromatic
and multi-spectral optical images because it is based on a phys-
ical principle: luminous intensity can be calculated from three
RGB components since RGB stimuli are integrated into the cone
cells. That is also why this method is limited to three channels
for the multi-spectral data. As a consequence, the IHS method
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should not be used for data level fusion between radar and opti-
cal images because the physical principles cannot be extended to
process radar intensities.

Modulation based techniques commonly use a linear combination
of the multi-spectral channels to compute the synthetic image. As
explained for the IHS, there is no physical principle to express a
radar intensity as a linear combination of optical multi-spectral
images.

Principal Component Analysis (PCA) tends to transform multi-
spectral observations into new observations that are uncorrelated.
For optical multi-spectral images, the first component is the one
containing the most information. This information usually con-
cerns spatial details in the images. Methods identified in the lit-
erature used to substitute the first component are inappropriate.
The hypothesis assuming that contour lines of optical and radar
images are highly correlated is not valid.

In fact, the inadequacy of these methods to merge radar and op-
tical data have been noticed in the literature. The fact that IHS
or PCA are not appropriate has been observed by (Zhang et al.,
2010). They state that classical methods considering the high res-
olution band as a high correlation with the low resolution band
such as in IHS and PCA methods are not suitable to fuse opti-
cal and SAR imagery. (Klonus, 2006) proposes a comparison of
8 methods for optical and radar data fusion. He concludes that
most of the fusion methods are not capable of integrating radar
data into optical multi-spectral data without color distortions.

Some research has been carried out on the compensation of color
distortions. Therefore, many recently introduced algorithms are
focused on solving that distortion problem. (Zhang et al., 2010)
propose a block-SVR method aimed at estimating weights by lo-
cal regressions, taken into count when expressing the radar in-
tensity as a linear combination of the multi-spectral channels of
the optical data.(Gungor and Shan, 2006) developed a fusion al-
gorithm that is intended to reduce these color distortions. With
constraints on the local variance and local mean, color distor-
tions are minimized in the fused product. We think that instead
of designing statistical methods to minimize distortions, methods
guaranteeing maintenance of physical principle of the observa-
tions have to be designed.

2.4 Spectral and Spatial Unmixing

Spectral and spatial unmixing methods have been initially de-
signed for optical images and are based on the concept of the
mixed pixel. They assume that each pixel contains more than one
land cover class.

Spectral unmixing techniques have been widely used on optical
hyperspectral data. The recent advances in this area are presented
in a special issue on Spectral Unmixing of Remotely Sensed Data
in the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE
SENSING ((Plaza et al., 2011)). Spectral unmixing aims at de-
composing a pixel into a sum of endmembers weighted by their
abundances. The endmembers are a set of pure spectral signa-
tures and the abundances are the fractions of them ((Plaza et al.,
2011)). Linear spectral unmixing is the most commonly used
technique for pixel decomposition.

Whereas spectral unmixing is calculated per pixel, spatial un-
mixing is processed in order to sharpen resolution. The objec-
tive is then to compute a spatial decomposition of the pixels. To
locate the endmembers, a more resolved source of information
is needed. The spatial unmixing method has been defined by
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(Zhukov et al., 1999). A framework to sharpen low resolution im-
ages with co-registered high resolution images is presented. The
use of high resolution images is suggested to analyze the compo-
sition of mixed pixels of the low resolution sensor. The unmix-
ing can be constrained or unconstrained depending on whether
the initial observations can be retrieved. The method proposed
by (Zhukov et al., 1999) is a multi-sensor multi-resolution tech-
nique. Vocabulary has been introduced : higher resolution im-
ages are considered as the classifying instrument and lower ones
as the measuring instrument. The analysis of mixed pixels of the
measuring instrument is done by classifying the higher resolu-
tion images. A synthetic response is then assigned to each class.
(Park and Kang, 2004) mention unmixing-based methods defined
in (Zhukov et al., 1999) as a possible means for the sharpening.
(Zurita-Milla et al., 2007) used this spatial unmixing on optical
images from different sensors : MERIS and Landsat TM. The
images of greater resolution (Landsat TM) are classified, which
makes the composition analysis of lower resolution pixels possi-
ble. An estimation of a synthetic MERIS reflectance is carried
out on each class of the Landsat TM Classification.

The unmixing method seems particularly interesting for the radar
sharpening algorithm to be designed. First, there is an analogy
with spectral unmixing. Instead of spectral signatures, the ob-
jective is to retrieve different types of scattering mechanisms that
are mixed. This method is valid as a scattering matrix can be
expressed as the sum of basis matrices. Each basis matrix repre-
sents an elementary scattering mechanism ((Cloude and Pottier,
1996)). These elementary scattering matrices are in fact polari-
metric signatures. The spatial unmixing is also valid as the scat-
tering matrix is a coherent sum of the contributions of the scatter-
ers distributed in the radar resolution cell. Our proposed approach
is then a mixture of spectral and spatial unmixing adapted to radar
polarimetry.

3 PROPOSED ALGORITHM

State-of-the-art methods have pointed out the need to produce a
radar image output, so as to maintain physical principles. If not,
images should be processed independently, and fusion should be
applied at the feature or decision level. Data fusion methods are
available to combine these features or decisions.

Literature on data-based optical and radar fusion only mentions
the case of sharpening optical images with higher resolution radar
images. Sharpening polarimetric radar images with higher reso-
lution optical images seems to be a topic that has not yet been
studied. Moreover, the complex nature of polarimetric radar ob-
servations has not been taken into account in the literature. To
sharpen radar images, we propose to apply unmixing techniques
in which optical images provide information to analyze the mixed
radar observations. Simulation of radar scattering mechanisms
with optical images should guarantee the physical approach. The
general ideas of the algorithm are described in this section. Dia-
grams are presented within the UML standard ((OMG, 2011)).

3.1 Fusion framework

The unmixing algorithm aims at decomposing the observed scat-
tering matrix. The approach is to identify spatial occurrence of
these mechanisms inside the radar resolution cell. The objective
is then to simulate radar behavior with optical images. Unmixing
the scattering mechanisms brings in greater information neces-
sary for sharpening. A general framework that will be used for
future work is presented.
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Radar observations

Raw radar observations : HH, HV, VH, VV

Scattering matrix [S]

Unmixed matrix

®

Figure 1: Unmixing the scattering matrix

Different states of radar observations The statechart diagram
above (3.1) shows that radar observations can take three different
states : the raw complex observations, the scattering matrix and
the unmixed scattering matrix. The unmixing algorithm is then
the activity decomposing the scattering into a sum of synthetic
scattering matrices estimated with the optical images (1). This
unmixing is constrained, so that the initial scattering matrix can
be retrieved from the synthetic matrices.

N N
[S1=>ai[S:] with 0<a;<1l and > a;=1(1)

i=1 i=1

Polarimetric representation  The scattering matrix [S] observed
by the radar can be very different locally for a collection of scat-
terers distributed in the radar resolution cell. As a consequence,
speckle can be fully developed. The scattering matrix gives in-
formation about amplitude and phase of the backscattered sig-
nal. Usual radar image processing chains aim at decomposing
this matrix in order to identify the occurrence of the scattering
mechanisms. Coherent decomposition must be applied when po-
larisation information needs to be preserved. The choice of the
scattering matrix as the polarimetric description used for the fu-
sion process, rather than an incoherent description only based on
intensity, ensures that all information is maintained. Second or-
der (incoherent) representations of the information are based on
local averaging. As a consequence most information concerning
the phase is then lost.

Unmixing Working with the scattering matrix implies that re-
sampling has to be avoided. That is why the unmixing algorithm
has to be processed in radar geometry. Homogeneous areas pro-
vided by optical images (2) will then be re-projected in radar ge-
ometry.
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< Estimate attributes >

[scale] < threshold

[scale] > threshold

< Simulate synthetic scattering matrices )

®

Figure 2: The unmixing algorithm
3.2 The unmixing algorithm

Optical images The first step is to derive layers of information
that are helpful in the simulation process from the stereoscopic
optical images. Segmentation is then applied on orthophotos. Be-
cause the stereoscopic properties of the images a Digital Surface
Model can be produced.

Iterative method We propose to develop an algorithm guided
by the segments extracted from the optical images. For a coarse
scale of segmentation, prior information can be obtained on the
composition of the mixed scattering matrices. Then, there is a
loop on the segmentation scale. A threshold on the scale of seg-
mentation is considered to stop the simulation process. (Zhukov
et al., 1999) noticed that the principal limitation of this class-
based unmixing is that the measuring instrument is averaged over
the total area of each class. Multi-scale segmentation is a solution
for this issue as the general composition of the mixed radar ob-
servation can be obtained at a coarse scale of segmentation, and
progressively the simulation of synthetic scattering matrices on
the smaller segments refine the estimation. Multi-scale segmen-
tation can also provide estimation of abundances of the different
behaviors occurring in the radar resolution cell.

Estimation The next step is to estimate attributes on each seg-
ment that could be used for the simulation of the [S;] matrices.
Here is a short list of them that could be extracted from the op-
tical images to synthesize the [\S;] matrices (1). Local slopes ex-
tracted while creating the DSM are an important parameter as
radar-facing slopes contribute to high backscattered signal. In
vegetation areas occurrence of vegetation, number and localiza-
tion of trees can be estimated. In urban areas, detection of build-
ings might be a relevant input parameter. Other parameters could
be useful. For example, we will investigate if roughness esti-
mated by optical data is somehow related to roughness observed
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by radar depending on the wavelength of the microwaves and the
resolution of the optical data.

Simulation The simulation aims at calculating [S;] matrices in
equation (1). The first objective of the simulation will be to select
a method for this calculation. Two methods could be used. The
first one is to set up an exhaustive library of scattering mecha-
nisms. As a consequence, optical images would be used to iden-
tify the most likely behavior. The other method is the use of a
physical decomposition of the scattering matrix (such as Pauli de-
composition). As a result, proportions of each type of mechanism
could be estimated. Once the method is selected, the combination
of different information provided by optical data has to be taken
into account. We are currently investigating the theory of evi-
dence to take a decision on the simulation of the synthetic [S;].
Indeed, parameters such as local slopes or occurrence of vege-
tation are very reliable, whereas other parameters can be impre-
cisely estimated (such as number or trees). Modelling the impre-
cision of the parameters estimated by optical data then becomes
significant for a reliable simulation.

4 CONCLUSIONS AND FUTURE WORK

In this paper, a framework for observation-based data fusion when
sensors are very different has been presented. As a result, the
method can be used to produce sharpened radar polarimetric im-
ages integrating information from very high resolution optical
images.

The unmixing algorithm will be tested on real data on two dif-
ferent sites in France. The first area is a radar acquisition site in
Brittany (Pleine-Fougeres). This is mainly an agricultural zone
with gentle slopes. On this site, stereoscopic aerial photographs
from the IGN (French National Geographic Institute) have been
acquired at 25 cm resolution with the Ultracam-x camera. DSM
will be computed because of 60% forward lap and 40% side lap.
4 multi-spectral channels are available (blue, green, red and near
infra-red). These images will be combined with Radarsat-2 po-
larimetric images acquired with the Quad-Pol mode at an approx-
imate 11 X 9 m resolution. The second site is in Provence (For-
calquier). Ultracam-x images at 30 cm resolution and same over-
laps are also available. This is a forested and semi-natural area
with possible steep slopes. Radarsat-2 polarimetric images have
also been acquired with the Quad-Pol mode. This site is partic-
ularly interesting since the students of the Ecole Nationale des
Sciences Géographiques (school of the IGN) carry out each year
field experiments. The validity of the estimation of attributes to
simulating synthetic scattering matrices can then be assessed.

Future work will be carried out developing the target algorithm.

e We hope to prove that homogeneous areas contribute to de-
termined behavior of the scattering matrix. In particular, this
has to lead to an evaluation of whether or not fully developed
speckle can prevent estimating this behavior. Having con-
sidered optical image segmentation as a means of providing
the homogeneous parts, we also have to validate whether or
not these segments can correspond to determined polarimet-
ric radar observations.

Estimation of synthetic matrices with simulated attributes
generated from the optical reference is the key to introduc-
ing greater information in polarimetric radar images. Once
the above hypothesis is validated, we will have to choose the
proper method for estimation.
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