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ABSTRACT: 
 
A considerable number of methods for pansharpening remote-sensing images have been developed to generate higher spatial 
resolution multispectral images by the fusion of lower resolution multispectral images and higher resolution panchromatic images. 
Because pansharpening alters the spectral properties of multispectral images, method selection is one of the key factors influencing 
the accuracy of subsequent analyses such as land-cover classification or change detection. In this study, seven pixel-based 
pansharpening methods (additive wavelet intensity, additive wavelet principal component, generalized Laplacian pyramid with 
spectral distortion minimization, generalized intensity-hue-saturation (GIHS) transform, GIHS adaptive, Gram–Schmidt spectral 
sharpening, and block-based synthetic variable ratio) were compared using AVNIR-2 and PRISM onboard ALOS from the 
viewpoint of the preservation of spectral properties of AVNIR-2. A visual comparison was made between pansharpened images 
generated from spatially degraded AVNIR-2 and original images over urban, agricultural, and forest areas. The similarity of the 
images was evaluated in terms of the image contrast, the color distinction, and the brightness of the ground objects. In the 
quantitative assessment, three kinds of statistical indices, correlation coefficient, ERGAS, and Q index, were calculated by band and 
land-cover type. These scores were relatively superior in bands 2 and 3 compared with the other two bands, especially over urban 
and agricultural areas. Band 4 showed a strong dependency on the land-cover type. This was attributable to the differences in the 
observing spectral wavelengths of the sensors and local scene variances. 
 
 

1. INTRODUCTION 

A large number of Earth observation satellites have been 
launched, and huge quantities of scenes have been archived over 
the last few decades. Integrated use of this information through 
data fusion helps both understanding and decision making in 
land surface management. The data-fusion technical committee 
of the Geoscience and Remote Sensing Society (GRSS) of the 
IEEE has organized data-fusion contests in recent years (GRSS, 
2012). Pansharpening is one major technique in image fusion 
for the generation of higher spatial resolution multispectral 
images. It involves the synthesis of lower resolution 
multispectral images and higher resolution panchromatic images. 
A wide variety of pansharpening methods has been proposed 
using optical, synthetic aperture radar (SAR), light detection 
and ranging (LiDAR), and other geographical data. The major 
concern in the quality evaluation of pansharpened images is the 
preservation of the spectral characteristics of multispectral data 
because it affects subsequent applications such as the land-cover 
classification, change detection, and the extraction of physical 
properties. 
 
The Advanced Land Observing Satellite (ALOS) has a 
multispectral sensor, the Advanced Visible and Near Infrared 
Radiometer type 2 (AVNIR-2); a panchromatic sensor, the 
Panchromatic Remote-sensing Instrument for Stereo Mapping 
(PRISM); and a SAR, the Phased Array type L-band Synthetic 
Aperture Radar (PALSAR) (EORC/JAXA, 2012). ALOS was 
launched on January 24, 2006, and completed its operation on 
May 12, 2011. It acquired 6.5 million image scenes by 
observing all over the Earth for 5 years (JAXA, 2011).   
 

The aims of this study are to apply the existing pansharpening 
methods to AVNIR-2 and PRISM for the synergic use of these 
data and to evaluate the spectral characteristics of pansharpened 
images both qualitatively and quantitatively. 
 

2. DATA AND METHOD 

2.1 Data 

AVNIR-2 is a multispectral sensor with four observation bands 
in the visible and near-infrared spectral region. The spatial 
resolution is 10 m, and the swath width is 70 km at the nadir. It 
can change the observation angle 44 degrees to the cross-track 
direction. PRISM is a panchromatic radiometer in the visible 
wavelength with 2.5-m spatial resolution. It has three 
independent optical systems for viewing nadir, forward, and 
backward, producing a stereoscopic image along the satellite 
track. It has an observational swath width of 70 km or 35 km, 
depending on the operation mode. The characteristics of 
AVNIR-2 and PRISM are summarized in Table 1. 
 
     Table 1.  Characteristics of AVNIR-2 and PRISM 
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Scenes over Kagawa, Japan, observed on April 7, 2009, were 
used in this study (Figure 1). PRISM in 70-km observation 
mode was ortho-rectified with a spatial resolution of 2.5 m by 
means of a rational polynomial coefficients (RPC) model 
combined with interpolated digital elevation and geoid models 
supplied by the Geospatial Information Authority of Japan (GSI, 
2012). AVNIR-2 (nadir observation) was also rectified to the 
same map projection, but with a resolution of 10 m. The 
geometric error of AVNIR-2 was compensated in this process 
by image-to-image matching with PRISM. Radiometric 
corrections were not applied to either dataset. Three types of 
land cover (urban, agricultural, and forest) were selected in the 
scene, with image size 200 × 200 pixels, to assess the quality of 
pansharpened images. These areas are also shown in Figure 1. 
 

 
Figure 1.  Study area 

 
2.2 Pansharpening Methods 

Seven kinds of pansharpening methods were adopted. Three 
were based on a multi-resolution analysis, three on component 
substitution, and one on modulation-based fusion techniques 
(Zhang, 2010). 
 
Additive Wavelet Intensity (AWI) (Núñez et al., 1999, 
González-Audícana et al., 2005):  The basic idea of this method 
is to insert the spatial detail of the panchromatic (PAN) image 
into the intensity component of the multispectral (MS) image 
that gathers most of its spatial information. This is in contrast to 
the intensity-hue-saturation (IHS) transformation pansharpening 
method, where this component is replaced by the whole 
panchromatic image (González-Audícana et al., 2005). The 
processing steps in this study are as follows: 
    (1) An IHS transform is applied to the red-green-blue (RGB) 

composition of the MS, which is resampled to the same 
spatial resolution as the PAN image by bilinear 
interpolation. 

    (2) The PAN image is histogram-matched to the intensity 
image. 

    (3) The ‘à trous’ discrete wavelet transform is applied to the 
histogram-matched PAN image to derive the first and 
second wavelet planes. 

    (4) These wavelet planes are added to the intensity image. 
    (5) An inverse IHS transform is applied to derive the 

pansharpened RGB component. 
For the forward and inverse IHS transforms, the triangle model 
by Smith (1978) was adopted in this study. Because the IHS 
transformation is applicable only for three of the four AVNIR-2 
bands, the AWI was performed for both true color (R:G:B = 
band 1:2:3) and false color (R:G:B = band 4:3:2) compositions. 
These results are referred as AWI-123 and AWI-432, 
respectively. 
 

Additive Wavelet Principal Component (AWPC) (González-
Audícana et al., 2005):  This method is basically the same as the 
AWI, except that the first principal components derived by 
principal component analysis using four bands are used instead 
of the intensity component of the IHS transform in AWI. 
 
Generalized Laplacian Pyramid with Spectral Distortion 
Minimization (GLP-SDM) (Aiazzi et al., 2002a, 2002b, 
2005):  The method combines the generalized Laplacian 
pyramid, one of the multi-resolution analyses, and the detail-
injection model of spectral distortion minimizing. Spatial detail 
is extracted from the difference between the original and 
smoothed PAN images and added to the expanded MS image. 
The weighting factor is derived from the ratio of PAN and MS 
images. The simplest three-taps pyramid-generating low-pass 
filter (i.e. bilinear interpolation) and a cascade of two reduction 
steps were adopted in this study for computational simplicity. 
This method can be applied on a band-by-band basis, although 
others are implemented to all bands at one time. 
 
Generalized Intensity-Hue-Saturation transform (GIHS) 
(Tu et al., 2004):  GHIS is an expansion of fast IHS fusion 
methods to more than three channels of a color image. The 
intensity component is derived from a linear sum of each band 
with a set of weighting coefficients. The difference between the 
PAN and intensity component is added to each band of the MS 
image to improve the spatial resolution. 
 
GIHS Adaptive (GIHSA) (Tu et al., 2004, Aiazzi et al., 2007):  
This method is almost the same as the GHIS, but weighting 
coefficients are determined by scenes based on a linear 
regression of the PAN image by the MS bands.  
 
Gram–Schmidt spectral sharpening (GS) (Laben et al., 2000, 
Aiazzi et al., 2007):  The method uses Gram–Schmidt 
orthogonalization to enhance the spatial resolution of the MS 
image. The steps adopted in this study are: 
    (1) A lower spectral resolution PAN image (the same as the 

MS image) is derived by spatial averaging of 4 × 4 pixels 
of the original PAN image. 

    (2) The modified Gram–Schmidt transformation is performed 
on the lower PAN image together with the MS image.  
The lower spatial resolution PAN image is employed as 
the first band in the GS transformation 

    (3) The statistics of the original PAN image are adjusted to 
match the statistics of the first transform band of the GS 
transformation. 

    (4) The statistically adjusted high resolution PAN image is 
substituted for the first transform band to produce a new 
set of bands. 

    (5) The inverse GS transformation is performed on the new 
set of bands to produce the pansharpened MS images. 

 
Block-based Synthetic Variable Ratio (Block-SVR) (Zhang 
et al., 2010):  This is a technique based on multiple linear 
regression of blocks (i.e., square regions of pixels) to fuse the 
images. Multiplying the ratio of the original and synthesized 
PAN images (the latter is derived by multiple regression of the 
PAN image by MS bands) derives the pansharpened MS band. 
The original SVR performs multiple regressions by image base. 
In other words, all pixels in the image are used to derive a single 
set of coefficients, but the block-based regression is modified in 
this method. The steps are as follows: 
    (1) Low resolution MS images are resampled (expanded) to 

the same size as the PAN image. 
    (2) Central and neighboring blocks (in total, N × N blocks) 

are fetched from the MS and PAN images in sequence. 
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    (3) Linear multiple parameters are calculated through 
multiple linear regression of the pixels in the blocks. 

    (4) The pixels in the central block are pansharpened by the 
SVR scheme and regression coefficients. 

    (5) Steps (2)–(4) are repeated for all blocks. 
In this study, one block is composed of 16 (4 × 4) pixels, and 
the number of blocks used in regression is 7 × 7. 
 
2.3 Methods of Quality Assessment 

Because the spatial resolution of AVNIR-2 and PRISM were 
originally 10 and 2.5 m, respectively, the pansharpened image 
could have a resolution of 2.5 m. It is difficult, however, to 
assess the quality of images at this resolution because of a lack 
of reference MS data. Therefore, the spatial resolution of the 
input images was degraded by a factor of four (to 40 and 10 m) 
by simple averaging of 4 ×  4 pixels.  Then, a pansharpened 
image of 10-m resolution was generated. The results were 
compared with the original MS data of AVNIR-2. 
 
Qualitative and quantitative assessments were used to evaluate 
the results. In the qualitative assessments, the pansharpened 
results were compared with the original images by means of 
visual interpretation and scatter plots of the image digital 
numbers. In quantitative assessments, three frequently used 
statistics, the correlation coefficient, erreur relative globale 
adimensionnelle de synthèse (ERGAS, relative global 
dimensional synthesis error) (Wald, 2000), and Q index (Wang 
and Bovik, 2002), were adopted (Alparone et al., 2004, Cetin 
and Musaoglu, 2009, Otazu et al., 2005, González-Audícana et 
al., 2004). The ERGAS, given in equation 1, has lower values 
for better quality. Wald (2000) stated that a good quality is 
achieved when the index is less than 3. 
 

, 
(1) 

 
where h = the spatial resolution of the PAN image 
 l = the spatial resolution of the MS image 
 N = the number of spectral bands (Bi) 
 Mi = the mean of each spectral band 
 RMSE = root mean square error between each band  
                of the original and pansharpened images 
 
The Q index models the difference between two images as a 
combination of three different factors: the loss of correlation, 
the luminance distortion, and the contrast distortion (Otazu et 
al., 2005). Q ranges from -1 to 1; a higher value indicates better 
quality. Q indices were calculated using a sliding window 
approach, with window sizes of 128 × 128 used for each band. 
Here we used the expression 
 

, 
(2) 

 
where  

€ 
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€ 

y  = the mean of 10 m resolution original (x) and  
              pansharpened (y) images 
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σ xy  = covariance between x and y. 
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Figure 2.  Pansharpened, original and degraded images in an 
urban area 

 
3. RESULTS AND DISCUSSIONS 

Pansharpened images of urban, agricultural, and forest area are 
shown in Figures 2, 3, and 4, respectively, together with the 
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original (i.e., 10-m resolution) AVNIR-2 image. The images are 
shown in false color composition, except the AWI-123, which is 
in true color composition. 
 
In urban areas, most of the methods produce relatively higher 
contrast than the original MS data. The edges of buildings, 
roads, and water are all sharpened to some degree, especially in 
the AWPC, GLP-SDM, GIHSA, GS, and Block-SVR data. In 
GIHS, the brightness is decreased, particularly for bright objects 
such as roads and buildings. The AWI showed the closest 
appearance to the original image. 
 

   
           AWI-123                        AWI-432                         AWPC 

   
          GLP-SDM                         GIHS                             GIHSA 

   
                GS                           Block-SVR                       Original 
Figure 3.  Pansharpened and original images in an agricultural 

area 
 

   
           AWI-123                        AWI-432                         AWPC 

   
          GLP-SDM                         GIHS                             GIHSA 

   
                GS                           Block-SVR                       Original 

Figure 4.  Pansharpened and original images in a forest area 
 

In agricultural areas, bright red farm fields were degraded in 
brightness in all methods. In other words, a larger digital 
number for band 4 (near-infrared wavelengths) resulted in a 
larger decrease in brightness. This is also clear in the scatter 
plots of original and pansharpened images, as shown in Figure 5. 
Correlation coefficients of each scatters are shown in Table 2. 
Similarities between the pansharpened images and the original 
are greater in bands 2 and 3 but relatively poor in bands 1 and 4. 
A larger digital number (over 100) resulted in a peak at or 
below ~100, especially in band 4. Excessive enhancements of 
contrast, as in urban areas, were also recognized in the GLP-
SDM, GIHSA, GS, and Block-SVR data. 
 

 
                      AWI-123                                          AWI-432 

 
                        AWPC                                           GLP-SDM 

 
                          GIHS                                               GIHSA 

 
                            GS                                             Block-SVR 
Figure 5.  Scatter plots of original and pansharpened images in 

an agricultural area (horizontal: original, vertical: 
pansharpened) 

 
The contrasts in forest areas were degraded in all cases, in 
contradiction to results for the previously mentioned two areas. 
The edges of vegetation/non-vegetation and/or shadow areas 
were blurred, and the images appeared hazy. There was little 
difference among the methods in forest areas. We considered 
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that lower local variances of pixel values in both MS and PAN 
images caused smooth and similar spectral characteristics for all 
methods. 

 
3.1 Quantitative Assessments 

The statistical properties of each pansharpening method are 
shown in Table 2 for each land cover type. The highest scores 
among the methods are shaded in each area. In the correlation 
coefficient (CC), higher values (around 0.9) were acquired in 
bands 2 and 3 for all areas and methods. In band 1, in contrast, 
the CCs were relatively lower than bands 2 and 3, ranging from 
0.60 to 0.91. Higher values in band 1 were derived in urban 
areas, and lower values were found in forest areas. The GS data 
showed the best value in band 2 for all land cover types. In band 
4, much higher CCs (0.95 to 0.96) were derived for forest area 
in all methods. However, agricultural areas showed CCs ranging 
from 0.62 to 0.77 (refer to band 4 in Figure 5). The AWI-432 
data showed the highest values in band 4 in all areas. The GS 
data counted eight of the highest values among 12 cases, 
whereas the AWI-432 data had five. These methods had the 
advantage from the viewpoint of the correlation coefficient. 
 
Most of the ERGAS values were less than 3, indicating high-
quality images. Higher values were derived in forest areas 
compared with urban and agricultural areas. The AWI-123 data 
showed the highest values among the methods. One reason was 
that all bands used in this method had higher correlations, i.e., 
PRISM and bands 1 to 3 of AVNIR-2 had spectral responses in 
visible wavelengths. Within the methods applicable for four 
data bands (i.e., other than AWI), AWPC and GS showed the 
higher values (underlined). 
 
The Q index showed a similar trend to the correlation 
coefficient. It was higher in bands 2 and 3 and lower in band 1. 
In case of band 4, it was higher in forests and lower in 
agricultural areas. One of the reasons for these features was the 
spectral characteristics of the sensors. Figure 6 shows the 
relative spectral response functions of PRISM and AVNIR-2. 
The spectral responses of bands 2 and 3 of AVNIR-2 
overlapped, in contrast to those of bands 1 and 4. This resulted 
in higher correlation coefficients and Q indices in bands 2 and 3. 
In the case of band 4, the situation was rather different because 
it observes at near-infrared wavelengths, where vegetation 
shows much higher reflectance. In general, the spectral 
characteristics of the near-infrared images were dissimilar to 
those of visible images, resulting in lower correlation. They also 
depended heavily on the existence and activity of vegetation. 
This meant that image similarity had wide variation on both 
local and large scales. This might be the reason that Q indices in 
band 4 were higher in the forest, where local variation was low 
(i.e., smooth), but lower in agricultural areas, where there was 
greater local variation due to vegetated/non-vegetated fields, 
narrow roads, and so on. For the same reason, the values of 
GIHSA did not show improvements over those for GIHS in this 
study. This is in contrast to the result by Aiazzi (2007) derived 
using IKONOS, for which panchromatic bands had sensitivity 
in both the visible and near-infrared wavelengths. 
 
Of the seven tested methods, GS and AWI-432 showed better 
results in the evaluation by correlation coefficient and Q index. 
Meanwhile, AWI-123, AWPC, and GS had the advantage in 
ERGAS. These methods showed relatively higher values even 
in bands 1 and 4, where PRISM had little sensitivity. 
 
 
 

Table 2.  Correlation coefficient, ERGAS, and Q index of urban 
(top), agricultural (middle), and forest (bottom) areas. 

 

 

 
 

 
Figure 6.  Spectral response of PRISM and AVNIR-2 

 
4. CONCLUSIONS 

Seven methods of pixel-based pansharpening were compared 
using PRISM and AVNIR-2 data from ALOS. Qualitative and 
quantitative viewpoints were used to assess the conservation of 
spectral information. All the methods successfully improved the 
apparent spatial resolution of the image compared with the 
original low-resolution multispectral images, although the 
appearance varied depending on the method. Some over-
sharpening of contrast was recognized in urban and agricultural 
scenes. Meanwhile, less improvement in contrast was detected 
in forest areas. In the quantitative assessment using correlation 
coefficients, ERGAS values and the Q index indicated that 
spectral information was preserved better in bands 2 and 3 than 
in the other two bands for all methods. The land cover 
significantly affected the spectral quality of the band 4 image. 
Spatial homogeneity of the reflectance due to the existence of 
vegetation was particularly important. This was largely a result 
of the spectral response of PRISM, which was small in blue and 
near-infrared regions. The Gram–Schmidt spectral sharpening 
(GS), additive wavelet intensity (AWI), and additive wavelet 
principal component (AWPC) methods resulted in a relatively 
higher image quality on the whole, even in bands 1 and 4. 
Further investigation in view of the spatial variance of the 
image, spectral sensitivity of the sensors, and pansharpening 
methods should be conducted using other scenes and other 
sensors as hyperspectral data. 
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