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ABSTRACT: 
 
Preservation of the spectral characteristics in multispectral images is important in the development of pansharpening methods 
because it affects the accuracy of subsequent applications, such as visual interpretation, land cover classification, and change 
detection.  The combinations of the spectral properties (observation wavelength and width of spectral bands) of multispectral and 
panchromatic images affect both the spatial and spectral quality of pansharpened images.  Therefore, the clarification of the relations 
between spectral bands and quality of pansharpened image is important for improving our understanding of pansharpening methods, 
and for developing better schemes for image fusion.  This study investigated the influence of the spectral waveband of panchromatic 
images on the image quality of multispectral (MS) images using simulated images produced from hyperspectral data.  Panchromatic 
images with different spectral band position and multispectral images with degraded spatial resolution were generated from airborne 
visible/infrared imaging spectrometer (AVIRIS) images and pansharpened using seven methods: additive wavelet intensity, additive 
wavelet principal component, generalized Laplacian pyramid with spectral distortion minimization, generalized intensity-hue-
saturation (GIHS) transform, GIHS adaptive, Gram–Schmidt spectral sharpening, and block-based synthetic variable ratio.  The 
pansharpened near-infrared band was visually and statistically compared with the non-degraded image.  Wide variation in quality 
was identified visually within and between methods depending on the spectral wavelengths of the panchromatic images.  
Quantitative evaluations using three frequently used indices, the correlation coefficient, erreur relative globale adimensionnelle de 
synthèse (ERGAS), and the Q index, showed the individual behaviors of the pansharpening methods in terms of the spectral 
similarity in panchromatic and near-infrared, though all methods had similar qualities in the case with the lowest similarity.  These 
findings are discussed in terms of the fundamentals and structures of the methods. 
 
 

1. INTRODUCTION 

Image fusion is one way to use remote sensing to improve our 
understanding of the Earth’s surface through the synthesis of 
huge volumes of satellite and geographical data.  Pansharpening 
is an image-fusion technique that generates higher spatial 
resolution multispectral images by combining lower resolution 
multispectral images with higher resolution panchromatic 
images.  Most pansharpening methods alter the spectral 
properties of multispectral images while improving the spatial 
resolution (Ehlers et al., 2010, Alparone et al., 2007).  
Therefore, the preservation of spectral characteristics is 
essential when evaluating the performance of the methods.  As 
spectral deformation can result from the difference in the 
spectral wavelengths of panchromatic and multispectral images, 
it is necessary to investigate the influence of the spectral 
characteristics on the quality of pansharpened images to 
improve pansharpening methods. 
 
Hyperspectral remote sensing or imaging spectroscopy can 
provide a smooth spectral curve of a target by using a set of 
higher spectral resolution detectors (Jensen, 2007).  This 
spectral information is quite useful for detail analyses of land-
surface features such as vegetation or mineral resources.  
Several airborne and spaceborne sensors have been operated or 
are planned (e.g., Matsunaga et al., 2011).  Additionally, 
hyperspectral data are convenient for simulating multispectral 
data by using the weighted average of spectral bands.  A wide 
variety of multispectral images with different spectral responses 

gives effective information for algorithm development, data 
assimilation, and sensor design. 
 
This study investigated the influence of the spectral waveband 
of panchromatic images on the spectral characteristics of 
pansharpened multispectral data using a simulated set of data 
that was produced from hyperspectral data.  This study focused 
on the quality change of the near-infrared band of multispectral 
data due to the pansharpening using band-shifting panchromatic 
images. 
 

2. DATA AND METHOD 

2.1 Data 

This study used hyperspectral data from the Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS).  AVIRIS 
measures the solar reflected spectrum from 400 to 2500 nm 

 

  
              (a) Agricultural                                        (b) Urban 

Figure 1.  The scenes used in this study 
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through 224 contiguous spectral channels at 10-nm intervals 
across the spectrum (Green et al., 1998).  Two scenes of free 
standard data products were downloaded from the AVIRIS 
website: “Low Altitude” (f960705t01p02r02) and “Moffett 
Field” (f080611t01p00r07) (AVIRIS, 2011).  Agricultural and 
urban areas were clipped from each product to an image size of 
512 × 512 pixels (Figure 1).  As both datasets record the 
spectral radiance in 16 bits, the data were converted to 8 bits in 
response to each data range.  That is, the ranges of radiance 
from 0.840 to 6.786 (µW/cm2·nm·sr) in agricultural areas and 
from 1.846 to 14.388 in urban areas were scaled to a range from 
1 to 255 of 8 bits data, respectively.  This scaling was applied 
identically to all bands within the scene. 
 
2.2 Analysis Flow 

Multispectral (MS) and panchromatic (PAN) images generated 
from hyperspectral (HS) data were used for pansharpening.  A 
MS image has a single set of bands with fixed spectral 
responses.  By contrast, PAN images are generated with 
different spectral waveband to evaluate their influence on the 
spectral characteristics of MS images.  The pansharpened near-
infrared (NIR) band, which was generated from spatially 
degraded (lower resolution) MS image, was the compared with 
original (higher resolution) MS image.  The analysis flow, 
shown in Figure 2, included the following steps. 
 
Generation of multispectral image: Four bands of MS image 
were generated by spectral averaging of HS data.  The 
wavelengths of the bands correspond to those of the Advanced 
Visible and Near Infrared Radiometer type 2 (AVNIR-2) 
onboard the Advanced Land Observing Satellite (ALOS) 
(EORC/JAXA, 2012).  AVNIR-2 has four bands at red (420–
500 nm), green (520–600), blue (610–690), and NIR (760–890) 
wavelengths.  Eight images from bands 7 to 14 of AVIRIS were 
simply averaged to produce band 1 of AVNIR-2.  Bands 17 to 
25, 27 to 36, and 44 to 57 of AVIRIS were averaged in order to 
produce bands 2, 3, and 4 of AVNIR-2, respectively. 
 
Degradation of spatial resolution: Spatially degraded MS 
images were derived by averaging 4 × 4 pixels.  As the original 
size was 512 × 512, the size of the degraded image was 128 × 
128 pixels.  This degraded MS was used in order to generate 
pansharpened image that has same image size as the original 
(512 × 512). 
 
Generation of panchromatic images: Fifteen PAN images 
with a variety of spectral band position were produced by 
averaging of shifting band set of AVIRIS.  Band position was 
based on the NIR band of MS.  Since NIR band is derived from 
the average of 14 bands from bands 44 to 57 of AVIRIS, 15 
types of PAN image were produced with different degrees of 
overlap from 0% (0/14) to 100% (14/14) by shifting the band 
selection to shorter wavelengths.  That is, the 0% overlap PAN 
image was produced using bands 28 to 43, and the 100% 
overlap was produced by averaging bands 44 to 57.  In this 
process, bands 31 and 32 were excluded because these have 
large overlaps with bands 33 and 34, respectively. 
 
Pansharpening: Seven pansharpening methods were performed 
using degraded MS images and each PAN image.  The methods 
are explained in the next subsection. 
 
Comparison of the pansharpened and original NIR bands: 
The spectral characteristics of pansharpened NIR bands, which 
are derived using each of 15 PAN images, were compared with 
the original (non-degraded) NIR band.  A qualitative evaluation 

was made by visual comparison, and a quantitative assessment 
was implemented using three statistical indices: the correlation 
coefficient, erreur relative globale adimensionnelle de synthèse 
(ERGAS), and Q index.  The details of these indices are 
explained in subsection 2.4.  The central 480 × 480 pixel region 
was used in this evaluation because some methods are not 
applied in the fringe of an image owing to block- or pixel-based 
regressions. 
 

 
Figure 2.  Flow of the analysis 

 
2.3 Pansharpening Methods 

Seven pixel-based pansharpening methods were used in this 
study: three multi-resolution analysis-based, three component-
substitution, and one modulation-based fusion techniques 
(Zhang, 2010). 
 
Additive Wavelet Intensity (AWI) (Núñez et al., 1999, 
González-Audícana et al., 2005): The basic idea of this method 
is to insert the spatial details of the PAN image into the 
intensity component of the multispectral image that gathers 
most of its spatial, instead of replacing this component with the 
whole PAN image as in the intensity-hue-saturation (IHS) 
transformation pansharpening method (González-Audícana et 
al., 2005).  The processing steps used here are as follows: 
(1) The IHS transform is applied to the red-green-blue (RGB) 

composition of the MS image that is resampled to the same 
spatial resolution as the PAN image by bilinear 
interpolation. 

(2) The PAN image is histogram matched to the intensity 
image. 

(3) The ‘à trous’ discrete wavelet transform is applied to the 
histogram-matched PAN image to derive the first and 
second wavelet planes. 

(4) These wavelet planes are added to the intensity image. 
(5) The inverse IHS transform is applied to derive the 

pansharpened RGB component. 
For the forward and inverse IHS transforms, we adopted the 
triangle model of Smith (1978).  As the IHS transformation is 
applicable only for three color channels, AWI was applied to 
the false-color composition, i.e., red, green, and blue comprise 
the near-infrared, red, and green bands of the MS data, 
respectively. 
 
Additive Wavelet Principal Component (AWPC) (González-
Audícana et al., 2005): This method is basically same as the 
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AWI, except that it uses the first principal component derived 
by principal component analysis using four bands instead of the 
intensity component of the IHS transform. 
 
Generalized Laplacian Pyramid with Spectral Distortion 
Minimization (GLP-SDM) (Aiazzi et al., 2002a, 2002b, 2005): 
The method combines the generalized Laplacian pyramid, one 
method of multi-resolution analysis, and the detail injection 
model of spectral distortion minimizing.  Spatial detail is 
extracted from the difference between the original and 
smoothed PAN images and it is added to the expanded MS 
image using a weighting factor derived from the ratio of the 
PAN and MS images.  For computational simplification, the 
simplest three-taps pyramid-generating low-pass filter (i.e., 
bilinear interpolation) and a cascade of two reduction steps were 
adopted. 
 
Generalized Intensity-Hue-Saturation transform (GIHS) 
(Tu et al., 2004): GIHS is an expansion of fast IHS fusion 
methods to more than three channels of color images, and the 
intensity component is derived as the linear sum of each band 
with a set of weighting coefficients.  The difference between the 
PAN and intensity component is added to each band of the MS 
image to improve the spatial resolution. 
 
GIHS Adaptive (GIHSA) (Tu et al., 2004, Aiazzi et al., 2007):  
This method is almost the same as the GHIS, but weighting 
coefficients are determined by scenes based on a linear 
regression of the PAN image by the MS bands. 
 
Gram–Schmidt Spectral Sharpening (GS) (Laben et al., 2000, 
Aiazzi et al., 2007): The method utilizes Gram–Schmidt 
orthogonalization to enhance the spatial resolution of the MS 
image using the following steps: 
(1) A lower spectral resolution PAN image (the same as the 

MS image) is derived by spatial averaging of 4 × 4 pixels 
of the original PAN image. 

(2) The modified Gram–Schmidt transformation is performed 
on the resulting PAN image together with the MS image.  
The lower spatial resolution PAN image is used as the first 
band in the GS transformation. 

(3) The statistics of the original PAN image are adjusted to 
match the statistics of the first transform band of the GS 
transformation. 

(4) The statistically adjusted high resolution PAN image is 
substituted for the first transform band to produce a new set 
of bands. 

(5) The inverse GS transformation is performed on the new set 
of bands to produce the pansharpened MS image. 

 
Block-based Synthetic Variable Ratio (Block-SVR) (Zhang 
et al., 2010): This technique is based on multiple linear 
regression of a block (i.e., a square region of pixels) to fuse the 
images.  Multiplying the ratio of the original and synthesized 
PAN images, which is derived by multiple regression of the 
PAN image by MS bands, gives the pansharpened MS bands.  
Whereas the original SVR performs multiple regressions on an 
image basis, i.e., all pixels of the image are used to derive a 
single set of coefficients, it is modified to block-based 
regression here.  The processing steps are as follows: 
(1) The low-resolution MS image is resampled (expanded) to 

the same size as the PAN image. 
(2) Central and neighboring blocks (in total, N × N blocks) are 

fetched from the MS and PAN images in sequence. 
(3) Multiple linear parameters are calculated through multiple 

linear regression of the pixels in the blocks. 

(4) The pixels in the central block are pansharpened using the 
SVR scheme and the calculated parameters(i.e., regression 
coefficients). 

(5) Steps (2) to (4) are repeated for all blocks. 
In this study, one block was composed of 16 (4 × 4) pixels, and 
7 × 7 blocks were used in the regression. 
 
In the qualitative evaluations, the pansharpened results were 
compared to the original NIR image visually and by using 
scatterplots of the digital numbers of the images.  Statistical 
evaluations were performed using three frequently used 
statistics (e.g., Alparone et al., 2004; González-Audícana et al., 
2004; Otazu et al., 2005; Cetin and Musaoglu, 2009): the 
correlation coefficient, ERGAS (relative global dimensional 
synthesis error) (Wald, 2000), and Q index (Wang and Bovik, 
2002).  ERGAS, given in equation 1, has lower values for better 
quality.  Wald (2000) stated that a good quality is achieved 
when the index is less than 3. 
 

, 
(1) 

 
where h = the spatial resolution of the PAN image 
 l = the spatial resolution of the MS image 
 N = the number of spectral bands (Bi) 
 Mi = the mean of each spectral band 
 RMSE = root mean square error between each band of  
                the original and pansharpened images 
 
The Q index (equation 2) models the difference between two 
images as a combination of three different factors: loss of 
correlation, luminance distortion, and contrast distortion (Otazu 
et al., 2005).  Q ranges from –1 to 1, and higher values indicate 
better quality.  Q indices are generally calculated using a sliding 
window approach; a window size of 128 × 128 was applied here. 
 

, 
(2) 

 
where  

€ 

x ,

€ 

y  = the mean of original (x) and pan-sharpened (y)  
              images 
 

€ 

σ x
2 ,

€ 

σ y
2  = variance of x and y 

 

€ 

σ xy  = covariance between x and y 
 

3. RESULTS AND DISCUSSION 

3.1 Visual Evaluation 

Pansharpened images of an agricultural area generated using 0, 
50, and 100% overlapping PAN images are shown in Figure 3.  
AWPC results in remarkable blurring compared with the other 
methods, and this was more pronounced at higher overlap rates.  
With GIHS, the brightness of the image was enhanced 
excessively, and bright ground objects were saturated.  With 0% 
overlap of GS, the image is pansharpened minimally, with 
lower contrast, similar to AWPC.  In 0% of Block-SVR, GIHS, 
and GLP-SDM, interfusion of brightness was identified along 
the edge between bright and dark objects, such as the edge 
between vegetation and bare ground.  In other words, fringes of 
bright areas were darkened and those of dark areas were 
lightened.  With 100% overlap, GLP-SDM, GIHSA, GS, and 
Block-SVR gave results similar to the original image. 
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(a) AWI 

 
(b) AWPC 

 
(c) GLP-SDM 

 
(d) GIHS 

 
(e) GIHSA 

 
(f) GS 

 
(g) Block-SVR 

Figure 3.  Pansharpened band 4 in an agricultural area using 0% 
(left), 50% (center), and100 % (right) overlapping PAN images 
 
Pansharpened images of an urban area using 50% overlapped 
PAN images are shown in Figure 4, together with the original 
and spatially degraded NIR band (the brightness of the image is 
enhanced linearly to the same level because the original result 
was too dark to show).  AWI and AWPC were less sharp, 
especially in the region of small buildings and narrow roads.  

GIHS also resulted in insufficient improvement of the sharpness, 
and blurring was noted along the edges of dark roads and bright 
buildings.  GLP-SDM and GIHSA produced results similar to 
the original in terms of both spatial detail and image brightness.  
GS showed similar spatial contrast, but relatively lower 
brightness. 
 

   
           (a) AWI                         (b) AWPC                  (c) GLP-SDM 

   
           (d) GIHS                      (e) GIHSA                        (f) GS 

   
      (g) Block-SVR                (h) Original                   (i) Degraded 

Figure 4.  Pansharpened image in an urban area using 50% 
overlapping PAN image 

 
Figure 5 shows scatterplots of the digital numbers of the 
pansharpened and original NIR band, along with different 
overlap rates of 0, 50, and 100%.  AWPC and GIHS have larger 
variances, even in the case of 100% overlap, followed by AWI.  
The main reason for this variation is thought to be the 
propagation of spectral features from other bands because these 
methods implement linear transformation using all bands, and 
this injected dissimilar spectral characteristics into the NIR band.  
In the agricultural area using GIHS, the gradient of the plot is 
much larger than unity owing to the excessive enhancement and 
saturation of brightness.  GLP-SDM and GS showed an 
extremely high correlation at 100% overlap, i.e., higher 
compatibility of images, although the gradient of GS is not 
unity (i.e., the one-to-one line). 
 
3.2 Statistical Comparison 

Figure 6 shows the changes in the correlation coefficient (CC), 
ERGAS, and Q index of the NIR band with the rate of overlap 
of the PAN and NIR images.  GLP-SDM and GS reached CC = 
1.0 at 100% overlap, followed by GIHSA and Block-SVR.  
AWI had the lowest CC (~0.8) with 100% overlap.  GIHS 
showed a peak in the CC at around 30% overlap.  All of the 
methods gave CC ≈ 0.8, even with 0% overlap.  In this case, GS 
had a relatively higher CC. 
 
With ERGAS, the scores in the urban area were larger (i.e., 
worse quality) than the agricultural area and much larger than 3, 
the reference score for good quality.  AWPC and GIHS had a 
worse or less improved value, even with an increasing overlap 
rate.  GLP-SDM had the better quality of almost 0 at 100% 
overlap, followed by GIHSA, Block-SVR, and GS.  All 
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methods had similar ERGAS values around 3 and 8 in 
agricultural and urban areas, respectively, with 0% overlap. 
 
The Q index showed characteristics similar to the correlation 
coefficient.  This is because Q is rewritten equivalently as a 
product of the correlation coefficient, a factor representing the 
bias in the mean of two images, and a factor accounting for 
changes in contrast between images (Alparone et al., 2004). 
 

    
(a) AWI 

    
(b) AWPC 

    
(c) GLP-SDM 

    
(d) GIHS 

    
(e) GIHSA 

    
(f) GS 

    
(g) Block-SVR 

Figure 5.  Scatterplots of the original (horizontal) and 
pansharpened (vertical) NIR band in agricultural (left) and 

urban (right) areas 
 
The respective values of GLP-SDM and GIHSA were 1.00 and 
over 0.99 in both areas.  In GLP-SDM, pansharpening is 
performed on a band-by-band basis, and the difference of 
contrast between the PAN image and degraded NIR image was 
eliminated in the process of down sampling and up sampling.  
One additional reason for this elimination is the three-taps 
pyramid-generating low-pass filter (bi-linear interpolation) used 
in this study.  This resulted in the reproduction an NIR image 
that was almost the same as the PAN image.  In GIHSA, the 
intensity component is calculated using multiple linear 
regression of PAN by MS; hence, the intensity was computed 
only from the NIR band, i.e., the regression coefficients of the 
other three bands were almost 0.  In another method, both the 
NIR and other bands affect the pansharpening process.  
Therefore, the indices had relatively lower scores, even with 
100% overlap. 
 

 
(a) Correlation coefficient 

 

 
(b) ERGAS 

 

 
(c) Q index [128 × 128] 

 
Figure 6.  Correlation coefficient, ERGAS, and Q index of the 

NIR band for different rates of overlap of the PAN image 
 

4. CONCLUSIONS 

The influence of the waveband of PAN images on the spectral 
characteristics of pansharpened MS images was investigated 
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using simulated images derived from hyperspectral data.  Visual 
assessment indicated that the quality of the pansharpened image 
was highly dependent not only on the pansharpening method 
but also on the spectral characteristics of the PAN image.  Even 
using one method, quite different image qualities were 
generated according to the wavelength of the PAN image.  The 
statistical evaluation showed that all of the methods had similar 
scores in the case of 0% overlap, i.e., lower similarity of the 
PAN and NIR bands of the MS image, but the variation in the 
scores increased with the spectral overlap.  This was mainly the 
consequence of the difference in the mechanism of 
pansharpening adopted by each method.  Further studies should 
examine other bands and other wavelengths of PAN and MS 
images.  The results will help to characterize the pansharpening 
methods, develop or improve the methods, and design the 
spectral specifications of new sensors. 
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